Skip to main content

Brain Tumor Segmentation in Multi-parametric Magnetic Resonance Imaging Using Model Ensembling and Super-resolution

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 12963))

Included in the following conference series:

Abstract

Brain tumor segmentation in MRI offers critical quantitative imaging data to characterize and improve prognosis. The International Brain Tumor Segmentation (BraTS) Challenge provides a unique opportunity to encourage machine learning solutions to address this challenging task. This year, the 10th edition of BraTS collected a multi-institutional multi-parametric MRI dataset of 2040 cases with typical heterogeneity in large multi-domain imaging datasets. In this paper we present a strategy ensembling four parallelly-trained models to increase the stability and performance of our neural network-based tumor segmentation. Particularly, image intensity normalization and multi-parametric MRI super-resolution techniques are used in ensembled pipelines. The evaluation of our solution on 570 unseen testing cases resulted in Dice scores of 86.28, 87.12 and 92.10, and Hausdorff distance of 14.36, 17.48 and 5.37 mm for the enhancing tumor, tumor core and whole tumor, respectively.

Z. Jiang and C. Zhao—These authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://monai.io.

  2. 2.

    https://developer.nvidia.com/clara.

References

  1. Baid, U., et al.: The RSNA-ASNR-MICCAI brats 2021 benchmark on brain tumor segmentation and radiogenomic classification. CoRR abs/2107.02314 (2021), https://arxiv.org/abs/2107.02314

  2. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 170117 (2017). https://doi.org/10.1038/sdata.2017.117

  3. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the tcga-gbm collection. Cancer Imaging Arch. (2017). https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

    Article  Google Scholar 

  4. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the tcga-lgg collection. Cancer Imaging Arch. (2017). https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

    Article  Google Scholar 

  5. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv preprint arXiv:1811.02629 (2018)

  6. Chen, Y., Shi, F., Christodoulou, A.G., Xie, Y., Zhou, Z., Li, D.: Efficient and accurate MRI super-resolution using a generative adversarial network and 3D multi-level densely connected network. In: Medical Image Computing and Computer Assisted Intervention (MICCAI), vol. 2018, pp. 91–99 (2018)

    Google Scholar 

  7. Delannoy, Q., et al.: SegSRGAN: super-resolution and segmentation using generative adversarial networks–application to neonatal brain MRI. Comput. Biol. Med. 120, 103755 (2020)

    Article  Google Scholar 

  8. Gheshlaghi, S.H., Dehzangi, O., Dabouei, A., Amireskandari, A., Rezai, A., Nasrabadi, N.M.: Efficient OCT image segmentation using neural architecture search. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 428–432 (2020)

    Google Scholar 

  9. Hamwood, J., Alonso-Caneiro, D., Read, S.A., Vincent, S.J., Collins, M.J.: Effect of patch size and network architecture on a convolutional neural network approach for automatic segmentation of OCT retinal layers. Biomed. Opt. Exp. 9(7), 3049–3066 (2018). https://doi.org/10.1364/BOE.9.003049, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6033561/

  10. Hatvani, J., Horváth, A., Michetti, J., Basarab, A., Kouamé, D., Gyöngy, M.: Deep learning-based super-resolution applied to dental computed tomography. IEEE Trans. Radiat. Plasma Med. Sci. 3(2), 120–128 (2019)

    Article  Google Scholar 

  11. Isensee, F., Jäger, P.F., Full, P.M., Vollmuth, P., Maier-Hein, K.H.: nnU-net for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12659, pp. 118–132. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72087-2_11

    Chapter  Google Scholar 

  12. Jacobsen, N., Deistung, A., Timmann, D., Goericke, S.L., Reichenbach, J.R., Güllmar, D.: Analysis of intensity normalization for optimal segmentation performance of a fully convolutional neural network. Zeitschrift Fur Medizinische Physik 29(2) (2019). https://doi.org/10.1016/j.zemedi.2018.11.004

  13. Kang, M., Cha, E., Kang, E., Ye, J.C., Her, N., Oh, J., Nam, D., Kim, M., Yang, S.: Accuracy improvement of quantification information using super-resolution with convolutional neural network for microscopy images. Biomed. Sig. Process. Control 58, 101846 (2020)

    Article  Google Scholar 

  14. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 136–144 (2017)

    Google Scholar 

  15. Lyu, Q., et al.: Multi-contrast super-resolution MRI through a progressive network. IEEE Trans. Med. Imaging 39(9), 2738–2749 (2020)

    Article  Google Scholar 

  16. Mahapatra, D., Bozorgtabar, B., Garnavi, R.: Image super-resolution using progressive generative adversarial networks for medical image analysis. Comput. Med. Imaging Graph. 71, 30–39 (2019)

    Article  Google Scholar 

  17. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  18. Myronenko, A.: 3d MRI brain tumor segmentation using autoencoder regularization. CoRR abs/1810.11654 (2018), http://arxiv.org/abs/1810.11654

  19. Nyul, L., Udupa, J., Zhang, X.: New variants of a method of MRI scale standardization. IEEE Trans. Med. Imaging 19(2), 143–150 (2000). https://doi.org/10.1109/42.836373

    Article  Google Scholar 

  20. Oktay, O., et al.: Multi-input cardiac image super-resolution using convolutional neural networks. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 246–254. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_29

    Chapter  Google Scholar 

  21. Pham, C., Ducournau, A., Fablet, R., Rousseau, F.: Brain MRI super-resolution using deep 3D convolutional networks. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 197–200 (2017)

    Google Scholar 

  22. Reinhold, J.C., Dewey, B.E., Carass, A., Prince, J.L.: Evaluating the impact of intensity normalization on MR image synthesis. In: Medical Imaging 2019: Image Processing, vol. 10949, p. 109493H. International Society for Optics and Photonics (2019)

    Google Scholar 

  23. Sert, E., Özyurt, F., Doğantekin, A.: A new approach for brain tumor diagnosis system: single image super resolution based maximum fuzzy entropy segmentation and convolutional neural network. Med. Hypotheses 133, 109413 (2019)

    Article  Google Scholar 

  24. Shah, M., et al.: Evaluating intensity normalization on mris of human brain with multiple sclerosis. Med. Image Anal. 15(2), 267–282 (2011). https://doi.org/10.1016/j.media.2010.12.003, https://www.sciencedirect.com/science/article/pii/S1361841510001337

  25. Tor-Diez, C., Porras, A.R., Packer, R.J., Avery, R.A., Linguraru, M.G.: Unsupervised MRI homogenization: application to pediatric anterior visual pathway segmentation. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds.) MLMI 2020. LNCS, vol. 12436, pp. 180–188. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59861-7_19

    Chapter  Google Scholar 

  26. Yu, Q., Xia, Y., Xie, L., Fishman, E.K., Yuille, A.L.: Thickened 2d networks for 3d medical image segmentation. CoRR abs/1904.01150 (2019), http://arxiv.org/abs/1904.01150

  27. Yun, H.R., J., M., Hong, H., Shim, K.W.: Super-resolution image generation for improvement of orbital thin bone segmentation. In: Lau, P.Y., Shobri, M. (eds.) International Workshop on Advanced Imaging Technology (IWAIT) 2020, vol. 11515, pp. 111–114 (2020)

    Google Scholar 

  28. Zeng, K., Zheng, H., Cai, C., Yang, Y., Zhang, K., Chen, Z.: Simultaneous single- and multi-contrast super-resolution for brain MRI images based on a convolutional neural network. Comput. Biol. Med. 99, 133–141 (2018)

    Article  Google Scholar 

  29. Zhao, C., Dewey, B.E., Pham, D.L., Calabresi, P.A., Reich, D.S., Prince, J.L.: Smore: a self-supervised anti-aliasing and super-resolution algorithm for MRI using deep learning. IEEE Trans. Med. Imaging 40(3), 805–817 (2020)

    Article  Google Scholar 

  30. Zhao, C., Shao, M., Carass, A., Li, H., Dewey, B.E., Ellingsen, L.M., Woo, J., Guttman, M.A., Blitz, A.M., Stone, M., et al.: Applications of a deep learning method for anti-aliasing and super-resolution in MRI. Magn. Reson. Imaging 64, 132–141 (2019)

    Article  Google Scholar 

  31. Özyurt, F., Sert, E., Avcı, D.: An expert system for brain tumor detection: fuzzy c-means with super resolution and convolutional neural network with extreme learning machine. Med. Hypotheses 134, 109433 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Holger Roth from NVIDIA, Bethesda, MD, USA and Brendan Wang from Princeton University, NJ, USA for their contributions to this work. Partial support for this work was also provided by National Cancer Institute award UG3 CA236536.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifan Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, Z., Zhao, C., Liu, X., Linguraru, M.G. (2022). Brain Tumor Segmentation in Multi-parametric Magnetic Resonance Imaging Using Model Ensembling and Super-resolution. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol 12963. Springer, Cham. https://doi.org/10.1007/978-3-031-09002-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09002-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09001-1

  • Online ISBN: 978-3-031-09002-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics