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Abstract. We propose a simple new aggregation strategy for federated
learning that won the MICCAI Federated Tumor Segmentation Chal-
lenge 2021 (FETS), the first ever challenge on Federated Learning in
the Machine Learning community. Our method addresses the problem
of how to aggregate multiple models that were trained on different data
sets. Conceptually, we propose a new way to choose the weights when
averaging the different models, thereby extending the current state of
the art (FedAvg). Empirical validation demonstrates that our approach
reaches a notable improvement in segmentation performance compared
to FedAvg.
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1 Introduction

1.1 Motivation

Preserving data privacy is of paramount importance for confidentiality-critical
fields such as the medical domain. Today it is not uncommon that large vol-
umes of private medical records are illegally released to the dark web[1]. To pre-
vent such incidents, often large amounts of resources are allocated but cannot
guarantee full security. Among many precautions, reducing human (including
IT specialists) exposure to the data is highly desirable to reduce the chance of
compromising data protection by human failure.
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Fig. 1. Schematic illustration of the federated learning concept. Within multiple data
centers, a model is trained for our task. Next, parameters are sent to the central server,
where aggregation of the parameters takes place. An aggregated global configuration
of the parameters is broadcasted back to the centers. The procedure repeats until
convergence or some other limit is reached.

1.2 The typical training scenario

In machine learning, a common scenario today looks like this: One or more in-
stitutions (companies, research institutes, governments, etc.) gather data, share
it with data scientists who, in turn, train some sort of a model using the data.
For example, a group of hospitals share MRI scans of tumors with the medical
community to help with the development of an automatic tumor segmentation
model. One problem with this approach is that the data, once it is shared, might
get leaked, misused, or stolen from the developers. Other hurdles include legal
reasons that might make it impossible for the hospitals to share and pool the
data in the first place.

1.3 Federated Learning

Conventional machine learning requires exposing training data to a learning
algorithm and its developers. When several data sources are involved, the pooling
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together of the data to create a single data set is also required. New approaches
like Federated learning (FL) [2] allow to separate model training from developer
access while also not requiring any pooling of data. FL was introduced in a series
of seminal works starting from 2015 [3,4,5]. FL is a protocol consisting of two
alternating steps: a) independent training of models on local entities with their
respective unique corpus of data, and b) broadcasting back of only the weights
of the trained models to a central entity where the weights are aggregated and
a new model is redistributed. The choice of which type of model or network to
perform step (a) is dictated by the task (e.g., classification, segmentation, etc.)
and can be made based on the state-of-the-art in the respective task. The new FL
scenario looks like this: A developer sends his or her model to all the institutions
that own training data, the institutions locally train the model for the developer
and send the newly trained models back. In this way, the developer can train
their model while never getting any access to the data. In this setting however
a new problem arises.

1.4 The aggregation problem

How to aggregate the different models that come back? A naive approach to
solve the problem would be:

1. Send an initial model to the first data center
2. Get back a newly trained model and send it to the second data center
3. Repeat until all data centers have trained the model once

Approaches like this are called sequential learning and fail due to a phenomenon
called ”catastrophic forgetting” [6]. Effectively what would happen is that the
final model would only be trained on the data of the last center and would not
have generalized to the entire corpus of data. It would simply forget what was
learned in the previous center as soon as it gets trained by the next. The state-
of-the-art approach tries to avoid this phenomenon by including feedback from
every center in each update.

1.5 State of the art

The seminal work of learning deep networks from decentralized data [5] pro-
posed as a solution a plain coordinate-wise mean averaging (FedAvg) of the
model weights coming separately from multiple centers. Recently [7] proposed
a valuable extension to FedAvg, which takes invariance of network weights to
permutations into account. In [8] (FedProx), the authors adjust the training
loss of a local model to enforce closeness of local and global model updates.
Despite methodological advances, there is neither theoretical nor practical evi-
dence for the right recipe when choosing an aggregation strategy. In this paper,
we propose a new idea on how to do aggregation. Similar to other initiatives
[9,10,11,12], the FETS challenge1 [13] is organized to benchmark different weight

1 https://fets-ai.github.io/Challenge/
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Fig. 2. 3D U-net architecture as provided by the FETS challenge.

aggregation strategies on the clinically important glioma segmentation problem
[14,13,15,16,17]. We contribute to the initiative by proposing an effective exten-
sion to the FedAvg strategy. When compared with the other submissions, our
model significantly outperformed all of them and won the challenge. On top of
that we tested the model locally on a smaller corpus of data to compare it to Fe-
dAvg. It notably improves performance compared with FedAvg at no additional
compute time.

2 Methodology

2.1 Segmentation network

The segmentation network is a 3D-Unet. It was provided by the challenge or-
ganizers and remained unchanged during all experiments. The architecture is
composed of an encoder with residual branches followed by a decoder. We use
the LeakyReLu activation function [18] along with instance normalization [19] -
for mitigating the covariate shift. Dice serves as loss function. Fig. 2 illustrates
the schematic of the network.

2.2 Federated Cost Weighted Averaging (FedCostWAvg)

The gold standard federated averaging (FedAvg) approach updates the global
model as an average of all local models weighted by the respective sizes of the
training data set. The new model Mi+1 is calculated as follows:

Mi+1 =
1

S

n∑
j=1

sjM
j
i (1)
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where sj is the number of samples that model M j was trained on in round i
and S =

∑
j sj . We propose a new weighting strategy that includes the amount

by which the cost function decreased during the last step. Using FedCostWAvg,
the new model Mi+1 is calculated as following:

Mi+1 =

n∑
j=1

(α
sj
S

+ (1 − α)
kj
K

)M j
i (2)

with:

kj =
c(M j

i−1)

c(M j
i )

,K =
∑
j

kj (3)

where c(M j
i ) is the cost of the model j at timestep i that is simply calcu-

lated from the cost function that is being used to train the models locally. α
is a parameter ranging between 0 and 1 that can be chosen to determine the
balance between data size and cost improvement. In our experiments, a value
of α = 0.5 performed best. Intuitively, this weighting strategy adjusts not only
for the training data set size but also for the size of the local improvements that
were made during the last training round. Local updates which only marginally
improved the local cost will influence the global update to a lesser extent than
those which had a bigger impact.

3 Results

The method won the challenge and significantly outperformed all other submit-
ted methods; tables 1 and 2 summarize the performance upon convergence.

In addition we used the provided data (which is a smaller subset of the
challenge data) to test the performance of FedCostWAvg against FedAvg in order
to visualize the convergence behaviour. We trained and validated the model on
369 samples which were unevenly distributed over 17 data centers. The training-
validation split was 80/20, the learning rate was 1e−4 and we did 10 epochs per
federated round. Please note that computational resources were limited so no
exhaustive grid search to find optimal hyperparameters was feasible, also training
could not run long enough to achieve maximal performance. Figures 3, 4 and 5
depict the performances over communication rounds. Also note that of course
the most informative comparison between methods was done in the challenge
itself with more data and many different initialisations. This comparison serves
only as a visualization of how different convergence behaviours look like for one
initialisation. We observe an improvement for almost all classes and metrics,
when using our proposed method. The exemption is the DICE Enhanced Tumor
Metric. Note though that the difference is not significant and the methods have
not yet converged.
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3.1 Discussion

While these results already show a clear improvement over FedAvg, it is unclear
whether other hyperparameters would have achieved an even better result. Due
to limitations in training resources a proper grid search was not feasible.

The simple and straightforward interpretation of the mechanism of FedCost-
WAvg is amplification of more informative updates against less informing ones.
It could be seen as a diminishing returns acknowledging method. A deeper in-
sight might be the interpretation as resembling a PID controller2 [20]. When one
reframes the federated learning problem as a control problem, then the central
server that does the averaging is equivalent to a control unit that is included
in a feedback loop. When one would then extend this logic to the averaging
approach, it might be intelligent to view FedCostWAvg as an approximation of
a PID controller, where the newly added term corresponding to the drop in cost
is effectively functioning as the derivative part and the data size term as the
proportional one. Future research could try to include the integral term as well.

Label DICE WT DICE ET DICE TC Sens. WT Sens. ET Sens. TC

Mean 0,8248 0,7476 0,7932 0,8957 0,8246 0,8269

StdDev 0,1849 0,2444 0,2643 0,1738 0,2598 0,2721

Median 0,8936 0,8259 0,9014 0,948 0,9258 0,9422

25th quantile 0,8116 0,7086 0,8046 0,9027 0,7975 0,8258

75th quantile 0,9222 0,8909 0,942 0,9787 0,9772 0,9785

Table 1. Final performance of FedCostWAvg in the FETS Challenge, DICE and
Sensitivity

Label Spec WT Spec ET Spec TC H95 WT H95 ET H95 TC Comm. Cost

Mean 0,9981 0,9994 0,9994 11,618 27,2745 28,4825 0,723

StdDev 0,0024 0,0011 0,0014 31,758 88,566 88,2921 0,723

Median 0,9986 0,9996 0,9998 5 2,2361 3,0811 0,723

25th quantile 0,9977 0,9993 0,9995 2,8284 1,4142 1,7856 0,723

75th quantile 0,9994 0,9999 0,9999 8,6023 3,5628 7,0533 0,723

Table 2. Final performance of FedCostWAvg in the FETS Challenge, Specificity,
Hausdorff95 Distance and Communication Cost

2 The credit for this observation goes to David Naccache.
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Fig. 3. Comparison of the DICE Whole Tumor metric per federated round for Fed-
CostWAvg vs. FedAvg. Note of course that the bigger the DICE score, the better and
the smaller the Hausdorff95 distance, the better.

Fig. 4. Comparison of the DICE Enhanced Tumor metric per federated round for
FedCostWAvg vs. FedAvg. Note of course that the bigger the DICE score, the better
and the smaller the Hausdorff95 distance, the better.
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Fig. 5. Comparison of the DICE Tumor Core metric per federated round for FedCost-
WAvg vs. FedAvg. Note of course that the bigger the DICE score, the better and the
smaller the Hausdorff95 distance, the better.

4 Conclusion

In this paper, we describe a method for model aggregation developed for the
MICCAI Federated Tumor Segmentation Challenge (FETS). The novelty of the
method lays in including local cost improvements when calculating the weights
for averaging models which are trained at different centers. The approach is
validated on a brain tumor segmentation task and achieves the best performance
among all participating teams.
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