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Abstract. Automatic methods to segment the vestibular schwannoma
(VS) tumors and the cochlea from magnetic resonance imaging (MRI)
are critical to VS treatment planning. Although supervised methods have
achieved satisfactory performance in VS segmentation, they require full
annotations by experts, which is laborious and time-consuming. In this
work, we aim to tackle the VS and cochlea segmentation problem in an
unsupervised domain adaptation setting. Our proposed method lever-
ages both the image-level domain alignment to minimize the domain di-
vergence and semi-supervised training to further boost the performance.
Furthermore, we propose to fuse the labels predicted from multiple mod-
els via noisy label correction. In the MICCAI 2021 crossMoDA chal-
lenge3, our results on the final evaluation leaderboard showed that our
proposed method has achieved promising segmentation performance with
mean dice score of 79.9% and 82.5% and ASSD of 1.29 mm and 0.18 mm
for VS tumor and cochlea, respectively. The cochlea ASSD achieved by
our method has outperformed all other competing methods as well as
the supervised nnU-Net.

Keywords: Vestibular schwannoma · Cochlea · Unsupervised domain
adaptation · Semi-supervised learning · Label fusion

1 Introduction

Vestibular schwannoma (VS) is a benign tumor that arises from the Schwann
cells of the vestibular nerve, which connects the brain and the inner ear. To facili-
tate the follow-up and treatment planning of VS, automatic methods to segment
the VS tumors and the cochlea from magnetic resonance imaging (MRI) have
been proposed [1]. While the most commonly used modality for VS segmen-
tation is contrast-enhanced T1 (ceT1), high-resolution T2 (hrT2) imaging has
been demonstrated to be a possible alternative with less risk and lower cost [2].
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Supervised segmentation methods have shown to be effective for VS segmen-
tation [3], but they require to fully annotate image data which may not be an
option in practice. Weakly-supervised methods require less annotation efforts,
such as scribbles and bounding boxes, and sometimes they even achieve a level
of performance comparable to the supervised ones [4]. In this work, we aim at
segmenting the VS tumor and the cochlea in hrT2 without any hrT2 annotations
during training. We consider the problem as an unsupervised domain adaptation
(UDA) problem. Specifically, we are provided with a dataset consisting of ceT1
images and hrT2 images, but only the ceT1 images have the segmentation labels.

There are mainly two types of methods to tackle the UDA problem, do-
main alignment and techniques based on semi-supervised learning (SSL). Do-
main alignment focuses on reducing the distribution discrepancy by optimizing
some divergence metric [5, 6] or via adversarial learning [7, 8]. Domain gaps can
be bridged by image-level alignment [20, 21], feature-level alignment [22, 23], or
the combination of the two [24]. On the other hand, due to the lack of labels in
the target domain, techniques originating from SSL can be utilized to improve
the performance. Zou et al. [9] and Zhang et al. [26] use self-training based
methods which iteratively generate pseudo labels and use them to retrain the
network. To alleviate the negative impact from the noisy pseudo labels, learning
from noisy labels has also received increasing interest. Motivated by [15], Zhang
et al. [27] use a confident learning module to characterize the label errors and
correct them to achieve a more robust training. Mean teacher [29], as another
SSL-based technique, can be also used in UDA to provide competitive perfor-
mance [10, 28]. Inspired by previous works, we focus on exploring methods that
combine image-level domain alignment and SSL for UDA.

2 Methods

2.1 Problem Formulation

For an unsupervised domain adaptation problem, we have access to a source
domain DS = {(xs

i , y
s
i )|i = 1, 2, · · · , ns}, and a target domain DT = {xt

j |j =

1, 2, · · · , nt}, where Y S and Y T share the same K classes. In our case, source
and target domains correspond to ceT1 and hrT2 respectively and K = 3 rep-
resenting background, VS and cochlea. We aim to train a segmentation network
Ft that learns from the source domain and is capable to achieve robust and ac-
curate segmentation performance on the target domain, without accessing the
target domain labels Y T .

2.2 Image-level Domain Alignment

Image-level domain alignment is a simple but effective method to tackle UDA
problem by reducing the distribution mismatch at the image-level, i.e., pseudo
image synthesis. Here, we propose to train the segmentation model Ft with the
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pseudo target domain images X̃T , which are generated by unpaired image-to-
image translation. We explore both end-to-end training and two-stage train-
ing. For end-to-end training, we rely on the Contrastive Unpaired Translation
(CUT) [11] as the backbone for image synthesis and add an extra segmentation
module Ft on top of the synthesized images. This method is referred as CUT-
Seg. We select CUT for unpaired image-to-image translation because it can be
trained faster and is less memory-intensive than the CycleGAN [12], allowing
more flexibility when adding the 3D CNN-based segmentation module. During
training, we first train the CUT model alone till it achieves reasonable synthesis
performance. Then we train the CUTSeg end-to-end with the CUT subnetwork
initialized with the pre-trained weights and the segmentation module trained
from scratch. For two-stage training, we use the CycleGAN to generate pseudo
hrT2 images X̃T . To improve the data diversity, we train both 2D and 3D Cy-
cleGANs and collect pseudo images from different epochs. Lastly, we train a
segmentation module Ft using X̃T .

2.3 Semi-supervised Training

Though image-level domain alignment can minimize the domain divergence, the
unlabeled target domain images XT are not directly involved in training the
segmentation model Ft. To overcome this limitation, we propose to adapt a semi-
supervised learning method named Mean Teacher [13] to make better use of XT .
Specifically, a student model along with a teacher model with the same network
architecture are created and both models are initialized with the best model
weights obtained from Section 2.2. In our semi-supervised setting, the labeled
images are the pseudo hrT2 images while the unlabeled images are the real
hrT2 images. During training, the labeled pseudo images are fed to the student
model and the segmentation loss Lseg is computed in a supervised manner. For
unlabeled images, we first augment the same image twice with different intensity
transformation parameters. The augmented images are then fed to the student
model and the teacher model separately and a consistency loss Lcon is computed.
As described in Equations 1-4, we use Dice loss [14] and Cross-Entropy (CE) loss
as Lseg and Mean Squared Error (MSE) loss as Lcon, where pik is the predicted
probability of the ith voxel at the kth output channel. Note that both Lseg

and Lcon are used to update the weights of the student model. The weights of
the teacher model are updated as an exponential moving average (EMA) of the
student weights, where the EMA decay coefficient is set as 0.99. As suggested
in [13], the teacher prediction is more likely to be correct at the end of the
training and thus the teacher model is taken as our final Ft.

Lseg = LDice + LCE (1)

LDice = 1−
2
∑K

k

∑N
i pikyik∑K

k

∑N
i p2ik +

∑K
k

∑N
i y2ik

(2)
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LCE = − 1

N

K∑
k

N∑
i

yik log pik (3)

Lcon =
1

N

K∑
k

N∑
i

(pTeacher
ik − pStudent

ik )2 (4)

2.4 Noisy Label Correction as Label Fusion

In this challenge, we have obtained three models (as shown in Figure 1) that were
trained with different strategies and each model alone has achieved satisfactory
result on the validation leaderboard. Specifically, the first model is obtained by
two-stage training using the pseudo images from 2D CycleGAN, followed by
a semi-supervised learning method, i.e., Mean Teacher. The second model is
initialized with the teacher model and fine-tuned using the pseudo images from
3D CycleGAN. The third model is a CUTSeg model. Training details can be
found in Section 3.1.

Empirically, ensembles tend to yield better predictive performance when
there is a significant diversity among the models. Here, we propose to fuse the
labels from different models by treating the label fusion task as a noisy label cor-
rection problem. We adapt a confident learning method called CleanLab [15]
which provides exact noise estimation and label error finding. Note that we use
CleanLab to directly fuse labels at the inference phase rather than update the
pseudo labels iteratively during training. Specifically, we first obtain the softmax
outputs of two models and convert one output to a one-hot encoded label mask.
The one-hot encoded mask is considered as a ’noisy label’ and corrected by the
softmax outputs from the other model. Once the labels from the first two mod-
els are fused, the fused labels are treated as noisy labels and fused again with
the softmax outputs from the remaining model. The labels fused from the three
models are used as our final predictions.

3 Experiments and Results

3.1 Experimental Design

In this section, we describe different methods in our experiments and summarize
the training details in Table 1.

Methods #1-3 First, we compare different segmentation backbones including
2D nnU-Net, 3D nnU-Net, and the 2.5D U-Net proposed in [3], which are referred
to as method #1-3.

Method #4 We utilize a semi-supervised learning method named Mean Teacher
to leverage the unlabeled real T2 images. Details are described in Section 2.3.
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Fig. 1. The schematic diagram of our proposed method

Method #5 Here, we explore the feasibility of using self-training to improve
the segmentation performance of Mean Teacher. Specifically, we use the mean
teacher model to obtain the pseudo labels on the real T2 images. Then we fine-
tune the teacher model obtained from method #4 with the pseudo-labeled real
T2 images. The pseudo labels are iteratively updated at the end of each epoch
by a confident learning method [15]. Note that methods #1-4 are trained using
pseudo images generated from 2D CycleGAN.

Method #6 We incorporate more training data to further boost the perfor-
mance. Specifically, we fine-tune the teacher model from method #4 on addi-
tional pseudo images generated from 3D CycleGAN.

Method #7 Here, we train an end-to-end CUTSeg model and the details can
be found in Section 2.2.

Methods #8-9 Lastly, we fuse the predictions from different models by Clean-
Lab as described in section 2.4.

3.2 Data and Implementation

The dataset was released by the MICCAI challenge crossMoDA 2021 [16]. All
images were obtained on a 32-channel Siemens Avanto 1.5T scanner using a
Siemens single-channel head coil [17]. ceT1 images have in-plane resolution of
0.41×0.41 mm and slice thickness of 1.0 or 1.5 mm. For hrT2 images, the in-
plane resolution varies from 0.47×0.47 mm to 0.55×0.55 mm and slice thickness



6 H. Liu et al.

Table 1. Experimental design

# Method Training image Training label Model init.

1 nnU-Net (2D) S-T2 (2D) T1 scratch
2 nnU-Net (3D) S-T2 (2D) T1 scratch
3 U-Net (2.5D) S-T2 (2D) T1 scratch
4 Mean teacher S-T2 (2D) + R-T2 T1 #3
5 #4 + self-training R-T2 #4 (pseudo label) #4 (teacher)
6 #4 + fine-tuning S-T2 (3D) T1 #4 (teacher)
7 CUTSeg R-T1 + R-T2 T1 scratch
8 #4 ◦ #6 - - -
9 #4 ◦ #6 ◦ #7 - - -

In the method column, ◦ represents label fusion using CleanLab. In the training data
column, S and R represent synthetic data from CycleGAN and real data, respectively.
2D and 3D represent synthetic data generated from 2D CycleGAN and 3D CycleGAN,
respectively.

is 1.0 or 1.5 mm. The VS and cochleae were manually segmented in consensus
by the treating neurosurgeon and physicist using both the ceT1 and hrT2 im-
ages. We randomly split the images into 185 and 25 for training and validation
respectively. Since the Field of View (FoV) of the source and target domain
images varies significantly, we crop each image into a cubic box, or ROI, using
single-atlas registration [18]. As shown in Figure 2, the ROI on the atlas image
is manually cropped around the right side of the brain. To obtain the ROI on
the left side, we flip the volume left-to-right before performing registration.

For preprocessing, in two-stage training (methods #1-6), we resample the im-
ages to the most common spacing in the target domain, i.e., (0.46875, 0.468975,
1.5) and normalize the intensity to [0, 1]. In end-to-end training (method #7),
we first train a CUTSeg model for 82 epochs with an auxiliary consistency loss,
which is a Mean Absolute Error (MAE) loss between the segmentation result
of the real hrT2 image and the prediction from the two-stage training model.
This model is used to make inferences for the testing images with in-plane reso-
lution less than 0.5 mm. We use another CUTSeg model which is fine-tuned on
the hrT2 images with in-plane resolution more than 0.5 mm to make inference
for the testing images with such resolution. For all our segmentors, we use the
2.5D U-Net architecture proposed in [3]. For post-processing, we first reduce the
false positive VS prediction by removing the isolated components whose center
is more than 15 voxels along the z-axis from the adjacent cochlea center. Then
we take the largest connected components for both VS and cochlea within each
ROI.

For training, we use Adam optimizer with weight decay 10−4 and batch size
1. The learning rates are initialized to 5 × 10−4, 5 × 10−5 and 2 × 10−4 for
two-stage training, Mean Teacher, and CUTSeg, respectively. The hyperparam-
eters are determined by grid-search within the range of 10−2 to 10−6. The best
hyperparameters are selected based on the segmentation performance on our
own validation set. The CNNs are implemented in PyTorch [19] and MONAI
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Fig. 2. An illustration of our cropped ROI on the target domain atlas image.

on a Ubuntu desktop with an NVIDIA RTX 2080 Ti GPU. For quantitative
evaluation, we measure the Dice score and Average Symmetric Surface Distance
(ASSD) between the segmentation results and the ground truth.

Table 2. Quantitative results on validation leaderboard

Dice↑ (%) ASSD↓ (mm)
# Method VS Cochlea VS Cochlea

1 nnU-Net (2D) 72.90±22.77 68.14±12.62 1.32±2.83 1.27±3.65
2 nnU-Net (3D) 71.77±27.29 79.95±4.12 2.71±5.09 0.20±0.07
3 U-Net (2.5D) 74.81±22.14 80.39±3.18 1.37±2.63 0.22±0.05
4 Mean teacher 80.81±9.09 80.50±6.36 0.63±0.30 0.20±0.06
5 #4 + self-training 80.73±5.21 81.16±4.25 0.69±0.35 0.19±0.04
6 #4 + fine-tuning 81.66±10.5 81.24±3.52 0.61±0.37 0.20±0.06
7 CUTSeg 81.00±7.50 81.45±3.53 0.66±0.29 0.19±0.06
8 #4 ◦ #6 82.08±4.77 81.46±3.51 0.58±0.31 0.19±0.06
9 #4 ◦ #6 ◦ #7 83.02±7.72 82.20±3.10 0.57±0.27 0.18±0.05

3.3 Experimental Results

Table 2 shows the evaluation metrics on the validation leaderboard of our de-
veloped methods. By comparing method #1-3, we notice that the 2.5D U-Net
architecture inspired by [3] outperforms the 2D and 3D nnU-Nets and thus is
used as the segmentation backbone in all our experiments. We also find that by
incorporating the real unlabeled T2 images, our Mean Teacher model (method
#4) is able to increase the VS dice score from 74.81% to 80.81%, demonstrat-
ing the effectiveness of our semi-supervised learning strategy. We observe that a
smaller learning rate and appropriate model initialization, i.e., the pre-trained
segmentation model weights from method #3, are critical for the effectiveness
of MT. Since the Mean Teacher achieved the best performance among method
#1-4 on leaderboard during validation phase, we use the best weights obtained
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by method #4 for model initialization for other methods, i.e., methods #5-6.
By comparing method #4 and #5, we observe that self-training slightly outper-
forms the mean teacher model on cochlea but underperforms on VS tumor. By
fine-tuning with more training data, method #6 shows slight improvements on
both VS and cochlea compared to method #4. Furthermore, we find that the
CUTSeg model (method #7) achieves comparable segmentation performance to
method #4. Lastly, in method #8 and #9, we show that though CleanLab is
unable to improve performance by iteratively updating labels during training
(method #5), it is however an effective method to fuse the predictions from dif-
ferent models during the inference phase. In the evaluation phase, our proposed
method (method #9) achieved dice scores of 79.9% and 82.5% and ASSD of
1.29 mm and 0.18 mm for VS tumor and cochlea, respectively. We note that
the ASSD of cochlea achieved by our method (0.18 mm) is the lowest among
all unsupervised methods and even lower than that achieved by the supervised
nnU-Net (0.22 mm).

Fig. 3. Qualitative results on the validation set. A to C and D to F display the best
and worst VS segmentation results. The image ID and the corresponding dice score are
also shown. Our experiments show that VS tumors with higher inhomogeneity, e.g., D,
are more difficult to segment.

4 Discussion

4.1 ROI Selection Strategy

In this challenge, we observe that the FoV of source and target domain images
varies significantly. To minimize the impact of FoV difference, we manually de-
termine a cubic box as ROI and use rigid registration to obtain the ROI from
each volume as described in section 3.1. Note that our ROI covers either the
left or the right side region around the cochlea while most other teams use the
ROIs that cover both cochleae. Arguably, our ROI selection strategy has both
a positive and a negative impact on the downstream segmentation tasks. First,
this strategy helps to increase the amount of training data since two ROIs can
be extracted from one volume. Second, by flipping the right ROI to the left,
the orientation and relative position of the cochlea within each ROI remain al-
most the same, which is greatly beneficial for the accuracy and robustness of
cochlea segmentation. Based on the results from the validation leaderboard, all
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our attempted methods have achieved around 80% dice scores, which are very
competitive against other teams’ results. Moreover, in the evaluation leader-
board, our method has achieved an ASSD of 0.18 mm which is lower than the
supervised nnU-Net of 0.22 mm, suggesting the benefits of our ROI selection
strategy on cochlea segmentation. However, this strategy inevitably introduces
challenges for VS segmentation. Because VS tumor can be either fully/partially
included in both left and right ROIs, the merging scheme for combining the VS
segmentation results from both ROIs needs to be carefully designed. In the fu-
ture, it may be interesting to explore whether using ROIs with different FoVs
for VS tumor and cochlea can help improve the results.

4.2 Self-training Strategy

Our experiments show that our self-training strategy cannot help to improve the
segmentation performance. In contrast, both the top-two teams on the leader-
board found the self-training strategy very beneficial for their performance.
Specifically, the 1st-place team updated the noisy labels by manually inspect-
ing their qualities and filtered out the unreliable labels. On the other hand, the
2nd-place team considered the voxels with the higher probabilities as confident
labels to train the next epoch. Hence, we speculate that the effectiveness of self-
training may heavily depend on the filtering strategy for noisy pseudo labels.
Besides, in our self-training experiments, we only used the real unlabeled data
while the aforementioned teams used the combined data, i.e., pseudo T2 and real
T2 images. The combined data might also be a key factor for the effectiveness
of self-training. In the future, an exciting direction to improve the performance
would be to develop an automatic and smart filtering strategy for self-training.

5 Conclusion

In this work, we exploited the image-level domain alignment and semi-supervised
training to tackle the unsupervised domain adaptation segmentation problem.
The results on the validation and evaluation leaderboard of crossMoDA challenge
show that our proposed method can yield promising segmentation performance
on VS tumor and cochlea on hrT2 MRI images without labels.
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