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Abstract. Reversible computation is an emerging computing paradigm
that allows any sequence of operations to be executed in reverse order
at any point during computation. Its appeal lies in its potential for low-
power computation and its relevance to a wide array of applications such
as chemical reactions, quantum computation, robotics, and distributed
systems. Reversing Petri nets are a recently-proposed extension of Petri
nets that implements the three main forms of reversibility, namely, back-
tracking, causal reversing, and out-of-causal-order reversing. Their dis-
tinguishing feature is the use of named tokens that can be combined
together to form bonds. Named tokens along with a history function,
constitute the means of remembering past behaviour, thus, enabling re-
versal. In recent work, we have proposed a structural translation from a
subclass of RPNs to the model of Coloured Petri Nets (CPNs), an ex-
tension of traditional Petri nets where tokens carry data values. In this
paper, we extend the translation to handle RPNs with token multiplicity
under the individual-token interpretation, a model which allows multi-
ple tokens of the same type to exist in a system. To support the three
types of reversibility, tokens are associated with their causal history and,
while tokens of the same type are equally eligible to fire a transition
when going forward, when going backwards they are able to reverse only
the transitions they have previously fired. The new translation, in ad-
dition to lifting the restriction on token uniqueness, presents a refined
approach for transforming RPNs to CPNs through a unifying approach
that allows instantiating each of the three types of reversibility. The pa-
per also reports on a tool that implements this translation, paving the
way for automated translations and analysis of reversible systems using
CPN Tools.

1 Introduction

Reversible computation is a form of computing that allows operations to
be seamlessly reversed at any point during the computational process.
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This unique capability has been attracting growing attention due to its
potential applications in low-power computing, robotics, and distributed
systems as well as applications which naturally embed reversible behavior
such as biological systems and quantum mechanics.

Aiming to understand the foundations of reversibility, in recent years
work has been carried out towards the development of reversible models
and frameworks. This study has brought forward three main forms of
reversibility in the context of concurrent and distributed systems, namely,
backtracking, allowing actions to be reversed in the exact order in which
they were executed, causal-order reversibility, a form of reversing where
an action can be undone provided that all of its effects (if any) have
been undone beforehand, and out-of-causal-order reversibility, a form of
reversing featured most notably in biochemical systems. These concepts
have been studied within a variety of formalisms [8,9,24,15,28,20,16,6].

One line of research among these approaches has been the investi-
gation of reversible behavior in Petri nets. Initial studies considered the
reversal of selected transitions of conventional Petri nets [4,5] and explored
decidability problems regarding reachability and coverability in the result-
ing Petri net. Given that this approach to reversibility violates causality,
subsequent work in [18,10] investigated whether it is possible to add a
complete set of effect-reverses for a given transition without changing the
set of reachable markings, showing that this problem is in general unde-
cidable. In another line of work [16] proposes a causal semantics for P/T
nets by identifying the causalities and conflicts of a P/T net through un-
folding it into an equivalent occurrence net and subsequently introducing
appropriate reverse transitions to create a coloured Petri net (CPN) that
captures a causal-consistent reversible semantics. On a similar note, [17]
introduces the notion of reversible occurrence nets and associates a re-
versible occurrence net to a causal reversible prime event structure, and
vice versa.

In this work, we focus on Reversing Petri Nets [19,20] (RPNs), a re-
versible model inspired by Petri nets that allows the modelling of re-
versibility as realised by backtracking, causal-order, and out-of-causal-
order reversing. A key challenge when reversing computations in Petri
nets is handling backward conflicts. These conflicts arise when tokens oc-
cur in a certain place due to different causes making unclear which tran-
sitions ought to be reversed. To handle this ambiguity, RPNs introduce
the notion of a history of transitions, which records causal information of
executions. Furthermore, inspired by biochemical systems as well as other
resource-aware applications, the model employs named tokens that can
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be connected together to form bonds, and are preserved during execution.
The usefulness of the framework and its extensions [21,22] was illustrated
in a number of examples including the modelling of long-running trans-
actions with compensations [25], a signal-passing mechanism used by the
ERK pathway, and an application to Massive MIMO [23], and they have
been translated to Answer Set Programming (ASP), a declarative pro-
gramming framework with competitive solvers [11]. One of the extensions
of RPNs concerns the introduction of multiple tokens [21] according to
the individual-token interpretation. The aim of this extension has been to
allow multiple tokens of the same type to exist within a net while distin-
guishing them based on their causal path. This implies that tokens of the
same type are equally eligible to fire a transition when going forward, how-
ever, when going backwards they are able to reverse only the transitions
they have previously fired.

A challenge that arises is to explore the relationship between RPNs
and classical Petri nets. Of particular interest is how the global control
imposed via the history construct in RPNs can be captured by the strictly
local semantics of Petri nets. To this effect, in our previous work [1] we
have provided a translation from a subclass of acyclic RPNs into coloured
Petri nets (CPNs) [12], an extension of traditional Petri nets where tokens
can carry data values. The study establishes that RPNs can be encoded
into CPNs, demonstrating that the principles of reversible computation
can be directly encoded in the traditional model. The translation involves
a structural transformation from RPNs to CPNs, introducing both for-
ward and backward instances for each transition. The translation suc-
ceeds in maintaining a local approach by carefully storing histories and
causal dependencies of executed transition sequences in additional places.
Furthermore, the introduction of cycles to the RPN model and the con-
sequences to the CPN translation were considered in [3]. In the current
work, we go a step further and consider the RPN extension with multi-
ple tokens. Specifically, we propose a translation of a subclass of RPNs
with multiple tokens to CPNs. Similarly to previous work, the resulting
translation succeeds in capturing the global control merely at the local
level of additional places, while lifting restrictions on token uniqueness
Furthermore, the current translation extends beyond prior work by pre-
senting a refined approach that unifies the transformation process for the
three types of reversibility, making it more flexible and comprehensive.
The correctness of the translation is formally proved establishing the cor-
respondence between the states of an RPN and its CPN translation as well
as how a transition in a state of an RPN can be matched by a transition of
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any corresponding state of the CPN, leading to equivalent states, and vice
versa. An additional contribution of the present paper lies in the practi-
cal implementation of the transformation, realized through a tool. This
tool facilitates the analysis of reversible systems using CPN Tools [26],
providing a bridge between theoretical models and practical applicability.
We note that a previous version of this work has appeared in [2]. The
present paper constitutes an extension of that work with a refinement of
the machinery and the complete proofs of the results.

Paper organization Following some preliminary definitions, Sec-
tions 3 and 4 provide an overview of reversing Petri nets and a description
of coloured Petri nets. Sections 5 and 6 define the necessary machinery
for transforming RPNs to CPNs and establish formally the correctness of
the translation. Section 7 presents the tool that has been developed im-
plementing the transformation and providing a connection between RPNs
to CPN Tools. The paper concludes by a summary of the contributions
and a discussion of future work.

2 Preliminaries

The set of non-negative integers is denoted by IN. Given a set X, the
cardinality (number of elements) of X is denoted by #X, the powerset
(set of all subsets) by 2X – the cardinality of the powerset is 2#X . Multisets
over X are members of INX , i.e., functions from X into IN.

In what follows every function f : X → Y might be extended in
a natural way to the domain 2X .

Definition 1. The monoid INX , for a set X, is the set of multisets over
X with componentwise addition +.

If y, z ∈ INX then (y + z)(x) = y(x) + z(x) for every x ∈ X. For
Y, Z ⊆ INX we define Y +Z =

⋃
{y + z | y ∈ Y, z ∈ Z}. The partial order

≤ is understood componentwise, while < means ≤ and ̸=.

3 Reversing Petri nets

In this section we recall the model of reversing Petri nets (RPNs) defined
in [20] and specifically their extension with multiple tokens of [21], to-
gether with descriptions of the three reversibility semantics which these
nets support in addition to the standard forward execution, namely back-
tracking, causal reversing and out-of-causal-order reversing. Due to the
lack of space, we will only focus here on the most important concepts
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and facts. We refer the reader to [20,21,25], where RPNs are presented in
detail.

A reversing Petri net is built on the basis of a set of bases or simply
tokens that correspond to the basic entities that occur in a system. These
tokens are persistent, cannot be consumed, and can be combined together
as the effect of transitions via so-called bonds into coalitions (also called
molecules) that record the computational history of each token. This ap-
proach is similar to reaction systems from biochemistry but can be applied
to a wide range of systems that feature reversible behaviour. Based on this
intuition, reversing Petri nets are defined as follows:

Definition 2. A reversing Petri net (RPN) is a tuple (P, T, F,A,B)
where:

1. P is a finite set of places,
2. T is a finite set of transitions,
3. F : (P × T ∪ T × P ) → INA∪B∪A∪B is a set of directed arcs,
4. A is a finite set of base or token types ranged over by a, b,. . . . Instances

of tokens of type a are denoted by ai where i is unique and the set
of all instances of token types in A is denoted by A. Furthermore, we
write A = {a | a ∈ A} for the set containing a “negative" form for
each token type3,

5. B ⊆ A × A is a set of undirected bond types. We assume that the
relation B is symmetric. The two elements (a, b), (b, a) ∈ B would be
represented by one element only and denoted by ⟨a, b⟩. We also use
the notation a− b for a bond type ⟨a, b⟩ ∈ B4. Similarly, instances
of bonds are elements of A × A and denoted by ⟨ai, bj⟩ or ai−bj for
ai, bj ∈ A. The set of all instances of bond types in B is denoted by B.
B = {β | β ∈ B} contains the corresponding “negative" form for each
bond type.

The first two clauses of the definition state the sets of places and
transitions, which are understood in a standard way (see [27]). To preserve
individuality whilst adding token multiplicity we introduce A and B which
are the sets of token and bond instances, where for each token type a of a
set of types A, instances of that type are indicated as ai, i being a unique
index. Intuitively, the incoming and outgoing arcs of a transition indicate
the requirements of a transition firing and the effects of its execution,
3 Elements of A signify the presence of the base type, when elements of A the absence

of it.
4 ⟨a, b⟩ may be also understood as two elements multiset over A.
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respectively. The negative types of tokens A or B indicate the requirement
of token absence and they make sense only on incoming arcs of a transition,
hence F (t, t•) ∩ A = ∅ and F (t, t•) ∩ B = ∅, where for transition t ∈ T
we define sets •t = {p ∈ P | F (p, t) ̸= ∅}, t• = {p ∈ P | F (t, p) ̸= ∅}
(sets of input and output places of t), and pre(t) =

⋃
p∈P F (p, t), post(t) =⋃

p∈P F (t, p) (unions of labels of the incoming/outgoing arcs of t), as well
as effect(t) = post(t) \ pre(t).

As with standard Petri nets the association of tokens to places is called
a marking such that M : P → 2A∪B. In addition, we employ the notion of
a history, which assigns a memory to each transition H : T → 2IN×2P×A .
Intuitively, a history of H(t) = ∅ for some t ∈ T captures that the tran-
sition has not taken place, and a history of (k, S) ∈ H(t), captures that
the transition was executed as the kth transition occurrence and it has
not been reversed and S contains the information of transferred token
instances and places from where they were taken. Note that |H(t)|> 1
may arise due to different token instances firing the same transition. A
pair of a marking and a history, ⟨M,H⟩, describes a state of an RPN with
⟨M0, H0⟩ the initial state, where H0(t) = ∅ for all t ∈ T

Finally, for ai ∈ A and C ⊆ 2A∪B (usually C is a marking of a given
place) we define con(ai, C) to be the set containing the tokens connected
to ai as well as the bonds creating these connections according to set C. In
order to do that let us first define, for a given ai ∈ A and C ⊆ 2A∪B , the
set paths(ai, C) as follows: paths(ai, C) = {(c1, c2, . . . , ck) | ci ∈ A∩C, i ∈
1, . . . , k;∃((c1,c2),(c2,c3),...,(ck−1,ck))c1 = ai; (cj−1, cj) ∈ B ∩ C, j ∈ 2, . . . , k}.

We are ready to define: con(ai, C) =
({{ai} ∩ C) ∪ {⟨bk, cl⟩, cl | ∃(ai,...,bk,cl)(ai, . . . , bk, cl) ∈ paths(ai, C)}}.

More intuitively, following graph theory, we can treat a molecule as a
graph, with sets of vertices A and edges B. Then, paths(ai) is analogous
to the set of all paths from vertex ai and con(ai, C) to the connected
component of ai, both within the graph C.

Let X ⊆ A∪B then by X|x we denote the subset of X containing all
its elements of type x, where x can be either a base or a bond type. Let us
also define a function type as ℓ : A → A, which for a given base instance
(i.e. element of A) returns its type (i.e. corresponding element of A).

Example 1. Figure 1 depicts a marking M(p) for some place p. We com-
pute the sets paths(a1,M(p)) and con(a1,M(p)) as follows:

paths(a1,M(p)) = {(a1, c1), (a1, d2), (a1, d2, e3), (a1, b2)},
con(a1,M(p)) = {a1, b2, c1, d2, e3, ⟨a1, b2⟩, ⟨a1, c1⟩, ⟨a1, d2⟩, ⟨d2, e3⟩}.

Let us define the following three sets of transitions (see Fig 2):
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c1 a1 d2 e3

f1 g3b2

Fig. 1. Exemplary molecules.

– T TRN = {t ∈ T | #(•t) = #(t•) = 1 ; ∃a∈A(F (•t, t) = {a} ; F (t, t•) =
{a})} – the set of transitions that transfer molecules.

– TBC1 = {t ∈ T | #(•t) = #(t•) = 1 ; ∃a,b∈A(F (•t, t) = {a, b} ; F (t, t•) =
{⟨a, b⟩})} – the set of transitions that create a bond in a molecule.

– TBC2 = {t ∈ T | ∃p1,p2∈P •t = {p1, p2} ; #(t•) = 1 ; ∃a,b∈A(F (p1, t) =
{a} ; F (p2, t) = {b} ; F (t, t•) = {⟨a, b⟩})} – the set of transitions with
two input places that create a bond in a molecule.

Note that a transition t ∈ TBC1 may create a bond even between bases
which are already parts of the same molecule. For a transition t ∈ T TRN ,
we say that t is of type TRN . Analogously, t ∈ TBC1 is of type BC1 and
t ∈ TBC2 is of type BC2.

t
a a

(a) TTRN

t
a, b a-b

(b) TBC1

t

a

b

a-b

(c) TBC2

Fig. 2. The decomposition of the transitions set into the set of transitions only trans-
ferring molecules (a), creating a bond with a single input place (b), or two input places
(c).

Definition 3. A reversing Petri net (P, T, F,A,B) is called low-level, if
it satisfies the following conditions for all t ∈ T :

1. A ∩ pre(t) = A ∩ post(t),
2. if a−b ∈ pre(t) then a−b ∈ post(t),
3. T can be decomposed into three sets: T = TBC1∪TBC2∪T TRN , where

T TRN , TBC1, TBC2 are defined above,
4. if a, b ∈ F (p, t) and β = a−b ∈ F (t, q) then β ∈ F (p, t).

We say that a transition is forward enabled when the following condi-
tions are satisfied:
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Definition 4. Consider an RPN (P, T, F,A,B), a transition t ∈ T , and
a state ⟨M,H⟩. We say that t is forward enabled in ⟨M,H⟩ if there exist
S : P → 2A, such that following hold:

1. ∀p∈•t,a∈AF (p, t)(a) = #(S(p) ∩M(p))|a,
2. ∀p∈•ta ∈ F (p, t) =⇒

(⋃
α∈S(p)∩M(p) con(α,M(p)

)∣∣∣
a
= ∅,

3. ∀p∈•ta1−a2 ∈ F (p, t) =⇒
(⋃

α∈S(p)∩M(p) con(α,M(p)
)∣∣∣

a1−a2
= ∅,

4. ∀a∈AF (t, t•)(a) = F (•t, t)(a),

5. F (t, t•)(a1−a2) = 1 =⇒
∃α1,α2∈S(•t), α1 ̸= α2, ℓ(α1) = a1; ℓ(α2) = a2; (α1−α2) /∈ M(•t).

In other words, a transition t is forward enabled in a state ⟨M,H⟩ if (1)
all token instances selected in the set S(p) exist in the respective marking
M(p) and correspond to the requirements of the incoming arc F (p, t) (i.e.
tokens required by the action for execution), (2),(3) none of the tokens or
bonds whose absence is required exist in the connected components that
have been selected in S, (4) tokens are preserved according to the labels
of the arcs, and (5) indicates that a transition can create a bond only if
its input contains token instances of suitable types and those instances
are not bonded yet.

We may now define the firing rule of forward execution in RPNs:

Definition 5. Given a reversing Petri net (P, T, F,A,B), a state ⟨M,H⟩,
and a transition t enabled in ⟨M,H⟩ with S : P → 2A selected in the
definition of forward enabledness, we write ⟨M,H⟩ t−→ ⟨M ′, H ′⟩:

M ′(p) =



M(p) \
⋃

αi∈S(p) con(αi,M(p)) if p ∈ •t
M(p) ∪

⋃
αi∈S(•t) con(αi,M(•t))∪⋃

ℓ(α1)−ℓ(α2)∈F (t,p){⟨α1, α2⟩ |
α1 ̸= α2 ∈ S(•t); (α1−α2) /∈ M(•t)} if p ∈ t•

M(p), otherwise

and

H ′(t′) =

{
H(t′) ∪ {(max{k′ | (k′, S′) ∈ H(t′), t′ ∈ T}+ 1, S)} if t′ = t
H(t′), otherwise

After the forward execution of the transition t, all tokens and bonds
selected in S and occurring in its incoming arcs are transferred from the
input places to the output place of t. Any newly created bonds will also be
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added to the output places. Moreover, the history function H is changed
by assigning the next available integer number to the transition along with
the selected set of token instances.

Since we have added token multiplicity we need to dynamically define
the bonding effect b.effect(t, S) of transition t concerning the particular set
S of token instances, that are involved in the occurrence of the transition.

b.effect(t, S) =
⋃

a1−a2∈F (t,t•)

{⟨α1, α2⟩ | α1 ̸= α2 ∈ S(•t), ℓ(α1) = a1, ℓ(α2) = a2}

p1
•a1

•a2

p2
•b1
•b2

p3
•c1
•c2

t1

TRN

t2

BC2
t3

BC1

aa

b

c

a

b− c

a, b a− b

(a)

p1 •a2

p2 •b2

p3 •c2

•a1

•b1
•c1

t1

t2

t3

aa

b

c

a

b− c

a, b a− b

(b)

Fig. 3. (a) Reversing Petri Net N in its initial marking. (b) Reversing Petri net N
from part (a) after the execution of sequence t1t2, or, equivalently, after the execution
of sequence t2t1.

The example depicted in Figure 3a shows a reversible Petri net in its
initial marking.
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Note that all kinds of transitions occurs in the net: transition t1 is
a transporting one, hence t1 ∈ T TRN (as indicated in red in the figure),
while t2 and t3 create bonds; moreover t2 ∈ TBC2 and t3 ∈ TBC1. In
addition, note that, for simplicity, we only indicate the positive token and
bond types that are necessary for the transition to fire.

Initially, the history of all transitions equals ∅. We can see that transi-
tions t1 and t2 are enabled and might be executed in arbitrary order. After
the executions of sequence t1t2 or t2t1 we obtain the marking presented in
Figure 3b. But the history function varies depending on the order of the
executed transitions. Namely, after t1t2 we have H(t1) = {(1, {(p1, a1)})},
H(t2) = {(2, {(p2, b1), (p3, c1)})}, H(t) = ∅ for t ∈ {t0, t3}, while after
t2t1: H(t1) = {(2, {(p1, a1)})}, H(t2) = {(1, {(p2, b1), (p3, c1)})}, H(t) = ∅
for t ∈ {t0, t3}.

3.1 Backtracking

We now present the semantics for three forms of reversibility as proposed
in [20], starting with the simplest form of reversibility namely, backtrack-
ing.
Definition 6. Consider an RPN (P, T, F,A,B) a state ⟨M ′, H ′⟩ and a
transition t where t ∈ T . We say that t is bt-enabled in ⟨M ′, H ′⟩ if (k, S) ∈
H(t), with k = max{k′ | (k′, S′) ∈ H(t′), t′ ∈ T}.

We say that a transition is backward enabled only if its the last tran-
sition executed during a forward computation, i.e. it has the highest H
value. The effect of backtracking a transition in a reversing Petri net is
defined as follows:

Definition 7. Given an RPN (P, T, F,A,B), a state ⟨M ′, H ′⟩, and a
transition t with (k, S) ∈ H ′(t) bt-enabled in ⟨M ′, H ′⟩, we write ⟨M ′, H ′⟩ t

⇝b

⟨M,H⟩:

M(p) =


M ′(p) ∪

⋃
q∈t•,αi∈S(p) con(αi,M

′(q) \ b.effect(t, S)), if p ∈ •t
M ′(p) \

⋃
αi∈S(•t) con(αi,M

′(p)), if p ∈ t•
M ′(p), otherwise

and

H(t′) =

{
H ′(t′) \ {(k, S)}, if t′ = t
H ′(t′), otherwise

Thus, when a transition t is reversed in a backtracking fashion all
tokens and bonds in the output place of the transition, as well as their
connected components, are transferred to the incoming places of the tran-
sition and any newly-created bonds are broken.
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3.2 Causal Reversing

The ability to reverse in a causal manner is defined as follows.

Definition 8. Consider an RPN (P, T, F,A,B), a state ⟨M ′, H ′⟩, and a
transition t ∈ T . Then t is co-enabled in ⟨M ′, H ′⟩ if (k, S) ∈ H ′(t) and,
for all αi ∈ S, if con(αi,M(q)) ∩ S′ ̸= ∅ for some q and some t′ where
(k′, S′) ∈ H ′(t′) then k′ ≤ k.

Note that the causal reversing of a transition t ∈ T is allowed if all
transitions executed causally after t have been reversed. The effect of
causally reversing a transition in an reversing Petri net is as follows:

Definition 9. Given an reversing Petri net (P, T, F,A,B), a state ⟨M ′, H ′⟩,
and a transition t with (k, S) ∈ H ′(t) co-enabled in ⟨M ′, H ′⟩, we write
⟨M ′, H ′⟩ t

⇝c ⟨M,H⟩ where M is defined as in Definition 7 and H as:

H(t′) = {(k′, S′) | t′ ∈ T, (k′, S′) ∈ H ′(t′), k′ < k}
∪{(k′ − 1, S′) | t′ ∈ T, (k′, S′) ∈ H ′(t′), k′ > k}

Reversing a transition in a causally-respecting order is implemented
in exactly the same way as in backtracking (Definition 7), i.e., the tokens
are moved from the out-places to the in-places of the transition, all bonds
created by the transition are broken, and the reversal adjusts the history
function. The history function is updated by removing history (k, S) of
the reversed transition and shifting down all identifiers that are greater
than k by one.

3.3 Out-of-causal-order Reversibility

We are now ready to define out-of-causal-order reversing enabledness.
We begin by noting that in out-of-causal-order reversibility any exe-

cuted transition can be reversed at any time.

Definition 10. Consider an RPN (P, T, F,A,B), a state ⟨M ′, H ′⟩, and
a transition t ∈ T . We say that t is o-enabled in ⟨M ′, H ′⟩, if H ′(t) ̸= ∅.

According to the above definition, in this setting, every executed tran-
sition can be reversed. We can use the history function to identify which
token instances have been used for the firing of a particular transition.
The following notion helps to define the last executed transition manipu-
lating a given set of tokens, where we write ⊥ to express that the value is
undefined.
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Definition 11. Given a reversing Petri net (P, T, F,A,B), a history H,
and a set of bases and bonds instances C ⊆ A ∪ B we write:

last(C,H) =


t, if ∃t, (k, S) ∈ H(t), S ∩ C ̸= ∅, and

∀t′, (k′, S′) ∈ H(t′), S′ ∩ C ̸= ∅, k′ ≤ k
⊥, otherwise

The effect of reversing a transition in out-of-causal order is as follows:

Definition 12. Given a reversing Petri net (P, T, F,A,B) with initial
marking M0, a state ⟨M ′, H ′⟩ and a transition t with (k, S) that is o-
enabled in ⟨M ′, H ′⟩, we write ⟨M ′, H ′⟩ t

⇝o ⟨M,H⟩ where H is adjusted
as in Definition 9 and M as follows for all p ∈ P :

M(p) = M ′(p) \ b.effect(t, S) \ {Cα,p | (∃t′∈T )p ∈ t′•, α ∈ M ′(p), t′ ̸= last(Cα,p, H)}
∪ {Cα,q | (∃t′∈T )p ∈ t′•, α ∈ M ′(q), last(Cα,q, H) = t′}
∪ {Cα,q | α ∈ M ′(q), last(Cα,q, H) = ⊥, Cα,q ⊆ M0(p)}

where we use the abbreviation Cα,z = con(α,M ′(z) \ b.effect(t, S)) for
α ∈ S, z ∈ P .

In the above formula, Cα,z indicates the part of a molecule contain-
ing instance α obtained from place z in marking M ′ by removing the
bond created by transition t. To compute marking M(p) we have to check
whether a place p is an exit from the last executed transition manipulat-
ing an instance α in the current history H or, in case the last such place
is undefined, whether p was the place in which the component of α ex-
isted in the initial marking. We illustrate the definition with the following
example.

Example 2. Let us look at Figure 4a. We can execute the sequence t1t2t3t4
at the initial marking M0, obtaining marking M ′ as follows: place p9
contains a molecule depicted in the circle (Figure 4b), other places are
empty.

Assume now that t3 is the transition to be reversed. (Note that this
reversing transition is described as t in the formula of Definition 12.)
Let us focus on place p9 first. We want to determine the marking M(p9)
obtained after reversing t3, hence for p from the definition we take p9.
M ′(p) contains the whole molecule from Figure 4b. According to the for-
mula, we have to remove the bond created by the forward execution of
transition t3, i.e. b.effect(t, S), namely: the bond a1 − c1. This results in
partitioning the whole molecule into two parts: e1 − a1 − b1 and c1 − d1.
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Fig. 4. Example of a reversing Petri net working according to the out-of-causal-order
semantics. (a) Initial marking M0. (b) The content of place p9 in marking M ′ obtained
from M0 after the execution of the sequence t1t2t3t4, other places are empty.

For each base instance α we have to analyse its connected component
Cα,p from the formula. Base instance a1 (and also e1) has been used
by t4, hence the instance together with its whole connected component
Ca1,p = {e1, a1, b1, ⟨e1, a1⟩, ⟨a1, b1⟩} stays a part of M(p). For Cc1,p we
have to analyse the next part of the formula from Definition 12. Base
instance c1 was present in p9 at M ′. However, t4 has not been the last
transition (according to history H) using c1 (and d1 from the same con-
nected component). That is why molecule c1−d1 should be removed from
p9 at M . Other parts of the formula do not apply in this case. Assume
next, that the reversed transition t is still t3, but we focus on place p6 (i.e.
p from the formula equals p6 now), and we want to determine M(p6). At
M ′ (Figure 4b) place p6 is empty and we cannot subtract anything from
its marking. Base instances a1, c1

5 and their connected components at
M ′ are located in place p9, hence for q we take p9. (As said before, Ca1,q

stays in place p9 at M .) For Cc1,q = {c1, d1, ⟨c1, d1⟩} we have to determine
transition t′, for which place p is the output place - it is transition t2. This
transition has been the last one (according to history H) using c1, hence
Cc1,q should be added to M(p) (which is in this case M(p6)). The last part
of the formula from Definition 12 does not apply here - p6 is not an initial
5 We mention only those two because after reversing t3 we have two molecules in p9,

the first one can be described as con(a1,M(p9)), the second con(c1,M(p9)). Any
other base instance from those two connected components can be taken instead.
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place for any base instance. The marking obtained from M ′ (depicted in
Figure 4a) by reversing transition t3 is presented in Figure 5a.

In the last case, we want to reverse transition t1 (not t3) starting from
the marking M ′ from Figure 4b and determine the obtained marking M
– for t from the formula from Definition 12 we take t1. Transition t1 has
created bond a1 − b1. Let us now take for p (from the definition) the
place p2, which is an initial place for b1 and it is not an output place
for any transition t′ ∈ T . All base instances from the analysed RPN in
M ′ were located in p9, hence for all of them q (from the Definition 12
formula) equals p9. According to the formula, we have to remove the
bond created by the forward execution of transition t1, i.e. b.effect(t, S),
namely: the bond a1− b1. The connected component for a1 obtained from
p9 in M ′ after removing the bond created by t1 is as follows: Ca1,q =
{a1, e1, c1, d1, ⟨d1, c1⟩, ⟨c1, a1⟩, ⟨a1, e1⟩}. The last transition that used those
instances exists. However, for Cb1,p9 = {b1} we cannot determine the last
transition that used b1 in accordance with history H - the last one was
t1 but now is being reversed. b1 in the initial marking M0 was located in
p2, hence it goes back to that place - it is described by the last part of
the formula. The marking obtained from M ′ (depicted in Figure 4b) by
reversing transition t1 is presented in Figure 5b.

4 Coloured Petri Nets

Recall that RPNs constitute a model in which transitions can be re-
versed according to three semantics: backtracking, causal, and out-of-
causal-order reversing. A main characteristic of RPNs is the concept of a
history, which assigns a memory to each transition. While this construct
enables transition reversal, it imposes the need of a global control during
computation. Our goal is to recast the model of RPNs into one without
any form of global control while establishing the expressiveness relation
between RPNs and the model of bounded coloured Petri nets. In this
section we recall the notion of coloured Petri nets.

Definition 13 ([12]). A (non-hierarchical) coloured Petri net is a nine-
tuple CPN = (P, T,D,Σ, V, C,G,E, I), where:

– P and T are finite, disjoint sets of places and transitions;
– D ⊆ P × T ∪ T × P is a set of directed arcs;
– Σ is a finite set of non-empty colour sets;
– V is a finite set of typed variables such that Type[v] ∈ Σ for all v ∈ V ,

where Type is a function returning a colour of variable;
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Fig. 5. (a) Marking obtained after reversing transition t3 at marking M ′ described in
Figure 4b. (b) Marking obtained after reversing transition t1 at marking M ′ described
in Figure 4b.

– C : P → Σ is a colour set function that assigns colour sets to places;
– G : T → EXPRV is a guard function that assigns a guard to each

transition t such that Type[G(t)] = Bool;
– E : D → EXPRV is an arc expression function that assigns an arc

expression to each arc d ∈ D such that Type[E(d)] = INC(p), where p
is the place connected with the arc d;

– I : P → EXPR∅ is an initialisation function that assigns an initialisa-
tion expression to take each place p such that Type[I(p)] = INC(p).

Note that, according to the utilised CPN-Tools [7], EXPRV is the set of
net inscriptions (over a set of variables V , possibly empty, i.e., using only
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constant values) provided by CPN ML. Moreover, by Type[e] we denote
the type of values obtained by the evaluation of expression e. The set of
free variables in an expression e is denoted by Var [e]. The setting of a
particular value to free variable v is called a binding b(v). We require that
b(v) ∈ Type[v] and denote with the use of ⟨⟩ filled by the list of valuations
and written next to the element to whom it relates. The set of bindings of
t is denoted by B(t). The binding element is a transition t together with
a valuation b(t) of all the free variables related to t. We denote it by (t, b),
for t ∈ T and b ∈ B(t).

A marking M in coloured Petri nets is a function which assigns a set
of tokens M : P → INΣ consistently with C. An initial marking is denoted
by M0 and defined for each p ∈ P as follows: M0(p) = I(p)⟨⟩.

A binding element (t, b) is enabled at a marking M if G(t)⟨b⟩ is true and
at each place p ∈ P there are enough tokens in M to fulfil the evaluation of
the arc expression function E(p, t)⟨b⟩. The resulting marking is obtained
by removing the tokens given by E(p, t)⟨b⟩ from M(p) and adding those
given by E(t, p)⟨b⟩ for each p ∈ P .

We define the enabledness of transitions in CPN as follows: a transition
t ∈ T is enabled in M and its execution leads to marking M ′ (denoted
M [t⟩M ′) if there exists a binding b ∈ B(t), such that the binding element
(t, b) is enabled at M .

5 Transformation

Let us recall that for a given low-level RPN NR = (PR, TR, FR, AR, BR)
with A and B for bases and bonds instances, we have the following de-
composition: TR = TBC1

R ∪ TBC2
R ∪ T TRN

R . We assume that we number
transitions and the enumeration is consistent with ≺ (i.e. if ti ≺ tj then
i < j).

For such an RPN we define the following:

– a relation → on PR ∪TR as follows, x → y if F (x, y) is not empty and
we call it direct order ;

– a relation ≺ on PR ∪ TR as a transitive (but irreflexive) closure of →;
– a bounded set of integers INb = {0, ..., nb}, where nb is an integer

number which is larger than the number of transitions and the number
of instances of bases and bonds;

– ConCom(X) - a connected component of the set X ⊆ A ∪ B; having
a set X consisting of bases and bonds instances and treating X as an
undirected graph, the function ConCom(X) returns a set of connected
components of X;
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– mol is a pair (V,E) called a molecule, where V ⊆ A and E ⊆ B, such
that (V,E) is a connected graph, by molα we understand a molecule
(V,E) such that α ∈ V ;

– if a multiset X ∈ INY contains only one element (is a singleton) we
denote it by this only element y ∈ Y , such that X(y) = 1.

Remark 1. Note that the relation → could be defined only between places
and transitions. On the other hand, such a restriction does not hold for
≺.

Furthermore, for any element x ∈ PR ∪ TR or t ∈ TR, we consider the
following five sets:

– a set of neighborhood of an element x ∈ PR ∪ TR as nei(x);
– a set of dependency counters of a transition t ∈ TR as dpc(t) – a set of

transitions used to decide whether a reversing transition is enabled;
– a set dependency histories of a transition t ∈ TR as dph(t) – a set

of transitions which would be affected by the execution of the given
transition or its reverse;

– a set of reversing input places of a transition t ∈ TR as rin(t) – the set
of places in which one needs to search for molecules, while reversing
transition t;

– a set reversing output places of a transition t ∈ TR as rout(t) – the set
of places where a molecule might be placed after reversing transition
t.

During the transformation from an RPN to a CPN two types of new
places are added to the CPN: transition history places and connection
history places. A transition history place is created for every transition
and it contains information about history of executions of that transi-
tion. Histories are important during reversing and to reverse a transition
t sometimes it is necessary to check and modify content of history places
of other transitions - the set of those transitions is denoted as dph(t). A
connection history place is created for a pair of transitions and it contains
a number (counter) which describes how many times transitions from the
pair were executed. Those places are not created for every pair of tran-
sitions, but for a given transition t they are added to the net only for
transition t and transitions from dpc(t).

The above sets differ depending on the assumed operational semantics
of reversing. We use subscripts BT , C and OCC to clearly indicate that
we operate according to backtracking, causal-order reversing and out-of-
causal-order reversing, respectively.
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In Table 1 we present how these sets are defined depending on the
relative semantics.

backtracking
nei neiBT (x) = {y ∈ PR ∪ TR | (x → y ∨ y → x) ∨ (∃z∈PR∪TR x → z → y ∨ y → z → x)}
dpc dpcBT (t) = TR \ {t}
dph dphBT (t) = neiBT (t) ∩ TR

rin rinBT (t) = neiBT (t) ∩ PR

rout routBT (t) = neiBT (t) ∩ PR

causal-order reversing
nei neiC(x) = {y ∈ PR ∪ TR | (x → y ∨ y → x) ∨ (∃z∈PR∪TR x → z → y ∨ y → z → x)}
dpc dpcC(t) = neiC(t) ∩ TR

dph dphC(t) = neiC(t) ∩ TR

rin rinC(t) = neiC(t) ∩ PR

rout routC(t) = neiC(t) ∩ PR

out-of-causal-order reversing
nei neiOOC(x) = {y ∈ PR ∪ TR | x ≺ y ∨ y ≺ x}
dpc dpcOOC(t) = neiOOC(t) ∩ TR

dph dphOOC(t) = neiOOC(t) ∩ TR

rin rinOOC(t) = neiOOC(t) ∩ PR

rout routOOC(t) = neiOOC(t) ∩ PR

Table 1. Sets nei, dpc, dph, rin, and rout for the three operational semantics of
reversing.

Note that in what follows, we use places that contain exactly one token
and we denote the marking by the value of this token instead of a multiset
containing only this value.

Now, we are ready to define the CPN NC(NR) = (PC , TC , DC ,ΣC , VC ,
CC , GC , EC , IC) corresponding to NR. According to the definition of CPNs,
in the following transformation we use notations: PC - set of places, TC -
set of transitions, DC - set of arcs, ΣC - set of colours, VC - set of variables,
CC - function that assigns colours to places, GC - function that assigns
guards to transitions, EC - function that assigns arc expressions to arcs,
IC - function that assigns initial expressions to places.

Before we go into the details of the transformation, let us explain the
meaning of the max function we use.

Remark 2. The function max operates over the set of transitions and re-
turns the maximal one according to the order determined by the sequence
of firings - the last, executed transition is the largest. The sequence of
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firings is stored by the history. In RPNs it is conducted explicitly, with
the use of the history function. On the other hand, in CPNs, the history
is scattered among transitions history places. However, it is possible to
reproduce the whole sequence by calculations. Appropriate formulas are
presented in Section 6. In function max the information about the history
of executions is obtained from places hj , where tj ∈ (dph(ti)∪ ti) and ti is
a transition to be reversed. Moreover, not the whole sequence of firings is
considered during max calculations. Only those transitions, which during
their execution have used any token instance from con(α,Cα) for given
α and C, are considered. Notice, that max in CPNs is very similar to
last(C,H) defined in Definition 11, where C is con(α,Cα) and H is stored
in places hj . When last(C,H) exists in an RPN, it is equal to the value of
max in the corresponding CPN - for the same C and H. When last(C,H)
equals ⊥, then function max would return t0 (the initialization transition
which is added to the CPN during the transformation to generate the
initial marking). Furthermore, the order of transitions determined by the
history, limited to a given set of token instances con(α,Cα) is compatible
to the order determined by relation ≺ over the same set of transitions.
This holds because the considered PNs are acyclic, hence token instances
can be transported only along the arcs, so according to ≺. Because of
that, considering only executions related to some set of token instances
con(α,Cα), it is not possible for ti to be executed after tj when ti ≺ tj .

First, let us specify precisely the set INb = {0, ..., nb} previously intro-
duced. Let K be the number of different instances occurring in reversing
Petri net NR in the initial marking increased by 2. Then nb = 2K and
hence INb = {0, ..., 2K}.

Remark 3. Note that the numbers of tokens in each place is K strong safe,
i.e. at any marking in every possible situation K tokens are placed, hence
we deal with multisets over ΣC . This approach has been used here for
technical reasons - we consider special kind of tokens - idle ones denoted
as (∅, ∅). However, wherever this does not lead to misunderstandings, we
use the denotation for a single token.

In the following transformation, in some places, the CPN-Tools se-
mantics is used. The transformation is prepared with a view to putting it
into practice - implementation in the program. The most frequently used
CPN-Tools semantics elements are: ++ which means concatenation, and
n‘ which describes quantity of elements.

PC= PR ∪ {hi | ti ∈ TR} ∪ {hij | ti, tj ∈ TR; i < j; tj ∈ dpc(ti)}
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Set of places contains places from the original RPN net, transition his-
tory places for each transition, and connection history places for pairs
of transitions (set dpc determines for which transitions connection his-
tory place is added). Notice that indexes of transition history and
connection history places are very important. For transitions ti and tj
transition history places are denoted as hi and hj (respectively), and
the connection history place is denoted as tij (for i < j) or tji (for
i > j).

TC= TR ∪ {tri | ti ∈ TR} ∪ {t0}
Set of transitions contains transitions from the original RPN and re-
versing transitions - one for each original transition. A reversing transi-
tion for ti is denoted as tri. Transition t0 is added for technical reasons
- more about this transition can be found at the end of this section.

DC= Domain(FR) ∪ (Domain(FR))
−1∪

{(ti, hi), (hi, ti), (tri, hi), (hi, tri) | ti ∈ TR}∪
{(tri, hj), (hj , tri) | ti ∈ TR; tj ∈ dph(ti)}∪
{(ti, hjk), (hjk, ti), (tri, hjk), (hjk, tri) | ti ∈ TR; {i, l} = {j, k}; tl ∈
dpc(ti)}
This set contains all arcs: arcs from RPN NR, arcs opposite to those
from NR, arcs between every transition ti and its history places (in
both directions), arcs between every reversing transition tri and the
history place of ti (in both directions), arcs between every reversing
transition tri and history places of transitions from dph(ti) (in both di-
rections), arcs between every transition ti and all its connection history
places (in both directions), arcs between every reversing transition tri
and all connection history places of ti (in both directions).

ΣC= INb ∪ AR ∪ BR ∪ AR ∪ BR ∪ A ∪ B ∪ (2A × 2B) ∪ 2(INb×TR×TR×2A)

We define the following colours: a bounded set of natural numbers,
base types, bond types, negative base types, negative bond types, in-
stances of bases, instances of bonds, Cartesian product of subsets of
token instances and subsets of bond instances – molecules, subsets
of 4-tuples (one 4-tuple contains the following information: the second
transition in the tuple, in the context of the first one in the tuple,
was n-th in the sequence of executions and has used the given base
instances).

VC= {(Xi,Yi) ∈ (2A × 2B) | i ∈ INb} ∪ (X ,Y) ∈ (2A × 2B) ∪
{(αi ∈ A | i ∈ INb} ∪ {cnti ∈ INb | i ∈ {1, ..., |TR|}} ∪ {Hi ∈
2(INb×TR×TR×2A) | i ∈ {1, ..., |TR|}}

CC= {p 7→ (2A × 2B) | p ∈ PR} ∪
{hi 7→ 2(INb×TR×TR×2A) | ti ∈ TR} ∪
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{hij 7→ INb | ti, tj ∈ TR; i < j; tj ∈ dpc(ti)}
This set describes which colours are assigned to which places (respec-
tively): colour molecule to places from the RPN, set of 4-tuples to
history places, and set of bounded natural numbers to connection his-
tory places.

GC= GTRN
C ∪GBC1

C ∪GBC2
C ∪Gt0

C ∪Gt0
C ∪GTRN

C ∪GBC1∪BC2
C

where
GBC1

C = {ti 7→ (α1 ∈ X1 ∧ α2 ∈ X2) ∨ (α1, α2 ∈ X1 ∧ ⟨α1, α2⟩ ̸∈ Y1

∧ (X2,Y2) = (∅, ∅) |
ti ∈ TBC1

R ; {ℓ(α1), ℓ(α2)} ⊂ FR(•ti, ti);
α1 ̸= α2; {(X1,Y1), (X2,Y2)} ⊆ Var [EC(•ti, ti)];
FR(•ti, ti) ∩ (A ∪B) ∩ ℓ(X1 ∪ X2 ∪ Y1 ∪ Y2) = ∅}
– Guard of BC1 transition evaluates whether a set of base instances X1

of a molecule (X1,Y1) contains an instance α1 and a set of instances X2

of a molecule (X2,Y2) contains an instance α2, both sets are obtained
for the only input place. The types of those instances form a label of
an arc between the input place and the transition in the original RPN,
α1 and α2 differs, and the molecules do not contain negative base nor
bond types. It might also happen that a new bond is created within
the already existing molecule - in that case both instances α1, α2 are
unbonded and contained in molecule (X1,Y1), and the second molecule
(X2,Y2) is empty (an idle token).
GBC2

C = {ti 7→ (α1 ∈ X1 ∧ α2 ∈ X2) |
ti ∈ TBC2

R ; {ℓ(α1), ℓ(α2)} ⊂
⋃

X∈FR(•ti,ti)X;
α1 ̸= α2; p1 ̸= p2 ∈ •ti;
(X1,Y1) ∈ V ar[EC(p1, ti)]; (X2,Y2) ∈ V ar[EC(p2, ti)];⋃

X∈FR(•ti,ti)X ∩ (A ∪B) ∩ ℓ(X1 ∪ X2 ∪ Y1 ∪ Y2) = ∅}
– Guard of BC2 transition evaluates whether a set of base instances X1

of a molecule (X1,Y1) obtained from the first input place contains an
instance α1, set of base instances X2 of a molecule (X2,Y2) obtained
from the second input place contains an instance α2, types of those in-
stances form labels of arcs between the input places and the transition
in the original RPN, α1 and α2 differs, there are two different input
places, and the molecules obtained from input places do not contain
negative base nor bond types.
GTRN

C = {ti 7→ (α ∈ X ) |
ti ∈ T TRN

R ; ℓ(α) ∈ FR(•ti, ti); EC(•ti, ti) = {(X ,Y)};
FR(•ti, ti) ∩ (A ∪B) ∩ ℓ(X ∪ Y) = ∅}
– Guard of TRN transition evaluates whenever a set of base instances
X of a molecule (X ,Y) obtained from the input place contains an in-
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stance α, type of α form a label of an arc between the input place and
the transition, and the molecule does not contain negative base nor
bond types.
Gt0

C = {t0 7→ false}
– Guard of the initial transition t0 - always returns false, hence the
transition cannot be executed.
Gt0

C = {tr0 7→ false}
– Guard of reversal transition for the initial transition t0 - always
returns false, hence the transition cannot be executed.
The last two guards are a little bit more complex, that is why we
include functions in their descriptions. Those functions are: isElement
and numOfnonEmpty6. The function isElement returns true if its first
argument is an element of the set given as the second argument. In the
opposite case the function returns false. The function numOfnonEmpty
counts how many of its arguments are equal to (∅, ∅) and returns that
number.
Both following guards have the same construction. The first element
of a guard is a logical conjunction of #dpc(ti) conditions, each of them
ensures that the token describing the history of ti and obtained from
the place hi (which is represented as EC(hi, tri) in the guards) con-
tains 4-tuple related to the execution which is reversed. In the forward
execution of the transition (to be reversed) the base α was transported
(for transporting transition) or a bond between instances α1 and α2

was created (for BC1 or BC2 transition), which from now on is de-
noted as ⟨α1, α2⟩. This part of the guards is very important because
exactly here the choice: which execution would be reversed? (which is
equivalent to the choice: execution related to which instances would
be reversed? ) is made. In CPN examples, prepared using CPN-Tools,
this choice can be made by the user or randomly. The next part of
the guards checks whether the set consisting of instances of bases (for
TRN transition) or bonds (for BC1 and BC2 transition) obtained from
all input places of the transition (to be reversed), contains instances
related to its forward execution. The last part of the guards assures
that from all tokens obtained from input places only one describes a
molecule, the remaining ones should be idle tokens.
GTRN

C = {tri 7→ (
∧

tj∈dpc(ti) isElement((kj , tj , ti, {α}), EC(hi, tri));
isElement(α,

⋃
pg∈rin(ti)Xg);

6 Exemplary implementations of those functions are included in colour Petri nets
generated by our application. Their formal definitions are included in descriptions
of guards.
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numOfnonEmpty({(Xg,Yg) | pg ∈ rin(ti)}))= 1
where
ti ∈ T TRN

R ; ℓ(α) ∈ FR(ti, ti•); ∀pg∈rin(ti)(Xg,Yg) = b(EC(pg, tri))
isElement(q,Q)= true if and only if q ∈ Q;
numOfnonEmpty(Q)= #{(q1, q2) ∈ Q | (q1, q2) ̸= (∅, ∅)} and for
backtracking kj is fixed as follows: kj = b(EC(hij , tri)) for i < j or
kj = b(EC(hji, tri)) for i > j }
GBC1 ∪ BC2

C = {tri 7→ (
∧

tj∈dpc(ti) isElement((kj , tj , ti, {⟨α1, α2⟩}),
EC(hi, tri)); isElement(⟨α1, α2⟩,

⋃
pg∈rin(ti) Yg);

numOfnonEmpty({(Xg,Yg) | pg ∈ rin(ti)}))= 1
where
ti ∈ (TBC1

R ∪ TBC2
R ); {ℓ(α1), ℓ(α2)} ∈ FR(ti, ti•) ;

∀pg∈rin(ti)(Xg,Yg) = b(EC(pg, tri));
isElement(q,Q)= true if and only if q ∈ Q;
numOfnonEmpty(Q)= #{(q1, q2) ∈ Q | (q1, q2) ̸= (∅, ∅)} and for
backtracking kj is fixed as follows: kj = b(EC(hij , tri)) for i < j or
kj = b(EC(hji, tri)) for i > j }

EC= {(p, t) 7→ (X ,Y) | (p, t) ∈ Domain(FR); t ∈ T TRN
R ∪ TBC2

R }
Description of input arcs from the original RPN for TRN and BC2
transitions - the transfer of one molecule (X ,Y) obtained from the
place p.
∪
{(p, t) 7→ (1‘(X1,Y1)++1‘(X2,Y2)) | (p, t) ∈ Domain(FR); t ∈ TBC1

R }
Description of input arcs from the original RPN for BC1 transition -
the transfer of two molecules from place p (in the guard it is assumed
that one of those molecules may be empty).
∪
{(t, p) 7→ (∅, ∅) | (p, t) ∈ Domain(FR)}; t ∈ T TRN

R ∪ TBC2
R }

Description of arcs opposite to input arcs from the original RPN.
An idle token is transferred for TRN or BC2 transition.
∪
{(t, p) 7→ 2‘(∅, ∅) | (p, t) ∈ Domain(FR)}; t ∈ TBC1

R }
Description of arcs opposite to input arcs from the original RPN.
An idle token is transferred for BC1 transition.
∪
{(t, p) 7→ (X ,Y) | EC(•t, t) = {(X ,Y)}; t ∈ T TRN

R ; (t, p) ∈ Domain(FR)}
Description of output arcs for TRN transitions, similar to the ones
from the RPN. They contain transfer of the molecule obtained from
the input place.
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∪
{(t, p) 7→ (X1∪X2,Y1∪Y2∪{⟨α1, α2⟩}) | EC(•t) = {(X1,Y1), (X2,Y2)};
{ℓ(α1), ℓ(α2)} ∈ FR(t, p); t ∈ TBC1

R ∪ TBC2
R ; (t, p) ∈ Domain(FR)}

Description of output arcs for BC1 and BC2 transitions. They de-
scribe the transfer of the molecules containing the instances of bases
and bonds, obtained from the input places (BC2) or place (BC1) and
the new bond. Types of the instances in the new bond should be con-
sistent with the label of the arc in the RPN.
∪
{(p, t) 7→ (∅, ∅) | (t, p) ∈ Domain(FR); t ∈ TR}
Description of arcs opposite to input arcs from the original RPN.
An idle token is transferred.
∪
{(hjk, ti) 7→ cntl | ti ∈ TR; {i, l} = {j, k}; tl ∈ dpc(ti)}
Description of arc from connection history place to a transition. The value
obtained from that place is represented by variable cntl.
∪
{(ti, hjk) 7→ EC(hjk, ti) + 1 | ti ∈ TR; {i, l} = {j, k}; tl ∈ dpc(ti)}
Description of the arc from a transition to its connection history place.
It describes the transfer of the value obtained from that place (by the
opposite arc) increased by 1.
∪
{(hi, ti) 7→ Hl | Hl ∈ 2(INb×TR×TR×2A)}
Description of the arc from transition history place to the transition.
The value obtained from that place is represented by variable Hl and
it contains the whole history of transition ti (a set of 4-tuples).
∪
{(ti, hi) 7→ EC(hi, ti)∪

⋃
tl∈dpc(ti){(EC(hjk, ti)+1, tl, ti, {⟨α1, α2⟩})}}

where
ti /∈ T TRN

R ; {i, l} = {j, k}; ⟨ℓ(α1), ℓ(α2)⟩ ∈ FR(ti, ti•)}
Description of the arc from BC1 or BC2 transition to its transition
history place. The value obtained from the transition history place
is transferred back (its described by EC(hi, ti)) and a new 4-tuple is
added for every transition from dpc(ti). Each tuple consists of 4 com-
ponents: the first is a number of current execution of ti in the sequence
of executions of ti and tl - this value is obtained from hil or hli, the
next two components are identifiers of transitions and the last one is
the description of the bond created during the considered execution.
∪
{(ti, hi) 7→ EC(hi, ti) ∪

⋃
tl∈dpc(ti){EC(hjk, ti) + 1, tl, ti, {α})}
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where
ti ∈ T TRN

R ; {i, l} = {j, k}; ℓ(α) ∈ FR(ti, ti•)}
Description of the arc from TRN transition to its transition history
place. It is very similar to the previous one, except for the last com-
ponent of the 4-tuples - in this case it is the description of the base
instances which were transferred during the considered execution.
∪
{(hjk, tri) 7→ cntl | ti ∈ TR; {i, l} = {j, k}; tl ∈ dpc(ti)}
Description of the arc from transition history counter place of ti to its
reversing transition tri. The value obtained from the place is repre-
sented by cntl and it is a number of executions of transitions ti and tl.
∪
{(tri, hjk) 7→ EC(hjk, tri)− 1 | ti ∈ TR; {i, l} = {j, k}; tl ∈ dpc(ti)}
Description of the arc from reversing transition tri to connection his-
tory place of ti. It describes the transfer of the value obtained from
the connection history place by the transition tri decreased by one.
∪
{(hj, tri) 7→ Hj | (Hj ∈ 2(INb×TR×TR×2A); (tj ∈ dph(ti) ∨ j = i))}
Description of the arc from transition history place of ti to its revers-
ing transition. The value obtained from that place is represented by
variable Hj and it contains the whole history of transition ti (a set of
4-tuples).
∪
{(p, tri) 7→ 2‘(∅, ∅) | (p ∈ rin(ti);∀tj∈TR

p /∈ tj•)}
Description of the arc between a place to a reversing transition. The
place has to be in a set rin(ti) and it cannot be an input place to any
transition. Then two idle tokens are transferred from the place.
∪
{(p, tri) 7→ (1‘(X ,Y) + +1‘(∅, ∅)) | (p ∈ rin(ti);∃tj∈TR

p ∈ tj•)}
Description of the arc between a place to a reversing transition. The
place has to be in a set rin(ti) and it has to be an input place to
some transition from the net. Then a molecule and an idle token are
transferred from the place (during execution the molecule also can be
an idle token).
∪
{(tri, hj) 7→ updateExtHist(kj ∈ Var [GC(tri)], EC(hj , tri))
where
ti ∈ TR; tj ∈ dph(ti); (b(kj), tj , ti, Y ) ∈ b(EC(hi, tri));
updateExtHist(kj , EC(hj , tri)) =

⋃
(k,tg ̸=i,tj ,X)∈b(EC(hj ,tri))

(k, tg, tj , X)

∪
⋃

(k<kj ,ti,tj ,X)∈b(EC(hj ,tri))
(k, ti, tj , X)∪

⋃
(k>kj ,ti,tj ,X)∈b(EC(hj ,tri))

(k−
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1, ti, tj , X)}
Description of the arc between the reversing transition of ti and his-
tory places of other transitions. It contains calling of updateExtHist()
function. The first argument of the function is number kj which is
the first component of 4-tuple from history of transition tj which have
been binded during evaluation of the tri guard. The second argument
of updateExtHist() are elements of tj history and the function edits
them: elements not related to the pair ti and tj are not changed, ele-
ments related to ti and tj with the first component k smaller than kj
are also not changes, elements related to ti and tj with k greater than
kj are adjusted by decreasing k by 1.
∪
{(tri, hi) 7→
updateIntHist(K = {kj ∈ Var [GC(tri)] | tj ∈ dpc(ti)}, EC(hi, tri))
where
ti ∈ TR; ∀kj∈K(b(kj), tj , ti, Y ) ∈ b(EC(hi, tri));
updateIntHist(K,EC(hi, tri)) =

⋃
(k<kj ,tj ,ti,X)∈b(EC(hi,tri))

(k, tj , ti, X)

∪
⋃

(k>kj ,tj ,ti,X)∈b(EC(hi,tri))
(k − 1, tj , ti, X)}

∪
Description of the arc between the reversing transition of ti and his-
tory places of transition ti. It contains calling of updateIntHist() func-
tion. The first argument of the function are numbers kj which are
the first components of 4-tuple from ti history related to pairs ti and
tj ∈ dpc(ti) which have been binded during evaluation of the tri guard.
The second argument of updateIntHist() are elements of ti history and
the function edits them: elements related to ti and tj with the first
component k smaller than kj are not changes, elements related to ti
and tj with k greater than kj are adjusted by decreasing k by 1.
{(tri, p) 7→ (1‘(X1,Y1) + +1‘(∅, ∅))
where
ti ∈ T TRN

R ; p ∈ rout(ti); {p} = t•;
having (Xg,Yg) = EC(pg, tri) and α ∈ Var [GC(tri)]:
(X1,Y1) = (∅, ∅) if
t ̸= max((

⋃
tj∈(dph(ti)∪ti) b(EC(hj , tri))|con(α,⋃pg∈rin(ti)

(Xg∪Yg))); X1 ∪
Y1 = con(α,

⋃
pg∈rin(ti)(Xg ∪ Yg)) if

t = max((
⋃

tj∈(dph(ti)∪ti) b(EC(hj , tri))|con(α,⋃pg∈rin(ti)
(Xg∪Yg)))}

Description of the arc between reversing transition of transporting
transition ti and it output place p. Transition ti transported base in-
stance α in the execution which is withdrewed in the current execution
of tri - value of α is evaluated by the tri guard. Place p is an output
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place of some transition t. Molecules obtained by tri from its input
place pg is denoted by (Xg,Yg). Transition tri transports an idle token
and (X1,Y1) token which can an idle token or a molecule. The (X1,Y1)
token is an idle token if t is not the maximal (last) transition of tran-
sitions from dph(ti) based on histories obtained from places hj among
those transitions which used the molecule containing α. The (X1,Y1)
token is equal to the molecule containing α if t is the maximal one.
∪
{(tri, p) 7→ (1‘(X1,Y1) + +1‘(X2,Y2))
where
ti ∈ (TBC1

R ∪ TBC2
R ); p ∈ rout(ti); {p} = t•;

having (Xg,Yg) = EC(pg, tri) and ⟨α1, α2⟩ ∈ Var [GC(tri)]:
(X1,Y1) = (∅, ∅) if
t ̸= max((

⋃
tj∈(dph(ti)∪ti) b(EC(hj , tri))|con(α1,

⋃
pg∈rin(ti)

(Xg∪Yg)\{⟨α1,α2⟩}));

X1 ∪ Y1 = con(α1,
⋃

pg∈rin(ti)(Xg ∪ Yg) \ {⟨α1, α2⟩}) if
t = max((

⋃
tj∈(dph(ti)∪ti) b(EC(hj , tri))|con(α1,

⋃
pg∈rin(ti)

(Xg∪Yg)\{⟨α1,α2⟩}));

X2 ∪ Y2 = (∅, ∅) if
(t ̸= max((

⋃
tj∈(dph(ti)∪ti) b(EC(hj , tri))|con(α2,

⋃
pg∈rin(ti)

(Xg∪Yg)\{⟨α1,α2⟩}))

∨(X1,Y1) = (X2,Y2));
X2 ∪ Y2 = con(α2,

⋃
pg∈rin(ti)(Xg ∪ Yg) \ {⟨α1, α2⟩}) if

(t = max((
⋃

tj∈(dph(ti)∪ti) b(EC(hj , tri))|con(α2,
⋃

pg∈rin(ti)
(Xg∪Yg)\{⟨α1,α2⟩}));

(X1,Y1) ̸= (X2,Y2)) }
Description of the arc between reversing transition of BC1 or BC2
transition ti and it output place p. Transition ti created a bond ⟨α1, α2⟩
in the execution which is withdrewed in the current execution of tri -
value of ⟨α1, α2⟩ is evaluated by the tri guard. Molecules obtained by
tri from its input place pg is denoted by (Xg,Yg). Place p is an out-
put place of some transition t. Transition tri transports two tokens:
(X1,Y1) and (X2,Y2) - both can be an idle tokens. The (X1,Y1) token
is an idle token if t is not the maximal (last) transition of transitions
from dph(ti) based on histories obtained from places hj among those
transitions which used the molecule containing α1 after breaking bond
⟨α1, α2⟩. The (X1,Y1) token is equal to the molecule containing α1 af-
ter breaking ⟨α1, α2⟩ if t is the maximal one. The same for (X2,Y2)
but then we consider molecule containing α2. (X1,Y1) cannot be equal
to (X2,Y2).

IC= {p 7→ ConCom(M0(p))++(K−#ConCom(M0(p)))‘(∅, ∅) | p ∈ PR} ∪
{hi 7→ ∅ | ti ∈ TR} ∪
{hij 7→ 0 | ti, tj ∈ TR; ti ≺ tj ; tj ∈ dpc(ti)}
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Initial expressions of places: places from PR contain molecules from
the initial marking of NR and idle tokens (to fulfill K strong safeness),
places hi contain empty sets and places hij contain 0. For technical
reasons those initial values in places are set by initialization transition
t0. That transition is part of dph(t) for every t ∈ TR, is executed at
the initial marking and cannot be reversed. It is added to the net so
that the max always exists.

6 State Equivalence

A state in an RPN is a pair ⟨MR, HR⟩, where MR is a marking and HR

is a history function. According to definitions:

– MR : PR → 2A∪B,
– H : T → 2IN×2P×A .

A state in a CPN generated from RPN is a marking MC of coloured Petri
net, MC : P → INΣC is a function that assigns multisets of tokens to places
consistently with CC , as follows:

– MC(p) ∈ IN(2A×2B), for p ∈ PR,

– MC(hi) ∈ IN2(INb×TR×TR×2A)
, for ti ∈ TR,

– MC(hij) ∈ ININb , for ti, tj ∈ TR; i < j; tj ∈ dpc(ti).

Remark 4. In both formalisms, namely RPNs and CPNs, the history of
the whole performed execution has to be stored. In RPNs it is conducted
explicitly, with the use of history function: H : T → 2IN×2P×A – for tran-
sition t ∈ TR, history H(t) contains a set of pairs of the shape (kX , X),
where X is a set of pairs {(p1, α1), (p2, α2), . . . , (pl, αl)}. On the other
hand, in CPNs the history is scattered among transitions history places.
Every transition history place contains elements belonging to the follow-
ing Cartesian product: INb × TR × TR × 2A, i.e. elements of the form
(kY , ti, tj , Y ). Note that during the transformation we cannot just replace
X with Y (nor the other way round), because they are of different types.
Having a base instance belonging to the set Y ⊆ A, we are able to find a
suitable place by indicating the last transition which has been using the
given base instance and utilizing its only output place (see Section 6.2 for
details). On the other hand, having X, we are able to obtain the set of Y
by summing up the components located at the second coordinate of each
pair: Y =

⋃
(p,α)∈X{α} (see Section 6.1).
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6.1 Transformation of states from RPN to CPN

Now, we focus on transformation of states from an RPN to a CPN. This
process is quite straightforward - the formulas presented below have to be
used.

Let assume that NR is an RPN (PR, TR, FR, AR, BR) and NC(NR) is
a CPN (PC , TC , DC ,ΣC , VC , CC , GC , EC , IC). Then to each state in NR

we assign a single state in NC(NR) as follows:

– MC(p)(X ) = 1 for X ∈ ConCom(MR(p)), p ∈ PR,
MC(p)((∅, ∅)) = K −#ConCom(MR(p)), p ∈ PR. The number of to-
kens in every place p ∈ PR is equal to K. If a place at marking MR

contains tokens, then equivalent tokens have to be present at marking
MC . To obtain a fixed number of tokens K, we fulfill the place with
idle tokens.

– MC(hij) = #HR(ti)+#HR(tj) for a connection history place hij . The
content of such a place describes how many times transitions ti and tj
have been executed. Each execution of a transition is related to one
element in its HR, hence it is sufficient to to sum up the elements in
HR for both transitions.

– MC(hi) =⋃
(k,Y )∈HR(ti),tj∈dpc(ti)(#{k′ | (k′, Z) ∈ (HR(ti) ∪HR(tj)) ∧ (k′ < k)}+ 1, tj , ti, X),

where X =
⋃

(p,α)∈Y {α}, for a transition history place hi. One element
of such a place is a 4-tuple and describes one execution of ti in the
context of tj . Last three components of that 4-tuple are easy to obtain
- there are names of transitions and set X, which is obtainable from
HR(ti) as a sum of all instances constituting the second coordinate of
each pair (p, α) ∈ X. To obtain the first component, we have to calcu-
late how many times transitions ti and tj have been executed before
the execution involving X occurred. Those executions are indicated
by elements of HR(ti) and HR(tj) with first components smaller than
the first component in the element including X.

6.2 Transformation of states from CPN to RPN for
backtracking

In the following section, we deliberate about the state transformation
from a CPN to an RPN. It turns out that it is not as straightforward
as the other way round. The main issue we face is that a single state of
coloured Petri net constructed according the rules of transformation may
correspond to many states of the initial reversible Petri net. The following
example illustrates this phenomenon.
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Fig. 6. Coloured Petri Net constructed on the basis of the reversible Petri net depicted
in Figure 3 and according to out-of-causal-order semantics.

Example 3. Let us construct a coloured Petri net NC on the basis of the re-
versing Petri net NR depicted in Figure 3. At the very beginning, we add
reverse transitions tr1, tr2, tr3 to the net - they are depicted blue. For the
reasons of transparency and clarity, here we only mark the reversing tran-
sitions, without specifying all their connections. We want to start with
adding history places, first we add one transition history place for each
transition t1, t2, t3 – respectively: h1, h2, h3. The places are marked dotted
red. Next we need to compute the sets of places: h13, h23 - out-of-causal
dependency counters and h1, h2, h3 - out-of-causal dependency histories,
for t1, t2, t3 obtaining the following:

– dpcOOC(t1) = dphOOC(t1) = {t3}
– dpcOOC(t2) = dphOOC(t2) = {t3}
– dpcOOC(t3) = dphOOC(t3) = {t1, t2}.

Therefore we need to add the following connection history places: h13,
h23 - those places are depicted dashed red. Now we should add the arcs
between transitions and places h1, h2, h3 and h13, h23, according to the
transformation described in Section 5. They are marked by dashed and
dotted arrows. Assume that, after the execution of the sequence t1t2, we
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obtain marking M ′
C , depicted in Figure 6. The content of history places

is as follows:

– M ′
C(h1) = {(1, 3, 1, {a1})}

– M ′
C(h2) = {(1, 3, 2, {b1, c1})}

– M ′
C(h3) = ∅

– M ′
C(h13) = 1

– M ′
C(h23) = 1.

On the other hand, exactly the same marking one can obtain after the
execution of t2t1. This is because in a history place of a transition we
only store information concerning other transitions being in relation ≺
with it. In our example the two transitions t1 and t2 might be considered
“independent”, as they are not in the relation, namely ¬(t1 ≺ t2∨ t2 ≺ t1).
The order of occurrences of the transitions t1 and t2 is not stored anywhere
in the net. For comparison, let us look again at the example shown in the
Figure 3, considering only the black, solid part, which is the starting RPN.
The markings obtained after t1t2 and after t2t1 are equal but, according
to the semantics presented in Definition 5, the history function returns
different values.

Remark 5. Let us note that the above example would look significantly
different when considering backtracking semantics, because in that case for
a given transition t the set of dependency histories dph(t) would contain
all transitions different from t.

The above observations allows us formulate an extremely important
conclusion:
One state of the coloured Petri net created from a given reversing Petri
net as a result of transformation described above may correspond to many
states of the original reversing Petri net. Even when, for casual and out-of-
casual-order semantics, there exists no one-to-one correspondence between
states in a CPN and corresponding RPN, for backtracking it is possible
to obtain states in RPNs on the basis of states in CPNs. It can be done
quite straightforwardly, by using the ensuing formulas. To every state in
CPN NC(NR) we assign a single state in RPN NR as follows:

– MR(p) =
⋃

(X ,Y)∈MC(p)X ∪ Y, for p ∈ PR; in the RPN places contain
the same base and bond instances as in the CPN.

– HR(ti) =
⋃

(k,j,i,X)∈MC(hi)
[K(X) :

⋃
α∈X(tα•, α)] where for a particu-

lar set X:
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K(X) = 1 + Σ(kj ,j,i,X)∈MC(hi)(kj − 1)−
#{(kg, j, i, Y ) ∈ MC(hi) | (kg < kf ) ∧ ((kf , j, i,X) ∈ MC(hi))} ·
#dpc(ti)−1
#dpc(ti)

,
tα = max((

⋃
tj∈(dph(ti)∪{ti})MC(hj))|con(α,⋃p∈rin(ti)

MC(p))).7

Calculating the value of the history function in RPNs is a bit tricky.
It contains two elements: a number in the sequence of executions and
a set of pairs: a place from which a base instance has been taken and
the instance. Those base instances are included in markings of tran-
sition history places and can be obtained from the last components
of 4-tuples. Using the partial order of transitions the last transition
(before the considered execution of ti), which has been using the given
base instance, can be indicated - hence its output place must be the
place from which ti obtained the instance. The most difficult to com-
pute is K(X), which denotes the index of execution of the transition
ti related to instances included in X in the sequence of all executions
of transitions. In CPNs this information is splitted among 4-tuples in
marking of the transition history place. The first component in each
4-tuple: kj means that the considered execution of ti (related to X)
was kj-th in the sequence of executions of transitions ti and tj . Hence,
there had to occur kj − 1 executions before the considered one. How-
ever, among those kj − 1 executions for each 4-tuple, also previous
executions of ti are included, and they are included in each 4-tuple.
That is why we have to calculate how many times ti was executed be-
fore the considered execution and subtract the redundant information.
Each previous execution of transition ti is described by #dcp(ti) ele-
ments of MC(hi). Hence, to obtain the number of previous executions
we have to multiply by #dpc(ti)−1

#dpc(ti)
. Number 1 is added to the obtained

value to include the considered execution of ti.

6.3 Transformation of states from CPN to RPN - all modes

The transformations described in Sections 6.1 and 6.2 determine the cor-
respondence between states of an RPN and states of a corresponding CPN.
If MC is a state in the CPN obtained from MR in the RPN as a result of
transformation described in Section 6.1, or MR in the RPN is composed
according to description presented in Section 6.2 from MC in the CPN,
then we say that MR corresponds to MC and MC corresponds to MR. Have
in mind that, in backtracking semantics the correspondence is one-to-one,

7 Note that in above equations i is fixed as the number of transition ti.
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while in causal and out-of-causal might be many-to-one (see Example 3).
To determine corresponding states in all semantics the following theorem
should be used.

The following fact follows directly from the transformation described
in Section 6.2.

Lemma 1. For each state MC in the CPN there exists at least one reach-
able state ⟨MR, HR⟩ in RPN to which MC is assigned.

Now, we are ready to prove the main theorem of the paper.

Theorem 1. Let NR be an RPN and NC(NR) the equivalent CPN. Then
⟨MC0 , H0 = ∅⟩ (an initial marking of the RPN with empty history) is
equivalent to CPN marking obtained as a result of IC/t0. Moreover, if
⟨MR, HR⟩ is a state reachable in NR and MC is a corresponding marking
of NC then MC is reachable in NC . In addition, if ti ∈ TR is enabled in
NR at ⟨MR, HR⟩ and its execution leads to ⟨M ′

R, H
′
R⟩, then ti is enabled in

NC at MC and its execution leads to M ′
C which corresponds to ⟨M ′

R, H
′
R⟩.

If ti ∈ TR can be reversed at ⟨MR, HR⟩ and its reverse leads to ⟨M ′
R, H

′
R⟩,

then tri is enabled in NC at MC and its execution leads to M ′
C which

corresponds to ⟨M ′
R, H

′
R⟩.

Proof. Let NR be an RPN and NC(NR) the equivalent CPN. In the ini-
tial marking of NC(NR) we assign to each place p ∈ PR a set of to-
kens ConCom(MC0(p)) supplemented by the proper number of idle tokens
(∅, ∅). Moreover, MC(hi) = ∅ since history H0 is empty and MC(hij) = 0,
since all HR(ti) = ∅.

Let ⟨MR, HR⟩ be a reachable state, such that ti is enabled at MR. Let
MC be a marking corresponding to ⟨MR, HR⟩.

Part A: forward executions

Case 1: ti ∈ T TRN
R .

In this case, in the RPN we have one input arc and one output arc for
ti, with the same inscriptions equal to a ∈ A. In the CPN, transition
ti has an input arc labelled with single (X ,Y). By Definition 4(1), if ti
is enabled, then in S(•ti) we have only one instance α of type a. More-
over, α ∈ MC(•ti), hence one can choose a binding b in which α ∈ b(X ).
We need to proceed with all additional negative inscriptions on the input
arc. Note that, b((X ,Y)) = con(α,MC(•ti)), hence by Definition 4(2,3)
(A∪B)∩ ℓ(X ∪Y) = ∅. This way the guard function of ti with binding b
returns true and ti is enabled in the CPN.



34 Authors Suppressed Due to Excessive Length

After the execution of ti in the RPN the contents of two places •ti, ti•
change, M ′

R(•ti) = MR(•ti) \ con(α,MR(•ti)) and M ′
R(ti•) = MR(ti•) ∪

con(α,MR(•ti)). On the other hand, in the CPN M ′
C(•ti) = MC(•ti) −

b((X ,Y)) + (∅, ∅), while M ′
C(ti•) = MC(ti•) − (∅, ∅) + b((X ,Y)). More-

over, M ′
C(hi) = MC(hi) ∪

⋃
tl∈dpc(ti),i<l{b(EC(hil, ti)) + 1, tl, ti, {α}) ∪⋃

tl∈dpc(ti),i>l{b(EC(hli, ti)) + 1, tl, ti, {α}), while for every tl ∈ dpc(ti) we
have M ′

C(hil) = MC(hil) + 1 for i < l and M ′
C(hli) = MC(hli) + 1 for

i > l. The contents of the other places in both nets do not change. We are
left with the determination of the value of history. In the RPN we have
H ′

R(ti) = HR(ti)∪{(k = max{k′ | (k′, S′) ∈ H(t′), t′ ∈ T}+1, {(•ti, α)})}.
Note that, M ′

C is assigned to M ′
R since MC is assigned to MR and:

– M ′
C(p) = MC(p) for p ∈ PR \ {•ti, ti•};

– M ′
C(•ti)(X ) = 1 for X ∈ ConCom(MR(•ti)) \ con(α,MR(•ti)) =

ConCom(MR(•ti) \ con(α,MR(•ti))) = ConCom(M ′
R(•ti)),

M ′
C(•ti)((∅, ∅)) = MC(•ti)((∅, ∅)) + 1 = #ConCom(MR(•ti)) + 1 =

K−#ConCom(M ′
R(•ti));

– M ′
C(ti•)(X ) = 1 for X ∈ ConCom(MR(ti•)) ∪ con(α,MR(•ti)) =

ConCom(MR(ti•) ∪ con(α,MR(ti•))) = ConCom(M ′
R(ti•)),

M ′
C(ti•)((∅, ∅)) = MC(ti•)((∅, ∅)) − 1 = #ConCom(MR(ti•)) − 1 =

K−#ConCom(M ′
R(ti•));

– M ′
C(hjl) = MC(hjl) for j ̸= i, l ̸= i;

– M ′
C(hil) = MC(hil) + 1 = #HR(ti) + 1 + #HR(tl) = #H ′

R(ti) +
#H ′

R(tl), for i < l; tl ∈ dpc(ti)
– M ′

C(hli) = MC(hli) + 1 = #HR(ti) + 1 + #HR(tl) = #H ′
R(ti) +

#H ′
R(tl), for i > l; tl ∈ dpc(ti)

– M ′
C(hj) = MC(hj) for j ̸= i;

– M ′
C(hi) =

MC(hi) ∪
⋃

tl∈dpc(ti),i<l{b(EC(hil, ti)) + 1, tl, ti, {α})∪⋃
tl∈dpc(ti),i>l{b(EC(hli, ti)) + 1, tl, ti, {α}) =⋃
(k,{(p′α,α′)})∈HR(ti),tl∈dpc(ti){(#{k′ | {(k′, {(p′′α, α′′)}) ∈ HR(ti)∪HR(tl)}∧

k′ < k}+ 1, tl, ti, {α′})}∪⋃
tl∈dpc(ti),i<l{b(EC(hil, ti)) + 1, tl, ti, {α})∪⋃
tl∈dpc(ti),i>l{b(EC(hli, ti)) + 1, tl, ti, {α}) =⋃
(k,{(p′α,α′)})∈H′

R(ti),tl∈dpc(ti){(#{k′ | {(k′, {(p′′α, α′′)}) ∈ H ′
R(ti)∪H ′

R(tl)}∧
k′ < k} + 1, tl, ti, {α′})}, where pα denotes a place from which α is
obtained.

Case 2: ti ∈ TBC2
R .

In this case, in the RPN we have •ti = {p1, p2}, hence it has two input arcs
with inscriptions, precisely: a1 arc from p1, a2 arc from p2, and one output
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arc with inscription {⟨a1, a2⟩}, for a1, a2 ∈ A. In the CPN, transition ti
has two input arcs: one labelled with (X1,Y1), and the other with (X2,Y2).
By Definition 4(1), in S(•ti) two instances are present: α1 of type a1 and
α2 of type a2. Moreover, α1 ∈ MC(p1) and α2 ∈ MC(p2), hence one can
choose a binding b in which α1 ∈ b(X1) and α2 ∈ b(X2). We need to
proceed with all additional negative inscriptions on the input arc. Note
that, b((X1,Y1)) = con(α1,MC(p1)) and b((X2,Y2)) = con(α2,MC(p2))
hence by Definition 4(2,3) (A ∪ B) ∩ ℓ(X1 ∪ Y1) ∩ ℓ(X2 ∪ Y2) = ∅. This
way the guard function of ti with binding b returns true and ti is enabled
in the CPN.

After the execution of ti in the RPN, the contents of three places
p1, p2 ∈ •ti and ti• change, M ′

R(p1) = MR(p1)\con(α1,MR(p1)), M ′
R(p2) =

MR(p2) \ con(α2,MR(p2)) and M ′
R(ti•) = MR(ti•) ∪ con(α1,MR(p1)) ∪

con(α2,MR(p2)) ∪ {⟨α1, α2⟩}. On the other hand, in the CPN M ′
C(p1) =

MC(p1)−b((X1,Y1))+(∅, ∅), M ′
C(p2) = MC(p2)−b((X2,Y2))+(∅, ∅), while

M ′
C(ti•) = MC(ti•)− (∅, ∅)+ b((X1∪X2,Y1∪Y2∪{⟨α1, α2⟩})). Moreover,

M ′
C(hi) = MC(hi) ∪

⋃
tl∈dpc(ti),i<l{b(EC(hil, ti)) + 1, tl, ti, {⟨α1, α2⟩}) ∪⋃

tl∈dpc(ti),i>l{b(EC(hli, ti))+1, tl, ti, {⟨α1, α2⟩}), while for every tl ∈ dpc(ti)

we have M ′
C(hil) for i < l is equal to MC(hil) + 1 and M ′

C(hli) for i > l
is equal to MC(hli) + 1. The contents of the other places in both nets do
not change. We are left with the determination of the value of history. In
the RPN we have H ′

R(ti) = HR(ti) ∪ {(k = max{k′ | (k′, S′) ∈ H(t′), t′ ∈
T}+ 1, {(p1, α1), (p2, α2)})}. Note that, M ′

C is assigned to M ′
R since MC

is assigned to MR and:

– M ′
C(p) = MC(p) for p ∈ PR \ {p1, p2, ti•};

– M ′
C(p1)(X ) = 1 for X ∈ ConCom(MR(p1)) \ con(α1,MR(p1)) =

ConCom(MR(p1) \ con(α1,MR(p1))) = ConCom(M ′
R(p1)),

M ′
C(p1)((∅, ∅)) = MC(p1)((∅, ∅)) + 1 = #ConCom(MR(p1)) + 1 =

K−#ConCom(M ′
R(p1));

– M ′
C(p2)(X ) = 1 for X ∈ ConCom(MR(p2)) \ con(α2,MR(p2)) =

ConCom(MR(p2) \ con(α2,MR(p2))) = ConCom(M ′
R(p2)),

M ′
C(p2)((∅, ∅)) = MC(p2)((∅, ∅)) + 1 = #ConCom(MR(p2)) + 1 =

K−#ConCom(M ′
R(p2));

– M ′
C(ti•)(X ) = 1 for X ∈ ConCom(MR(ti•)) ∪ con(α1,MR(p1)) ∪

con(α2,MR(p2)) ∪ {⟨a1, a2⟩} =
ConCom(MR(ti•)∪(con(α1,MR(p1))∪con(α2,MR(p2))∪{⟨a1, a2⟩})) =
ConCom(M ′

R(ti•)),
M ′

C(ti•)((∅, ∅)) = MC(ti•)((∅, ∅)) − 1 = #ConCom(MR(ti•)) − 1 =
K−#ConCom(M ′

R(ti•));
– M ′

C(hjl) = MC(hjl) for j ̸= i, l ̸= i;
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– M ′
C(hil) = MC(hil) + 1 = #HR(ti) + 1 + #HR(tl) = #H ′

R(ti) +
#H ′

R(tl), for i < l; tl ∈ dpc(ti)

– M ′
C(hli) = MC(hli) + 1 = #HR(ti) + 1 + #HR(tl) = #H ′

R(ti) +
#H ′

R(tl), for i > l; tl ∈ dpc(ti)

– M ′
C(hj) = MC(hj) for j ̸= i;

– M ′
C(hi) =

MC(hi) ∪
⋃

tl∈dpc(ti),i<l{b(EC(hil, ti)) + 1, tl, ti, {⟨α1, α2⟩})∪⋃
tl∈dpc(ti),i>l{b(EC(hli, ti)) + 1, tl, ti, {⟨α1, α2⟩}) =⋃
(k,{(p′α1

,α1
′),(p′α2

,α2
′)})∈HR(ti),tl∈dpc(ti){(#{k′ | {(k′, {(p′′α1

, α1
′′), (p′′α2

, α2
′′)}) ∈

HR(ti) ∪HR(tl)} ∧ k′ < k}+ 1, tl, ti, {⟨α′
1, α

′
2⟩})}∪⋃

tl∈dpc(ti),i<l{b(EC(hil, ti)) + 1, tl, ti, {⟨α1, α2⟩})∪⋃
tl∈dpc(ti),i>l{b(EC(hli, ti)) + 1, tl, ti, {⟨α1, α2⟩}) =⋃
(k,{(p′α1

,α1
′),(p′α2

,α2
′)})∈H′

R(ti),tl∈dpc(ti){(#{k′ | {(k′, {(p′α1
, α1

′), (p′α2
, α2

′)}) ∈
H ′

R(ti) ∪H ′
R(tl)} ∧ k′ < k}+ 1, tl, ti, {⟨α′

1, α
′
2⟩})}, where pα denotes a

place from which α is obtained.

Case 3: ti ∈ TBC1
R .

In this case, in the RPN ti has one input arc with inscription {a1, a2}
and one output arc with inscription {⟨a1, a2⟩} for a1, a2 ∈ A In the CPN
transition ti has an input arc labelled with 1‘(X1,Y1) + +1‘(X2,Y2). By
Definition 4(1), in S(•ti) two instances are present: α1 of type a1 and α2

of type a2. Moreover, α1, α2 ∈ MC(•ti), hence we have two possibilities
of binding:
Subcase A:
α1 and α2 are included in the same molecule and one can choose a
binding b in which α1, α2 ∈ b(X1) and (X2,Y2) = (∅, ∅). We need to
proceed with all additional negative inscriptions on the input arc. Note
that, b((X1,Y1)) = con(α1,MC(•ti)) = con(α2,MC(•ti)) hence by Defi-
nition 4(2,3) (A ∪B) ∩ ℓ(X1 ∪ Y1) = ∅. This way the guard function of ti
with binding b returns true and ti is enabled in the CPN.

After the execution of ti in the RPN the contents of two places •ti, ti•
change, M ′

R(•ti) = MR(•ti) \ con(α1,MR(•ti)) and M ′
R(ti•) = MR(ti•)∪⋃

α′∈S(•ti) con(α
′,MR(•ti)) ∪ {⟨α1, α2⟩}. On the other hand, in the CPN

M ′
C(•ti) = MC(•ti) − b((X1,Y1)) − (∅, ∅) + 2‘(∅, ∅), while M ′

C(ti•) =
MC(ti•)− (∅, ∅)+ b((X1,Y1∪{⟨α1, α2⟩})). Moreover, M ′

C(hi) = MC(hi)∪⋃
tl∈dpc(ti),i<l{b(EC(hil, ti))+1, tl, ti, {⟨α1, α2⟩})∪

⋃
tl∈dpc(ti),i>l{b(EC(hli, ti))+

1, tl, ti, {⟨α1, α2⟩}), while for every tl ∈ dpc(ti) we have M ′
C(hil) for i < l

is equal to MC(hil) + 1 and M ′
C(hli) for i > l is equal to MC(hli) + 1.

The contents of the other places in both nets do not change. We are left
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with the determination of the value of history: H ′
R(ti) = HR(ti) ∪ {(k =

max{k′ | (k′, S′) ∈ H(t′), t′ ∈ T} + 1, {(•ti, α1), (•ti, α2)})}. Note that,
M ′

C is assigned to M ′
R since MC is assigned to MR and:

– M ′
C(p) = MC(p) for p ∈ PR \ {•ti, ti•};

– M ′
C(•ti)(X ) = 1 for X ∈ ConCom(MR(•ti)) \ con(α1,MR(•ti)) =

ConCom(MR(•ti) \ con(α1,MR(•ti))) = ConCom(M ′
R(•ti)),

M ′
C(•ti)((∅, ∅)) = MC(•ti)((∅, ∅))−1+2 = #ConCom(MR(•ti))+1 =

K−#ConCom(M ′
R(•ti));

– M ′
C(ti•)(X ) = 1 for X ∈ ConCom(MR(ti•)) ∪ con(α1,MR(•ti)) ∪

{⟨α1, α2⟩} =
ConCom(MR(ti•) ∪ con(α1,MR(ti•))) = ConCom(M ′

R(ti•)),
M ′

C(ti•)((∅, ∅)) = MC(ti•)((∅, ∅)) − 1 = #ConCom(MR(ti•)) − 1 =
K−#ConCom(M ′

R(ti•));
– M ′

C(hjl) = MC(hjl) for j ̸= i, l ̸= i;
– M ′

C(hil) = MC(hil) + 1 = #HR(ti) + 1 + #HR(tl) = #H ′
R(ti) +

#H ′
R(tl), for i < l; tl ∈ dpc(ti)

– M ′
C(hli) = MC(hli) + 1 = #HR(ti) + 1 + #HR(tl) = #H ′

R(ti) +
#H ′

R(tl), for i > l; tl ∈ dpc(ti)
– M ′

C(hj) = MC(hj) for j ̸= i;
– M ′

C(hi) =
MC(hi) ∪

⋃
tl∈dpc(ti),i<l{b(EC(hil, ti)) + 1, tl, ti, {⟨α1, α2⟩})∪⋃

tl∈dpc(ti),i>l{b(EC(hli, ti)) + 1, tl, ti, {⟨α1, α2⟩}) =⋃
(k,{(p′α1

,α1
′),(p′α1

,α2
′)})∈HR(ti),tl∈dpc(ti){(#{k′ | {(k′, {(p′′α1

, α1
′′), (p′′α1

, α2
′′)}) ∈

HR(ti) ∪HR(tl)} ∧ k′ < k}+ 1, tl, ti, {⟨α′
1, α

′
2⟩})}∪⋃

tl∈dpc(ti),i<l{b(EC(hil, ti)) + 1, tl, ti, {⟨α1, α2⟩})∪⋃
tl∈dpc(ti),i>l{b(EC(hli, ti)) + 1, tl, ti, {⟨α1, α2⟩}) =⋃
(k,{(p′α1

,α1
′),(p′α1

,α2
′)})∈H′

R(ti),tl∈dpc(ti){(#{k′ | {(k′, {(p′α1
, α1

′), (p′α1
, α2

′)}) ∈
H ′

R(ti) ∪H ′
R(tl)} ∧ k′ < k}+ 1, tl, ti, {⟨α′

1, α
′
2⟩})}, where pα denotes a

place from which α is obtained.

Subcase B:
α1 and α2 are included in different molecules, hence one can choose a
binding b in which α1 ∈ b(X1) and α2 ∈ b(X2). We need to proceed
with all additional negative inscriptions on the input arc. Note that,
b((X1,Y1)) = con(α1,MC(•ti)), b((X2,Y2)) = con(α2,MC(•ti)) hence by
Definition 4(2,3) (A∪B)∩ℓ(X1∪Y1)∩ℓ(X2∪Y2) = ∅. This way the guard
function of ti with binding b returns true and ti is enabled in the CPN.

After the execution of ti in the RPN the contents of two places •ti, ti•
change, M ′

R(•ti) = MR(•ti) \ (con(α1,MR(•ti)) ∪ con(α2,MR(•ti))) and
M ′

R(ti•) = MR(ti•)∪
⋃

α′∈S(•ti) con(α
′,MR(•ti))∪{⟨α1, α2⟩}. On the other



38 Authors Suppressed Due to Excessive Length

hand, in the CPN M ′
C(•ti) = MC(•ti)−b((X1,Y1))−b((X2,Y2))+2‘(∅, ∅),

while M ′
C(ti•) = MC(ti•)−(∅, ∅)+b((X1∪X2,Y1∪Y2∪{⟨α1, α2⟩})). More-

over M ′
C(hi) = MC(hi)∪

⋃
tl∈dpc(ti),i<l{b(EC(hil, ti))+1, tl, ti, {⟨α1, α2⟩})∪⋃

tl∈dpc(ti),i>l{b(EC(hli, ti))+1, tl, ti, {⟨α1, α2⟩}), while for every tl ∈ dpc(ti)

we have M ′
C(hil) for i < l is equal to MC(hil) + 1 and M ′

C(hli) for
i > l is equal to MC(hli) + 1. The contents of the other places in both
nets do not change. We are left with the determination of the value
of history: H ′

R(ti) = HR(ti) ∪ {(k = max{k′ | (k′, S′) ∈ H(t′), t′ ∈
T} + 1, {(•ti, α1), (•ti, α2)})}. Note that, M ′

C is assigned to M ′
R since

MC is assigned to MR and:

– M ′
C(p) = MC(p) for p ∈ PR \ {•ti, ti•};

– M ′
C(•ti)(X ) = 1 for X ∈ ConCom(MR(•ti)) \ (con(α1,MR(•ti)) ∪

con(α2,MR(•ti))) =
ConCom(MR(•ti)\(con(α1,MR(•ti))∪con(α2,MR(•ti))) = ConCom(M ′

R(•ti)),
M ′

C(•ti)((∅, ∅)) = MC(•ti)((∅, ∅)) + 2 = #ConCom(MR(•ti)) + 2 =
K−#ConCom(M ′

R(•ti));
– M ′

C(ti•)(X ) = 1 for X ∈ ConCom(MR(ti•)) ∪ con(α1,MR(•ti)) ∪
con(α2,MR(•ti)) ∪ {⟨α1, α2⟩} =
ConCom(MR(ti•) ∪ con(α1,MR(ti•))) = ConCom(M ′

R(ti•)),
M ′

C(ti•)((∅, ∅)) = MC(ti•)((∅, ∅)) − 1 = #ConCom(MR(ti•)) − 1 =
K−#ConCom(M ′

R(ti•))
– Changes of markings of other places are the same as in the previous

situation.

Part B: Reverse executions – equivalence of enabledness

Note that, in case of reverse executions, we have to deal with three
different semantics, and the notion of transition enabledness differs de-
pending on the chosen one. Therefore, we need to investigate three possi-
ble situations.

Case 1:
Backtracking. Notice, that in the RPN transition t is enabled to be re-
versed when it is the last forward executed transition in the execution of
the net, that is according to Definition 3.1, if it has the greatest number
in H(t′) for t′ ∈ T . In the CPN, the last executed transition t can be
established as the one with the values on the first position in elements
of its history place equal to values obtained from respective connection
history places related to t. Note that, by the construction of connection
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history places, those values are the greatest possible. Hence, by the trans-
formation transition t is bt−enabled.

Case 2:
Causal reversing. According to Definition 8 in the RPN transition t is
co-enabled if there is no other transition t′ that has been executed after t
(with value k′ from the history higher that k assigned to t) and has used
any token instance αi utilised by t. In other words any other transition t′

dependent on t has not been fired, and the dependency is based on token
instances used by transitions. In the CPN, t can be reversed, if token in-
stances utilised by t are present in places from rin(t), which is for causal
semantics the set of output places of t. Since t can be reversed, any other
transition t′ such that t • ∩ • t′ ̸= ∅ using the same token instances has
not been executed. Once more, we may say that any other transition t′

dependent on t has not been fired, and the dependency is based mostly on
the structure of the net. However, since cycles are not allowed in RPNs,
both dependency approaches are equivalent. We refer readers interested
in cycles in RPNs and how they impact dependency between transition in
causal reversing to [3]. Notice, that the first part of the guards of reversing
transitions corresponds to the choice of the execution of t to be reversed
and collect all information from the history place related to that chosen
execution. This part is fulfilled after any execution of t. The same holds
for out-of-causal-order semantics.

Case 3:
Out-of-causal-order reversing. In the RPN, transition t is o−enabled if
it was executed, i.e. its history H(t) is not empty (Definition 10). In
the CPN, similarly to causal semantics case, t can be reversed if token
instances transferred by t are present in places from rin(t). For out-of-
causal-order semantics, rin(t) consists of all places to which token in-
stances used by t could be transported. Hence, this condition is naturally
fulfilled. Then the only condition necessary to satisfy is the first part of
the guard, which is achieved simply by any execution of t.

Part C: Reverse executions – equivalence of markings

According to Definition 9 for causal semantics, the change in marking
M ′

R during reversing is the same as for backtracking semantics, which is
presented in Definition 7. Moreover, the change in marking M ′

R during re-
versing for backtracking can be described by the formula for out-of-causal-
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order reversing - Definition 12. In that case let q be the only output place
of t and α ∈ M ′

R(t•) = M ′
R(q). We are faced with two possible situations:

either •t = last(Cα,q, HR)• or Cα,q ⊆ M0(•t). Hence, in the following
paragraph, we can focus only on the formula presented in Definition 12.

Notice, that according to Remark 2, t, being the last transition ac-
cording to the partial order defined by ≺, is equal to the last transition
indicated by Definition 11. If last(C,H) equals ⊥ the maximal transition
equals the initial transition t0.

Case 1: ti ∈ T TRN
R

Assume, that during its execution, transition ti which is reversed has
transported token instance α of type a. Then, b.effect(ti, S) = ∅ and {α} =
S. During reversing, only the contents of two places change, namely place
q, such that α ∈ MR(q) and place p such that either p = last(Cα,q, H

′
R)•

or Cα,q ∈ MR0(p) for last(Cα,q, H
′
R) = ⊥. We use the abbreviation Cα,q =

con(α,MR(q)) from Definition 12.

– M ′
C(p

′) = MC(p
′) for p′ ∈ PR \ {p, q};

– M ′
C(q)(X ) = 1 for X ∈ ConCom(MR(q)) \ con(α,MR(q)) =

ConCom(MR(q) \ con(α,MR(q))) = ConCom(M ′
R(q)),

M ′
C(q)((∅, ∅)) = MC(q)((∅, ∅)) + 1 = #ConCom(MR(q)) + 1 = K −

#ConCom(M ′
R(q));

– M ′
C(p)(X ) = 1 for X ∈ ConCom(MR(p)) ∪ con(α,MR(q)) =

ConCom(MR(p) ∪ con(α,MR(q))) = ConCom(M ′
R(p)),

MC(p)((∅, ∅)) = M ′
C(p)((∅, ∅)) − 1 = #ConCom(M ′

R(p)) − 1 = K −
#ConCom(MR(p));

– M ′
C(hjl) = MC(hjl) for j ̸= i, l ̸= i;

– M ′
C(hil) = MC(hil) − 1 = #HR(ti) − 1 + #HR(tl) = #H ′

R(ti) +
#H ′

R(tl), for i < l; tl ∈ dpc(ti)
– M ′

C(hli) = MC(hli) − 1 = #HR(ti) − 1 + #HR(tl) = #H ′
R(ti) +

#H ′
R(tl), for i > l; tl ∈ dpc(ti)

– M ′
C(hi) =

⋃
(k<kj ,tj ,ti,{α′})∈MC(hi),(kj ,tj ,ti,{α})∈MC(hi)

(k, tj , ti, {α′})∪⋃
(k>kj ,tj ,ti,{α′})∈MC(hi),(kj ,tj ,ti,{α})∈MC(hi)

(k − 1, tj , ti, {α′})} =⋃
(k,{(p′α,α′)})∈H′

R(ti),tl∈dpc(ti){(#{k′ | {(k′, {(p′′α, α′′)}) ∈ H ′
R(ti)∪H ′

R(tl)}∧
k′ < k} + 1, tl, ti, {α′})}, where pα denotes a place from which α is
obtained. The last equality holds because H ′

R is modified according to
Definition 9.

– M ′
C(hj) = MC(hj) for tj /∈ dph(ti)

– For tj ∈ dph(ti) and tj ∈ T TRN we have:
M ′

C(hj) =
⋃

(k,tg ̸=i,tj ,{α′})∈MC(hj)
(k, tg, tj , {α′})∪⋃

(k<kj ,ti,tj ,{α′})∈MC(hj),(kj ,tj ,ti,{α})∈MC(hi)
(k, ti, tj , {α′})∪
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(k>kj ,ti,tj ,{α′})∈MC(hj),(kj ,tj ,ti,{α})∈MC(hi)

(k − 1, ti, tj , {α′})} =⋃
(k,{(p′α,α′)})∈H′

R(tj),tl∈dpc(tj){(#{k′ | {(k′, {(p′′α, α′′)}) ∈ H ′
R(tj)∪H ′

R(tl)}∧
k′ < k} + 1, tl, tj , {α′})}, where pα denotes a place from which α is
obtained. The last equality holds because H ′

R is modified according to
Definition 9.

– For tj ∈ dph(ti) and tj ∈ TBC1 ∪ TBC2 we have:
M ′

C(hj) =
⋃

(k,tg ̸=i,tj ,{⟨α′
1,α

′
2⟩})∈MC(hj)

(k, tg, tj , {⟨α′
1, α

′
2⟩})∪⋃

(k<kj ,ti,tj ,{⟨α′
1,α

′
2⟩})∈MC(hj),(kj ,tj ,ti,{α})∈MC(hi)

(k, ti, tj , {⟨α′
1, α

′
2⟩})∪⋃

(k>kj ,ti,tj ,{⟨α′
1,α

′
2⟩})∈MC(hj),(kj ,tj ,ti,{α})∈MC(hi)

(k−1, ti, tj , {⟨α′
1, α

′
2⟩}) =⋃

(k,{(p′α1
,α1

′),(p′α1
,α2

′)})∈H′
R(ti),tl∈dpc(ti){(#{k′ | {(k′, {(p′α1

, α1
′), (p′α1

, α2
′)}) ∈

H ′
R(ti) ∪H ′

R(tl)} ∧ k′ < k}+ 1, tl, ti, {⟨α′
1, α

′
2⟩})}, where pα denotes a

place from which α is obtained. The last equality holds because H ′
R is

modified according to Definition 9.

Case 2: ti ∈ TBC2
R

Assume, that during its execution transition ti which is reversed has cre-
ated a bond ⟨α1, α2⟩, where α1 is of type a1 and α2 of type a2. Then,
b.effect(ti, S) = {⟨α1, α2⟩} and {α1, α2} = S, con(α1,MR(q)) = con(α2,MR(q))
because in MR(q) α1 and α2 are bonded. During reversing, only the con-
tents of three places change, namely: place q for ⟨α1, α2⟩ ∈ M ′

R(q), and
place p1 such that either p1 = last(Cα1,q, HR)• or Cα1,q ∈ MR0(p1) if
last(Cα1,q, HR) = ⊥ and place p2 such that either p2 = last(Cα2,q, HR)•
or Cα2,q ∈ MR0(p2) if last(Cα2,q, HR) = ⊥. We use the abbreviation
Cα,q = con(α,M ′

R(q)\b.effect(ti, S)) defined in Definition 12. Here, mark-
ings of two places p1 and p2 change, in contrast to the case ti ∈ T TRN

R

(only one place). Since reversing of ti ∈ TBC2
R , always results in splitting

of molecule containing the bond ⟨α1, α2⟩ (in M ′
R located in place q) into

two parts: the first containing α1, which goes back to p1 in MR and the
second containing α2, goes back to p2 in MR.

– M ′
C(p

′) = MC(p
′) for p′ ∈ PR \ {p1, p2, q};

– M ′
C(q)(X ) = 1 for X ∈ ConCom(MR(q)) \ con(α1,MR(q)) =

ConCom(MR(q) \ con(α,MR(q))) = ConCom(M ′
R(q)),

M ′
C(q)((∅, ∅)) = MC(q)((∅, ∅)) + 1 = #ConCom(MR(q)) + 1 = K −

#ConCom(M ′
R(q));

– M ′
C(p1)(X ) = 1 for X ∈ ConCom(MR(p1))∪con(α1,MR(q)\{⟨α1, α2⟩}) =

ConCom(MR(p1)∪con(α1,MR(q)\{⟨α1, α2⟩})) = ConCom(M ′
R(p1)),

M ′
C(p1)((∅, ∅)) = MC(p1)((∅, ∅)) − 1 = #ConCom(MR(p1)) − 1 =

K−#ConCom(M ′
R(p1));

– M ′
C(p2)(X ) = 1 for X ∈ ConCom(MR(p2))∪con(α2,MR(q)\{⟨α1, α2⟩}) =

ConCom(MR(p2)∪con(α2,MR(q)\{⟨α1, α2⟩})) = ConCom(M ′
R(p2)),
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M ′
C(p2)((∅, ∅)) = MC(p2)((∅, ∅)) − 1 = #ConCom(MR(p2)) − 1 =

K−#ConCom(M ′
R(p2));

– M ′
C(hjl) = MC(hjl) for j ̸= i, l ̸= i;

– M ′
C(hil) = MC(hil) − 1 = #HR(ti) − 1 + #HR(tl) = #H ′

R(ti) +
#H ′

R(tl), for i < l; tl ∈ dpc(ti)
– M ′

C(hli) = MC(hli) − 1 = #HR(ti) − 1 + #HR(tl) = #H ′
R(ti) +

#H ′
R(tl), for i > l; tl ∈ dpc(ti)

– M ′
C(hi) =

⋃
(k<kj ,tj ,ti,{⟨α′

1,α
′
2⟩})∈MC(hi),(kj ,tj ,ti,{⟨α1,α2⟩})∈MC(hi)

(k, tj , ti, {⟨α′
1, α

′
2⟩})∪⋃

(k>kj ,tj ,ti,{⟨α′
1,α

′
2⟩})∈MC(hi),(kj ,tj ,ti,{⟨α1,α2⟩})∈MC(hi)

(k−1, tj , ti, {⟨α′
1, α

′
2⟩})} =⋃

(k,{(p′α1
,α1

′),(p′α1
,α2

′)})∈H′
R(ti),tl∈dpc(ti){(#{k′ | {(k′, {(p′α1

, α1
′), (p′α1

, α2
′)}) ∈

H ′
R(ti) ∪H ′

R(tl)} ∧ k′ < k}+ 1, tl, ti, {⟨α′
1, α

′
2⟩})} where pα denotes a

place from which α is obtained. The last equality holds because H ′
R is

modified according to Definition 9.
– M ′

C(hj) = MC(hj) for tj /∈ dph(ti)
– For tj ∈ dph(ti) and tj ∈ T TRN we have:

M ′
C(hj) =

⋃
(k,tg ̸=i,tj ,{α′})∈MC(hj)

(k, tg, tj , {α′})∪⋃
(k<kj ,ti,tj ,{α′})∈MC(hj),(kj ,tj ,ti,{⟨α1,α2⟩})∈MC(hi)

(k, ti, tj , {α′})∪⋃
(k>kj ,ti,tj ,{α′})∈MC(hj),(kj ,tj ,ti,{⟨α1,α2⟩})∈MC(hi)

(k − 1, ti, tj , {α′})} =⋃
(k,{(p′α,α′)})∈H′

R(tj),tl∈dpc(tj){(#{k′ | {(k′, {(p′′α, α′′)}) ∈ H ′
R(tj)∪H ′

R(tl)}∧
k′ < k} + 1, tl, tj , {α′})}, where pα denotes a place from which α is
obtained. The last equality holds because H ′

R is modified according to
Definition 9.

– For tj ∈ dph(ti) and tj ∈ TBC1 ∪ TBC2 we have:
M ′

C(hj) =
⋃

(k,tg ̸=i,tj ,{⟨α′
1,α

′
2⟩})∈MC(hj)

(k, tg, tj , {⟨α′
1, α

′
2⟩})∪⋃

(k<kj ,ti,tj ,{⟨α′
1,α

′
2⟩})∈MC(hj),(kj ,tj ,ti,{⟨α1,α2⟩})∈MC(hi)

(k, ti, tj , {⟨α′
1, α

′
2⟩})∪⋃

(k>kj ,ti,tj ,{⟨α′
1,α

′
2⟩})∈MC(hj),(kj ,tj ,ti,{⟨α1,α2⟩})∈MC(hi)

(k−1, ti, tj , {⟨α′
1, α

′
2⟩}) =⋃

(k,{(p′α1
,α1

′),(p′α1
,α2

′)})∈H′
R(ti),tl∈dpc(ti){(#{k′ | {(k′, {(p′α1

, α1
′), (p′α1

, α2
′)}) ∈

H ′
R(ti) ∪H ′

R(tl)} ∧ k′ < k}+ 1, tl, ti, {⟨α′
1, α

′
2⟩})}, where pα denotes a

place from which α is obtained. The last equality holds because H ′
R is

modified according to Definition 9.

Case 3: ti ∈ TBC1
R

Assume, that during its execution transition ti which is reversed, has cre-
ated a bond ⟨α1, α2⟩, where α1 is of type a1 and α2 of type a2. Here,
two situations are possible. In the first, after reversing of ti which results
in breaking the bond ⟨α1, α2⟩, we have con(α1,MR(q) \ {⟨α1, α2⟩}) =
con(α2,MR(q) \ {⟨α1, α2⟩}) - token instances α1 and α2 after breaking
⟨α1, α2⟩ are still connected. Now, only the contents of two places change,
namely q for ⟨α1, α2⟩ ∈ MR(q) and p such that either p = last(Cα1,q, H

′
R)•

or Cα1,q ∈ MR0(p) if last(Cα,q, H
′
R) = ⊥, where Cα1,q = con(α1,MR(q) \
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{⟨α1, α2⟩}). This situation is analogous to ti ∈ T TRN
R . In the second pos-

sibility, after reversing of ti which results in breaking bond ⟨α1, α2⟩, we
have con(α1,MR(q)\{⟨α1, α2⟩}) ̸= con(α2,MR(q)\{⟨α1, α2⟩}) - molecule
containing α1 and α2 is split into two molecules, the first containing α1

and the second α2. This situation is analogous to ti ∈ TBC2
R .

It remains for us to prove the simple fact.

Lemma 2. The following operations are correct:
ConCom(MR(•ti))\con(α,MR(•ti)) = ConCom(MR(•ti)\con(α,MR(•ti)))
ConCom(MR(•ti))∪con(α,MR(•ti)) = ConCom(MR(•ti)∪con(α,MR(•ti)))

Proof. Function ConCom() returns a set of connected components of its
argument. The molecule con(α,MR(•ti)) is a connected component by def-
inition. Subtraction of con(α,MR(•ti)) is an operation on one connected
component from MR(•ti) – it removes one connected component from
MR(•ti) or a part of it. Hence, the subtracting before or after applying
ConCom() function will not change the result of ConCom(). Analogously
for the addition of con(α,MR(•ti)).

7 Software

The transformation of RPNs to CPNs described in this paper has been im-
plemented in a java application RPNEditor, which may be downloaded
at the webpage https://www.mat.umk.pl/~folco/rpneditor.

The application provides a graphical interface for displaying and edi-
tion of low-level RPNs based on an open source framework Java Universal
Network/Graph Framework [13]. A net prepared in the application can be
stored in an XML file containing all the details related to the net.

Fig. 7. The RPN created using RPNEditor (left) and its translation to CPN opened
in CPN-Tools software (right).
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The primary functionality of RPNEditor is the translation from RPNs
to CPNs. An RPN prepared in the application (alternatively loaded from
a XML file) may be transformed into a CPN and stored in the format
required by CPN-Tools software [7].

CPN-Tools is a software with a well-established reputation in the com-
munity of Coloured Petri Nets. It contains many useful tools allowing in-
vestigation of properties and behaviour of CPNs. Therefore, we decided
to produce the output in the CPN-Tools readable format. On the other
hand, low-level RPNs are not widely known. Moreover, construction of
a correct RPN requires a few essential conditions to be satisfied. Hence,
providing an RPN editor equipped with the net correctness validation was
necessary.

The translation from RPNs to CPNs is possible for all three reversing
semantics, the desired one has to be chosen from the menu. The resulting
CPN behaviour corresponds to the one of the original RPN according to
the semantics chosen and may be directly simulated using CPN-Tools.
During the transformation, several new structural elements are intro-
duced: transition and connection history places, reversing transitions, etc.
Moreover, the simulation of the original RPN behaviour requires the usage
of a number of variables representing bases, bonds, molecules, etc. There-
fore, it is necessary to define specialised colours. They include, among
other, tuples stored at transition history places and containing the log of
transition execution, representation of bases and bonds, lists of bases and
bonds comprising a molecule, etc.

In the case of a transition with no dependence (i.e. it does not process
effects of other transitions and its effect is not processed by any other
transition) a transition history place would remain empty. As a conse-
quence, the reversing of such a transition would not be possible. Avoiding
such problems was one of the reasons for introducing the initial transition
(denoted as t0). It is not a part of the original net and may be executed
only once just before the net computation starts. Its sole purpose is to
produce the initial marking. After that neither its execution nor reversal
are possible. Since t0 produces the initial content of all the places, it is de-
pendent with all other transitions, namely t0 ∈ dpc(t) for each transition
t ∈ TR. Therefore, as a result of the translation, the connection history
places for each transition paired with t0 are produced. To avoid creation
of nodes and edges, which are not used during the actual computation,
and losing the readability we decided to make t0 virtual and not to put
it directly in the resulting net. Instead, the initial marking of the CPN is
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set to the one just after execution of t0. However, the traces of its initial
execution may be observed at the history places of all other transitions.

The arrangement and location of all elements of the input RPN may
be freely edited by the user resulting in the unpredictability of the pro-
cessed reversing Petri net shape. Therefore, to facilitate the readability
of the resulting CPN all the newly introduced objects are located around
the RPN area. The reversing transitions are placed to the right, transi-
tion history places above, and connection history places below the original
net. Moreover, we decided to distinguish all types of objects with differ-
ent colours: the original net structure - grey, transition history places -
yellow, connection history places - green, reversing transitions - blue, and
connection history places related to the initial transition t0 – light grey.

The newly-created RPN objects (transitions and places) are automat-
ically assigned with unique identifiers (starting from 1). Since one is al-
lowed to create, move, and delete them in any order, the resulting RPN
may not preserve the topological order of transition identifiers. Therefore,
before the transformation, all transitions are renamed according to their
topological order. Moreover, the translation is not possible before RPN
is completed (i.e. all transitions have the required number of input and
output places, and all the edges have correct labels).

8 Conclusions

In this paper we have presented and formally proved the correctness of
a translation from reversing Petri nets with multiple tokens to coloured
Petri nets. Building upon previous work, we have enhanced the translation
by lifting restrictions on token uniqueness and refining the transformation
process. The resulting transformation accommodates all three semantics of
backtracking, causal-order, and out-of-causal-order reversibility, providing
a unified approach. Additionally, an automated transformation algorithm
for RPNs to CPNs has been introduced along with the accompanied mod-
elling tool providing the potential for analysing RPN models using CPN
tools.

Our primary objectives for future work include optimizing the trans-
formation process from reversing Petri nets to coloured Petri nets, and
extending it to capture cycles as well as towards controlled reversibil-
ity [23,14]. Furthermore, we aim to assess the scalability of the approach
and the developed tool for handling complex systems, whereby we foresee
the application of the framework to model and analyse case studies arising
within computer science and beyond.
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