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Abstract. Recently, Generative Adversarial Networks (GANs) have
been widely applied for data augmentation given limited datasets. The
state of the art is dominated by measures evaluating the quality of the
generated images, that are typically all added to the training dataset.
There is however no control of the generated data, in terms of the com-
promise between diversity and closeness to the original data, and this
is our work’s focus. Our study concerns the prediction of soil moisture
dissipation rates from synthetic aerial images using a CNN regressor.
CNNs, however, require large datasets to successfully train them. To
this end, we apply and compare two Generative Adversarial Networks
(GANs) models: (1) Deep Convolutional Neural Network (DCGAN) and
(2) Bidirectional Generative Adversarial Network (BiGAN), to generate
fake images. We propose a novel approach that consists of studying which
generated images to include into the augmented dataset. We consider a
various number of images, selected for training according to their real-
istic character, based on the discriminator loss. The results show that,
using our approach, the CNN trained on the augmented dataset gener-
ated by BiIGAN and DCGAN allows a significant relative decrease of the
Mean Absolute Error w.r.t the CNN trained on the original dataset. We
believe that our approach can be generalized to any Generative Adver-
sarial Network model.

Keywords: Deep neural networks - Generative Adversarial Networks -
Control of GAN output quality - Regression task
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1 Introduction and Related Work

Over recent decades, the decrease in water available for irrigation around the
world has become a major issue especially in arid and semi-arid regions [1]. A
useful solution involves estimating the amount of water required based on soil
moisture [2]. Deep Learning has shown great potential in many agriculture tasks
such as fruit counting, plant diseases recognition and soil moisture prediction [3].
Convolutional Neural Networks (CNNs) are ones of the most common deep learn-
ing models, but they require large amounts of training data. To overcome this
problem, Generative adversarial networks (GANs) are a well-known effective
technique for augmenting the training data sets [4,5]. Although GANSs provide
excellent results, not all their generated samples are realistic [6]. Evaluating
GANSs, or more specifically, the samples generated by GANS, is a challenging pro-
cess [7]. From the state of the art, structural similarity (SSIM) and Peak Signal
to Noise Ratio (PNSR) are the most two used image quality assessment metrics.
They are based on the realism and diversity of the generated images [7]. SSIM
compares the corresponding pixels and their neighborhoods in two images based
on the luminance, the contrast and the structure, while PNSR computes the peak
signal-to-noise ratio between two samples [7]. Although SSIM and PNSR are
currently the most popular metrics, they are increasingly criticized [8,9]. They
may fail capturing fine features in the images and provide high scores to images
with bad quality [7]. Furthermore, the scores are not always well correlated with
human perception [10]. In other words, the generated sample with high metrics
values does not always appear better to humans than the sample with lower
metrics values [10]. In addition to the image quality metrics mentioned above,
some other measures such as Inception Score (IS) and Fréchet Inception Dis-
tance (FID) [11], have been widely adopted for evaluating GANs [12]. These two
measures use a pre-trained Inception neural network trained on the ImageNet
dataset to extract the features and capture the required properties of gener-
ated images [7]. However, the two Inception-based measures do not consider real
images at all, and so cannot measure how well the generator approximates the
real distribution [7]. In other words, these scores are limited to measuring only
the diversity of the generated images [11]. Furthermore, IS and FID focus on the
evaluation of the generative models, which cannot be utilized to evaluate the
quality of each single fake image [13]. In addition, better FID (i.e., lower) does
not always imply better image quality [14]. The authors in [15], aimed to increase
their original limited agriculture data set using GAN for a segmentation task,
by proposing a GAN that automatically generates realistic agriculture scenes.
They only generate instances of the objects of interest in the scene, not all the
image. Furthermore, they proposed an empirical evaluation where they extract
features from the original and generated samples to calculate performance using
various metrics such as: IS and FID. These measures showed that the fake sam-
ples’ quality was similar to original samples’ quality. Then, without selecting
the best generated images, all the augmented synthesized images were added to
the original data set to train a CNN model for a crop segmentation purpose.
The results showed that the GAN enhanced dataset improved the performance
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of four different state-of-the art segmentation architectures. The authors in [4],
have proposed a model to develop a deep learning based framework to recognize
the tomato plant diseases by investigating tomato leaf images. They generated
synthetic images from the PlantVillage dataset using conditional GAN model
for a classification purpose. The generated samples were first evaluated visually
and then using two metrics: PNSR and IS. The comparable values of PNSR
and IS showed that the quality of images generated by C-GAN were very close
to the quality of real images. Then, in the second experiment, the models were
trained first on the original data set and then on the augmented data set. The
results show that the augmented data set gives better accuracy as compared to
the original dataset. In [13], the authors used a GAN-based data augmentation
technique to improve the training performance. In this work, the proposed GAN
model has been assessed by various metrics such as: Inception Score, Fréchet
Inception Distance, Precision and Recall. The results showed that, by adding
the generated samples to the original set, the proposed model results in signif-
icant performance accuracy. Overall, GANs technology is quickly evolving and
is being used in more and more agriculture applications for classification or seg-
mentation. State of the art methods, however, add all the generated images into
the augmented data for a classification or a segmentation purpose [4,13,15].
Sometimes, they just evaluate the generated data, but do not assess which ones
to select for the addition. However not all generated images are realistic and
relevant [6]. Our study is devoted to handle this issue by proposing a framework
that studies which generated images to include in the augmented dataset. This
approach allows to train a deep learning model using only the most realistic gen-
erated images. In this paper, and as presented in our previous work [16], we are
interested in the prediction of soil moisture dissipation rates from synthetic aerial
images using a CNN model. This entails a regression task where the CNN, given
an input image, has to predict a vector of regression values associated with the
dissipation rates at different locations of the agricultural field. CNNs, however,
require large data sets to successfully train the deep network. To this end, we
propose and compare between two Generative adversarial networks models: (1)
Deep Convolutional Generative Adversarial Network (DCGAN) and (2) Bidirec-
tionnal Generative Adversarial Network (BIGAN) using the same architectures
for generating fake agriculture images. Then, we conduct several experiments
to study which generated images to include in the augmented dataset. We con-
sider different numbers of generated images, namely from 250 to 1200 images,
with four scenarios regarding the discriminator loss ranges: (1) 0.20-0.80, (2)
0.30-0.70, (3) 0.40-0.60 and (4) 0.45-0.55. Additional augmented data did not
improve the results. Following that, we use the baseline CNN model trained on
the original data set to predict the regression vector serving as its ground truth
in the augmented dataset. The results show that the CNN trained on the aug-
mented data set generated by BIGAN and DCGAN models allowed respectively
a relative decrease of the Mean Absolute Error by 19.34% and 14.23% instead of
16.05% and 12.40% (using all the generated images) w.r.t to the CNN trained
on the original data set. This shows that the proposed GANs-based generated
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images quality assessment approach can add high-quality agriculture images to
the training set efficiently, leading to performance improvement of the regression
model. To the best of our knowledge, this is the first paper using this approach,
that can be applied to any Generative Adversarial Network model.

In summary, the main contributions of this article are outlined as follows:

— By adding conv layers and an encoder on the standard GAN respectively, we
compare two known models using the same architectures: (1) Deep Convolu-
tional Generative Adversarial Network (DCGAN) and (2) Bidirectional Gen-
erative Adversarial Network (BiGAN) for generating fake agriculture images.

— We propose a framework where we study which images to include into the
augmented dataset by considering different sizes of images that are generated
from 250 to 1200 images with four scenarios regarding the discriminator loss
ranges: (1) 0.20-0.80, (2) 0.30-0.70, (3) 0.40-0.60 and (4) 0.45-0.55.

— We use the basic CNN model to generate the regression ground truth corre-
sponding to the generated images.

— To evaluate the performance of our proposed approach, a publicly available
agriculture RAPID data set has been used in the experiments. The presented
approach is applicable using any other Generative adversarial networks model.

The remainder of this paper is as follows. The background is briefly presented
in Sect.2. The used methods and materials are described in Sect.3. Then, in
Sect. 4, we evaluate the experimental results, followed by a discussion. The last
section, Sect. 5, concludes the paper.

2 Background

Generative Adversarial Network: GAN is a deep learning model consisting
of two modules: a discriminator D and a generator G [17]. D determines whether
the data is real or fake, and G transforms a random vector into a realistic data, by
fooling the discriminator into accepting its generated data as original data [17].
During training, G improves on generating fake samples, while D learns to dis-
tinguish between the original and generated examples [15]. The equilibrium is
reached when G generates realistic images similar to real samples [17]. The dis-
criminator will be totally confused in the ideal case, when guessing with 50%
probability that all samples, whether original or generated, are fake [17]. GAN
aims to reduce the probability distribution distance between real and generated
samples. GAN training involves optimizing the following loss function:

mén mDaXV(D7 G) = Ex'\‘pdata(x) [log D(:E)] + Ez"’pgenerated(z) [log(]‘ - D(G(Z))] (1)
where Eyp,...(2) 15 the expectation over the original samples, E.p, . . oiea(z) 18
the expectation over the generated samples, pgcncratod(z) is the noise vector, D(x)
is the discriminator loss given the probability that x comes from the training
data distribution, G(z) is the generator loss and z represents the original dataset.
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During training, the generator and discriminator networks are trained in
competition with each other, and both play a two players minimax game, i.e.,
the generator aims to minimize (1), while the discriminator aims to maximize it.
The characteristics of (1) are that log D(x) is maximized by the discriminator,
so that the original and generated samples are properly classified. Besides, log
(1 — D(G(z)) is minimized by training the generator. Theoretically, achieving
Dgenerated = Pdata 15 the solution to this minimax game when D starts randomly
guessing whether the inputs are real or generated.

Bidirectionnal Generative Adversarial Network: The encoder is the differ-
ence between BIGAN and GAN models. The original GAN can generate an image
for any random noise vector but cannot generate the corresponding random noise
for any given generated image. Donahue et al. [18] proposed the bidirectional
GAN which contains an additional encoder component E [18]. In addition to the
encoder E which maps the data space to the latent space, BIGAN allows for the
extraction of additional data characteristics and to perform the learning pro-
cess [19]. With three components, encoder E, generator G and discriminator D,
true images are fed into the encoder E to learn the feature representation E(x)
while z, considered as a noise vector in the latent space, is input into the gener-
ator G to generate synthetic representation data G(z), and finally the obtained
pairs (z, G(z)) and (E(x), x) are used to train the discriminator D. As a result, Z
= E(x) can be used as low-dimensional characteristics extracted by the encoder
from data images. The structure of discriminator D is altered. Instead of using
x or X = G(z) as the input of D, the discriminator discriminates joint pair (x,z)
or (%, z) from data space and latent space, respectively. As GAN model, the
purpose of BIGAN can be defined as a minimax objective:

ICIJHE IHSX Ewdiam(w) [10g D(CC, E(I))] + EZNpgcncramd(z) [lOg(l - D(G(Z), Z” (2)

3 DMaterials and Methods

Dataset: We use RAPID [20], the only public available dataset. The examples
are pairs of synthetic aerial images and corresponding soil moisture dissipation
rate values. It contains 1400 aerial images of a vineyard with known soil moisture
levels. The dataset is originally split into a train and test sets, of 1200 and 200
images respectively [20]. Each image contains 200 equidistant plants distributed
in 10 columns and 20 rows, associated with a vector of 200 values of soil moisture
values. Figure 1 shows an example of three images resized to 128 x 128. Yellow
refers to higher dissipation rates, whereas green refers to lower rates.

Convolution Neural Network: We use a CNN regression model with
Euclidean loss. To evaluate the accuracy, we use the Mean Absolute Error (MAE)
metric (3), where y;; is the actual output value (ground truth), i.e., the dissipa-
tion rate at plant j in image ¢, §J;; represents the predicted value, n the number
of image plants,p the number of dataset elements, 1 < ¢ < p, 0 < j < n, and the
values of MAE are positive. The closer MAE to zero, the better the prediction.
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Fig. 1. Original images resized to 128 x 128. (Color figure online)

1 e

MAE = ﬁ z:: z::() Uij — Yij| (3)
Our CNN contains six convolution layers, followed by a fully connected layer,
with ReLU as the activation function. Inputs to the CNN are images of size
128 x 128 x 3. The first layer contains 32 filters of size (3 x 3), followed by a
dropout layer. The second layer has 32 filters of size (3 x 3), followed by a max
pooling layer with size 2 x 2 and stride 0. The third layer is composed of 64 filters
with size 3 x 3 and stride 0, followed by a dropout layer. The fourth layer has 64
filters with size 3 x 3. The following max pooling is of size 2 x 2 and stride 0. The
fifth layer contains 128 filters of size (3 x 3), followed by a dropout layer. The last
convolution layer has 128 filters of size (3 x 3), and is followed by dropout and
max pooling layers of pooling size 2 x 2 with stride 0. This is followed by a fully
connected layer of dimension 200 that predicts the vector of 200 soil moisture
dissipation rates. The CNN architecture, is obtained by a Greedy optimization
method on the validation set, of various hyperparameters such as: filter size,
batch size, optimizer, learning rate, number of epochs, dropout.

'UI»—‘

Proposal and Experimental Design: In this work, we aim to develop an
effective framework assessing the quality of the generated images, that allows
selecting the generated images to be included into the augmented data. To this
end, we use two GANs: DCGAN and BiGAN. In our scheme, not all generated
images are added into the augmented data set, but only those who satisfy a
quality criterion given by the discriminator loss, as the latter gives us a quanti-
tative hint to how similar a generated image is to an original one. Concretely, we
conduct several experiments where we consider different sizes of images that are
generated from 250 to 1200 images with four scenarios regarding the discrimi-
nator loss. In one of the scenarios, for instance, we do not want to include very
easy images for which the discriminator loss is close to 0, as these samples are
too different from the real images, so inclusion may actually hinder the quality
of the training data. We want rather realistic images that show variability and
diversity with respect to the training data. We consider the first experiment
where we include only images really close to the real ones by considering a loss
between 0.45 and 0.55, so we are 5% on each size of the middle (of 50%), where
the discriminator has total confusion on whether the image is real or fake. The
second range is between 0.40 and 0.60, where we can afford more variability in
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the training data. We can go further with a loss between 0.40 and 0.60 or even
further with a discriminator loss between 0.20 and 0.80 that allows for more
variability. Subsequently, the resulting samples along with their predicted soil
moisture dissipation rates, used as their ground truths, will be used to augment
the training set for a more robust CNN parameter estimation.

Experimental Details: For all the experiments, an Adam optimizer
(LR =0.0002) is used in our architectures to update the classifier parameters.
The number of epochs and batch size were set respectively to 200 and 128, and
the binary cross entropy is used as loss function.

Generator Network: The generator, shown in Fig.2(b), takes, as input,
a 100 x 1 random noise, and generates an image of size 128 x 128 x 3. It is
composed of four conv layers and three dense layers. The activation function
LeakyReLU is applied for all layers except for the output layer that uses Tanh.
An Upsampling layer is used after all conv layers, except after the input layer.
Finally, batch normalization is used for the first two dense layers to stabilize the
learning process by normalizing the input to have zero mean and unit variance.

Discriminator Network: The discriminator (see Fig.2(c)) classifies whether
the images are real or generated [17]. It takes as input images of size
128 x 128 x 3. In this architecture, the input sample undergoes transformation
embeddings through two conv layers and three Dense layers, followed by the
Sigmoid activation function to predict whether the sample is real or generated.
The LeakyReLU activation function follows each conv and dense layers except
for the output layers. Finally, dropout layer is used for the first two dense layers.

Encoder Network: Our BiGAN generator and discriminator architectures are
similar to our Deep Convolutional GAN (DCGAN). The architecture of the
encoder E (see Fig.2(a)), contains four convolutional layers and three Dense
layers followed by batch normalization layers, with LeakyReLU as activation
function. The BIGAN discriminator concatenates both the data point x and its
latent z as input, which is then passed through two convolutional layers and
three dense layers serving as fully connected layers before obtaining a scalar as
output.

Ground truth Prediction: To get a full augmented dataset, we use the same
CNN to generate the ground truth of the fake samples generated by GAN and
BiGAN models (Fig. 3). The latter, therefore, consist of GAN-based and BiGAN-
based generated images, along with their generated ground truth vector.

4 Results

Convolutional Neural Network: As a baseline, we consider the CNN of
Sect. 3, applied to the original data only, without data augmentation. Table 1
shows the accuracy and loss for the training, validation, and test sets.



128 H. Hammouch et al.

[ Input : 3x128x128 I Input (Random Noise)
(100x1)
‘ Input :
| Conv2D : 128 (3x3) + LR+ BN | I C ion (Image (3x128x128)
7 | Conv2D : 256 (3x3) + LR | & noise (100x1))
Conv2D : 128 (3x3) + LR+ BN ‘ v v
‘ T | conv2p:2563x3)+LR+Us | | com2p:n8s@3)+R |
. +LR+
‘ Conv2D : 256 (3x3) + LR+ BN ‘ [ comap:sa+irsus | | CowDies@y+iR |
’ Conv2D : 256 (3x3) + LR+ BN ‘ | Conv2D : 128 (3x3) + LR + US | | Flatten + Dense Layer + LR+ Dr |
I Flatten + 2 Dense Layers + LR+ BN I | Flatten + 2 Dense Layers+ LR+ BN I | Dense Layer + LR+ Dr |
() | Dense Layer + Reshape Layer | (b) | Dense Layer+ Tanh © Dense Layer+ Sigmoid |

Fig. 2. (a) Encoder Architecture, (b) Generator Architecture, (c) Discriminator Archi-
tecture; LR: LeakyReLU, US: UpSampling2D, Dr: Dropout, BN: BatchNormalization.

Training data Soil moisture
(1200 images) dissipation rate

Basic CNN model
|:’> Training

Generated image

DCGAN
Prediction of the
or @ — o Tt —
BIGAN

Fig. 3. Prediction of the ground truth using DCGAN or BiGAN model.

Table 1. CNN results using the original data.

Loss: MSE | Metric: Mae
Train 0.0014 0.0288
Validation | 0.0013 0.0267
Test 0.0013 0.0274
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Fig. 4. Images with a discriminator loss close to 0.

Deep Convolutional GANs: DCGAN was able to produce samples that look
like the real data at about 80 epochs. The quality of these fake samples continued
to improve until roughly 200 epochs. However, and as mentioned above, not all
generated samples are realistic. It makes sense, therefore, not to include very easy
images, where the discriminator loss is close to 0, as shown in Fig. 4. Therefore,
we considered different numbers of generated images, from 250 to 1200 images,
with four scenarios regarding the discriminator loss ranges: (1) 0.20-0.80, (2)
0.30-0.70, (3) 0.40-0.60 and (4) 0.45-0.55. Figure5(a), (b), (c) shows a grid of
real and generated samples corresponding to (1) and (4). Visually, the number
of columns is the same for all cases. Furthermore, the distribution of the colors
is the same, except for (1) and (2), where the distribution of yellow color is quite
different w.r.t the original samples. As shown in Fig.5(c), the best generated
images correspond to the last case, where the discriminator loss is between 0.45
and 0.55. Therefore, we conclude that the more the discriminator loss is closer
to 0.5, the better the quality of the images is.

Absolute change = Maeginai — Maeinitial (4)

Maefinal - Maeinitial

Relative change = ( ) x 100 (5)

Maeinitial
For each case study, the selected best synthesized images were added to the
original training dataset to show how much the regression performance can be
improved by our quality assessment framework. The evaluation is performed
based on the MAE metric. First, we set 1000 original images and 200 original
images in the training validation sets respectively. 250, 500, 750, 1000, 1200 fake
images were added gradually to the original training data to get respectively:
1250, 1500, 1750, 2000 and 2200 augmented training data sets. Additional aug-
mented data did not improve the results. The results show that for all cases,
the more generated images are added, the better the result is. For all cases,
the best result was the last case when adding 1200 generated images reaching
a validation MAE of 3.18%, 2%, 3.10% and 2.72% where the discriminator loss
is respectively between: (1) 0.20-0.80, (2) 0.30-0.70, (3) 0.40-0.60 and (4) 0.45—
0.55. We considered, therefore, this optimal configuration, and tested for each
case the associated trained model on the held-out 200 test images. We obtained
a MAE of 2.93%, 2.92%, 2.91% and 2.35%. The best result was the last case,
when discriminator loss was set between 0.45 and 0.55, and when adding 1200
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generated images reaching a validation MAE of 2.35% instead of 2.74%, which
amounts to a relative decrease of the MAE of 14.23% instead of 12.40% without
using our approach (i.e., adding all the generated images) (see Egs. (4) and (5)).

Bidirectionnal Generative Adversarial Networks: BiGAN was trained
using the same hyperparameters as DCGAN model. The architectures of the
generator and discriminator were also the same. BiGAN, however, was able to
produce samples that look like the real data at about just 20 epochs. The qual-
ity of these generated samples continued to improve until roughly 200 epochs.
Figure5(a), (b’), (¢’) shows a grid of real and generated samples correspond-
ing to (1) and (4). Visually, the number of columns is the same in all cases.
Furthermore, the distribution of the colors is the same except for the first two
cases (1) and (2) where the distribution of yellow color is quite different w.r.t
the original data. The best generated images correspond to the last two cases
(3) and (4), where the discriminator loss is between 0.40-0.60 and 0.45-0.55.
Visually, the quality of images generated by BiGAN model outperforms those
generated by DCGAN. However, in both cases, the generated images continue to
improve when the discriminator loss gets closer to 0.5. Using the same DCGAN
experiments, we note again that, for all cases, the more generated images are
added, the better the result is. Here again, for each case, the best result was

the last when adding 1200 generated images, reaching respectively a validation
MAE of 2.66%, 2.44%, 2.34% and 2.25% where the discriminator loss is between

(a) . . . .
(b) . . (b’). .
(c) . . (C‘)- -

Fig. 5. (a) Original images; Generated images using DCGAN and BiGAN respectively
and corresponding to a discriminator loss between: (b)—(b’) 0.20 and 0.80, and (c)—(c¢’)
0.45 and 0.55.
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(1) 0.20-0.80, (2) 0.30-0.70, (3) 0.40-0.60 and (4) 0.45-0.55. We considered,
therefore, this optimal configuration, and tested the associated trained model
on the held-out 200 test images. We obtained a MAE of 2.39%, 2.30%, 2.27%
and 2.21%. The best result was the last case where the discriminator loss is
between 0.45 and 0.55 and when adding 1200 generated images reaching a vali-
dation MAE of 2.21% instead of 2.74%, which amounts to a relative decrease of
the MAE of 19.34% instead of 16.05% without using our approach (i.e., adding all
the generated images). Additional augmented data did not improve the results.
Table 2, summarizes the best results (i.e., generating 1200 images) obtained by
both DCGAN and BiGAN, using and without using our approach. Thus, the per-
formance of the CNN model has been further improved by a relative decrease of
the MAE of 12.40% and 16.05% (including all the generated images), 14.23% and
19.34% (using our approach) through the DCGAN and BiGAN models respec-
tively. Another interesting finding is that, for all cases, the time consumption
for generating images using DCGAN model was much larger than that of gen-
erating images using BiGAN model. In addition, using our approach on four
cases, we showed that our BiIGAN model provides better performances in terms
of the MAE metric and also in terms of images generation quality compared
to the DCGAN model. This result is explained by the good feature extraction
capability of the encoder. In other words, by adding the encoder, BIGAN is able
to better extract the features from the data. Overall, our proposed selection
framework improves significantly the CNN prediction performance using either
DCGAN or BiGAN.

Table 2. Final results; W.A: Without using our approach, R.C: Relative Change,
Casel: 0.20-0.80, Case2: 0.30-0.70, Case3: 0.40-0.60, Cased: 0.45-0.55

Baseline | Mse-Train Mae-Train Mse-Val Mae-Val Mae-Test

0.0014 0.0288 0.0013 0.0267 0.0274

BiGAN Model DCGAN Model

Train set Validation set Test set | R.C Train set Validation set Test set |R.C

MAE MSE | MAE MSE |MAE MAE MSE | MAE MSE |MAE
W.A 7.07.10—410.0197 | 0.0011 0.0246 1 0.0230 | 16.05% | 4.67.10—4{0.0150 | 0.0013 0.0261 1 0.0240 |12.40%
Case 1 [9.95.10-40.0222 |0.0012 0.0266 | 0.0239 | — 6.08.10—4 | 0.0172 | 0.0018 0.0318 10.0293 |-
Case 2 |0.0013 0.0254 | 0.0010 0.0244 1 0.0230 |- 6.67.10—4 | 0.0181 | 6.90.10—4 | 0.02  |0.0292 |-
Case 3 |3.01.10—4|0.0116 | 9.84.10—4 | 0.0234 | 0.0227 |- 7.10—-4 0.0187 | 0.0018 0.0310 1 0.0291 |-
Case 4 |4.93.10—40.0155 | 8.66.10—4 | 0.0225 | 0.0221 |19.34% | 7.11.10—4 | 0.0181 | 7.20.10—4 | 0.0272 | 0.0235 |14.23%

5 Conclusion

In this work, we have proposed a quality GAN-based generated images frame-
work, where we control the discriminator loss to augment the training data set
with the most realistic generated agricultural images for a regression task. We
used and compared two generative adversarial networks models (DCGAN and
BiGAN) to generate fake images from 250 to 1200 with four scenarios, with a
baseline CNN used to generate the regression ground truth vector for each fake



132 H. Hammouch et al.

image. We have shown that BIGAN model outperforms DCGAN model in terms
of the MAE metric and of the quality of the generated images. Augmenting the
training data set, using our approach, is effective and allows significantly improv-
ing the regression performance with a relative decrease of the Mean Absolute
Error (MAE) of 19.34% and 14.23% using BiGAN and DCGAN respectively
instead of 16.05% and 12.40% where all the generated images were added into
the training data. In our future work, we intend to build our own dataset from
an agriculture field in Morocco. We will also apply our approach using the new
collected dataset with various other GAN-based network architectures.
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