Skip to main content

Learning Document Graphs with Attention for Image Manipulation Detection

  • Conference paper
  • First Online:
Book cover Pattern Recognition and Artificial Intelligence (ICPRAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13363))

  • 1797 Accesses

Abstract

Detecting manipulations in images is becoming increasingly important for combating misinformation and forgery. While recent advances in computer vision have lead to improved methods for detecting spliced images, most state-of-the-art methods fail when applied to images containing mostly text, such as images of documents. We propose a deep-learning method for detecting manipulations in images of documents which leverages the unique structured nature of these images in comparison with those of natural scenes. Specifically, we re-frame the classic image splice detection problem as a node classification problem, in which Optical Character Recognition (OCR) bounding boxes form nodes and edges are added according to a text-specific distance heuristic. We propose a Variational Autoencoder (VAE)-based embedding algorithm, which when combined with a graph neural network with attention, outperforms both a state-of-the-art image splice detection method and a document-specific method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 28 June 2023

    A correction has been published.

Notes

  1. 1.

    The images in this dataset are images from PDFs from academic works. The PDFs include articles from sociology journals, some of which discuss violent content and may be upsetting to certain readers.

References

  1. Ahmed, A.G.H., Shafait, F.: Forgery detection based on intrinsic document contents. In: 2014 11th IAPR International Workshop on Document Analysis Systems, pp. 252–256. IEEE (2014)

    Google Scholar 

  2. Bayar, B., Stamm, M.C.: A deep learning approach to universal image manipulation detection using a new convolutional layer. In: ACM Workshop on Information Hiding and Multimedia Security, pp. 5–10 (2016)

    Google Scholar 

  3. Bertrand, R., Gomez-Kramer, P., Terrades, O.R., Franco, P., Ogier, J.M.: A system based on intrinsic features for fraudulent document detection. In: ICDAR, pp. 106–110. IEEE (2013)

    Google Scholar 

  4. Bertrand, R., Terrades, O.R., Gomez-Kramer, P., Franco, P., Ogier, J.M.: A conditional random field model for font forgery detection. In: ICDAR, pp. 576–580. IEEE (2015)

    Google Scholar 

  5. van Beusekom, J., Shafait, F., Breuel, T.M.: Automatic authentication of color laser print-outs using machine identification codes. Pattern Anal. Appl. 16(4), 663–678 (2012). https://doi.org/10.1007/s10044-012-0287-5

    Article  Google Scholar 

  6. van Beusekom, J., Shafait, F., Breuel, T.M.: Text-line examination for document forgery detection. IJDAR 16(2), 189–207 (2013)

    Article  Google Scholar 

  7. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond Euclidean data. IEEE Signal Process. Mag. 34(4), 18–42 (2017)

    Article  Google Scholar 

  8. Chernyshova, Y.S., Aliev, M.A., Gushchanskaia, E.S., Sheshkus, A.V.: Optical font recognition in smartphone-captured images and its applicability for ID forgery detection. In: ICMV 2018, vol. 11041, p. 110411J (2019)

    Google Scholar 

  9. Cozzolino, D., Verdoliva, L.: Noiseprint: a CNN-based camera model fingerprint. IEEE Trans. Inf. Forensics Secur. 15, 144–159 (2019)

    Article  Google Scholar 

  10. Cruz, F., Sidere, N., Coustaty, M., D’Andecy, V.P., Ogier, J.M.: Local binary patterns for document forgery detection. In: ICDAR, vol. 1, pp. 1223–1228. IEEE (2017)

    Google Scholar 

  11. Ghosh, A., Zhong, Z., Boult, T.E., Singh, M.: SpliceRadar: a learned method for blind image forensics. In: CVPR Workshops, pp. 72–79 (2019)

    Google Scholar 

  12. Gupta, A., Saxena, N., Vasistha, S.: Detecting copy move forgery using DCT. Int. J. Sci. Res. Publ. 3(5), 1 (2013)

    Google Scholar 

  13. Gupta, S., Kumar, M.: Forensic document examination system using boosting and bagging methodologies. Soft. Comput. 24(7), 5409–5426 (2019). https://doi.org/10.1007/s00500-019-04297-5

    Article  Google Scholar 

  14. Hassan, T.: ICDAR 2013 table competition dataset (2013)

    Google Scholar 

  15. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8(2), 179–187 (1962)

    Article  MATH  Google Scholar 

  16. Hu, W.C., Chen, W.H.: Effective forgery detection using DCT+ SVD-based watermarking for region of interest in key frames of vision-based surveillance. Int. J. Comput. Sci. Eng. 8(4), 297–305 (2013)

    Google Scholar 

  17. Hu, W.-C., Chen, W.-H., Huang, D.-Y., Yang, C.-Y.: Effective image forgery detection of tampered foreground or background image based on image watermarking and alpha mattes. Multimedia Tools Appl. 75(6), 3495–3516 (2015). https://doi.org/10.1007/s11042-015-2449-0

    Article  Google Scholar 

  18. Huh, M., Liu, A., Owens, A., Efros, A.A.: Fighting fake news: image splice detection via learned self-consistency. In: ECCV, pp. 101–117 (2018)

    Google Scholar 

  19. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: 2nd International Conference on Learning Representations, ICLR 2014, Conference Track Proceedings, Banff, AB, Canada, 14–16 April 2014 (2014)

    Google Scholar 

  20. Kniaz, V.V., Knyaz, V., Remondino, F.: The point where reality meets fantasy: mixed adversarial generators for image splice detection (2019)

    Google Scholar 

  21. Korus, P., Huang, J.: Evaluation of random field models in multi-modal unsupervised tampering localization. In: 2016 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6 (2016)

    Google Scholar 

  22. Liu, B., Pun, C.M.: Splicing forgery exposure in digital image by detecting noise discrepancies. Int. J. Comput. Commun. Eng. 4(1), 33 (2015)

    Article  Google Scholar 

  23. Mayer, O., Stamm, M.C.: Exposing fake images with forensic similarity graphs. IEEE J. Sel. Top. Signal Process. 14(5), 1049–1064 (2020)

    Article  Google Scholar 

  24. McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and projection for dimension reduction (2018). http://arxiv.org/abs/1802.03426. Comment: Reference implementation available at http://github.com/lmcinnes/umap

  25. Ng, T.T., Chang, S.F., Sun, Q.: A data set of authentic and spliced image blocks. ADVENT Technical Report, Columbia University, pp. 203–2004 (2004)

    Google Scholar 

  26. Pun, C.M., Liu, B., Yuan, X.C.: Multi-scale noise estimation for image splicing forgery detection. J. Vis. Commun. Image Represent. 38, 195–206 (2016)

    Article  Google Scholar 

  27. Roy, A., Dixit, R., Naskar, R., Chakraborty, R.S.: Copy-move forgery detection with similar but genuine objects. In: Digital Image Forensics. SCI, vol. 755, pp. 65–77. Springer, Singapore (2020). https://doi.org/10.1007/978-981-10-7644-2_5

    Chapter  Google Scholar 

  28. Shang, S., Kong, X., You, X.: Document forgery detection using distortion mutation of geometric parameters in characters. J. Electron. Imaging 24, 023008 (2015)

    Article  Google Scholar 

  29. Shang, S., Memon, N., Kong, X.: Detecting documents forged by printing and copying. EURASIP J. Adv. Signal Process. 2014(1), 1–13 (2014). https://doi.org/10.1186/1687-6180-2014-140

    Article  Google Scholar 

  30. Smith, R.: An overview of the Tesseract OCR engine. In: ICDAR 2007, vol. 2, pp. 629–633. IEEE (2007)

    Google Scholar 

  31. van Beusekom, J., Stahl, A., Shafait, F.: Lessons learned from automatic forgery detection in over 100,000 invoices. In: Garain, U., Shafait, F. (eds.) IWCF 2012/2014. LNCS, vol. 8915, pp. 130–142. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20125-2_12

    Chapter  Google Scholar 

  32. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  33. Wen, L., Qi, H., Lyu, S.: Contrast enhancement estimation for digital image forensics. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 14(2), 1–21 (2018)

    Google Scholar 

  34. Wu, Y., AbdAlmageed, W., Natarajan, P.: ManTra-Net: Manipulation tracing network for detection and localization of image forgeries with anomalous features. In: CVPR, pp. 9543–9552 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otkrist Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Joren, H., Gupta, O., Raviv, D. (2022). Learning Document Graphs with Attention for Image Manipulation Detection. In: El Yacoubi, M., Granger, E., Yuen, P.C., Pal, U., Vincent, N. (eds) Pattern Recognition and Artificial Intelligence. ICPRAI 2022. Lecture Notes in Computer Science, vol 13363. Springer, Cham. https://doi.org/10.1007/978-3-031-09037-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09037-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09036-3

  • Online ISBN: 978-3-031-09037-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics