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Abstract. This paper explores a new paradigm for decomposing an im-
age by seeking a compressed representation of the image through an
information bottleneck. The compression is achieved iteratively by refin-
ing the reconstruction by adding patches that reduce the residual error.
This is achieved by a network that is given the current residual errors and
proposes bounding boxes that are down-sampled and passed to a varia-
tional auto-encoder (VAE). This acts as the bottleneck. The latent code
is decoded by the VAE decoder and up-sampled to correct the recon-
struction within the bounding box. The objective is to minimise the size
of the latent codes of the VAE and the length of code needed to transmit
the residual error. The iterations end when the size of the latent code
exceeds the reduction in transmitting the residual error. We show that
a very simple implementation is capable of finding meaningful bounding
boxes and using those bounding boxes for downstream applications. We
compare our model with other unsupervised object discovery models.

Keywords: Unsupervised representation learning · VAE · Object dis-
covery · Information bottleneck

1 Introduction

In the last few years there has been a significant research effort in developing
unsupervised techniques in deep learning. A very prominent example of these
methods is the variational auto-encoder (VAE) [12, 16] that attempts to find la-
tent representations to efficiently encode a dataset. A drawback of VAEs is that
they represent the entire image. This is unlikely to lead to an efficient repre-
sentation for many real-world images that depict multiple objects. Following the
development of VAEs there have been a number of attempts to use unsupervised
techniques for object location and segmentation within an image [1, 3, 4, 9, 13,
14].

In this paper we will explore the use of a minimum description length cost
function together with an information bottleneck to achieve unsupervised image
understanding. The evidence lower bound (ELBO) of a VAE can be interpreted
as a description length where the KL-divergence corresponds to a code length of
the latent representation and the log-probability of the reconstruction error as
the code length of the residual error (i.e. the error between the reconstruction and
the original image). In our approach we will use multiple glimpses of an image
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corresponding to a sequence of bounding boxes. These are resized to 8×8 patches
and passed to a variational auto-encoder. The full reconstruction is built up from
adding together the reconstructions from the VAE. This is done iteratively with
each patch providing a correction between the current reconstruction and the
true image. A spatial transformer is fed the current residual error and used to
select the next bounding box. The overall cost function is the cost of the latent
codes for all the bounding boxes together with the cost of the final residual error.
We stop when the cost of transmitting the latent code is higher the reduction in
the cost of transmitting the residual error. The spatial transformer and VAE is
trained end-to-end by minimising the description cost of the images in a dataset.

Although we expect our approach to be very different to human eye move-
ment nevertheless, there is a rough correspondence due to the restricted size of
the fovea requiring multiple fixations of an image around areas of high interest
and possible interpretational ambiguity [18]. We deliberately avoid building in
any bias towards glimpsing complete objects, however, as we will see later, at
least, in simple scenes this behaviour emerges. Our aim is not to build a state-
of-the-art unsupervised object detector, but rather to investigate how a minimal
implementation using minimum description length and an information bottle-
neck will glimpse images. As we will demonstrate these glimpses can sometimes
be used to solve downstream tasks that have competitive results with much more
sophisticated approaches.

2 Related Work

There are several works on unsupervised object-centric representation learning
and scene decomposition. MONet [1] applies a recurrent attention mechanism
that produces deterministic soft masks for each component in the scene. They
also use a VAE following their attention mechanism. Genesis [4] is similar to
MONet and employs an RNN network after the encoder to infer the mask of
objects and then uses another VAE to infer the object representations. Unlike
MONet, all the modules in Genesis can be processed in parallel. IODINE [8]
employs an amortized iterative refinement mechanism for the latent code, which
is computationally expensive. Genesis-V2 [3] is the upgraded version of Genesis
which replaces the RNN network with a semi-convolution embedding method.
Other scene-mixture methods based on self-attention mechanism can also per-
form image decomposition and object representation learning [14, 19].

The Attend-Infer-Repeat (AIR) [5] and the following work SPAIR[2] and
SuPAIR [17] infer the object representation as “what”, “where” and “pres” vari-
ables, where SPAIR infer an additional variable “depth”. The “what” variable
represents the shape and appearance of objects, the “where” contains the posi-
tion and scale of objects and the “pres” variable is slightly different in the two
models. In AIR, “pres” is a unary code which is formed of 1 and 0, where 0
means the termination of inference, while in SPAIR, “pres” is a binary variable
that can be sampled from a Bernoulli distribution, where 0 represents no object
in the corresponding cell. The image is encoded as a feature map which can
be the same size as the original image or smaller size. Each cell in the feature
map is processed with the nearby cells that have already been processed before.
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Thus, the whole process is sequential. However, such a sequential operation is
time-consuming. The SPACE network [13] discards the nearby cells and pro-
cesses all the cells fully parallel. The authors also add another network to infer
the background components.

PermaKey [7] is a model that aims to extract object keypoints from images
that take the error map between two feature maps as input. While our model
takes the error map between two images as input directly to inference the position
of objects.

3 Model

In this section we introduce our model in details.

3.1 Glimpsing Network

In our approach we iteratively build up a reconstruction. We use a glimpsing
network that consists of a spatial transformer network that proposes the location
of a bounding box and then resamples the image within that bounding box to
create (in our case) a low-resolution patch of the original image. In our network at
each iteration, the spatial transformer network is given the residual error between
the current reconstruction and the input image. The glimpsing network selects a
bounding box. Then the residual error,∆(t) = x−x̂(t), within the bounding box
is down-sampled to an 8×8 patch (with 3 colour channels) and fed to a VAE. The
VAE produces a latent code q(z|∆(t)). This is used to create a reconstruction
using the standard reparameterisation trick, which is then resized to the size
of the original bounding box. This results in a reconstructed correction, ∆̂(t),
which is then added to reconstruction to obtain an new reconstruction x̂(t+1) =

x̂(t) + ∆̂(t) (note that ∆̂(t) only has non-zero values within the bounding box
selected by the glimpsing network).

Original

Bilinear

VAE 64× 64

VAE 8× 8

Fig. 1: The error maps of different compression methods. The first row is the
original image, the next three rows are the error maps of bilinear interpolation,
a VAE for 64×64 image and a VAE for 8×8 image which takes the downsampled
version of the original images as input
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We use the standard information theoretic result that the cost of transmitting
a random variable with a distribution q(z|∆(t)) relative to a distribution p(z)
is given by the KL-divergence (or relative entropy) DKL(q∥p). In our case we
use the standard latent encoding q(z|∆(t)) = N

(
z|µ,diag(σ)

)
and standard

prior p(z) = N (z|0, I). The cost of communicating the residual error is given
by − log

(
p(x− x̂)

)
. We use the standard assumption that the residual errors

are independent at each pixel and colour channel and normally distributed with
mean 0 and standard deviation σ. To minimise the communication cost we choose
σ2 to be the empirical variance. In this case the cost of communicating the
residual errors is, up to a constant, equal to N log(σ), where N is the number
of pixels times the number of colour channels.

Note that provided both the sender and receiver have the same VAE decoder
we can communicate an image by sending the set of latent codes (plus the
position of the bounding box) and the residual error. (We assume that the dataset
we are sending is so large that the cost of transmitting the VAE decoder is
negligible). To train our spatial transformer and VAE we attempt to minimise
this communication cost for a dataset of images.

A critical component of our approach is that we use an information bottle-
neck. That is, we down-sample our bounding box and feed this to a VAE. We
illustrate the effect of this for images taken from the CLEVR [10] dataset in Fig-
ure 1. In the first row we show the original images. In the second row we show
the reconstruction error after down-sampling the whole image to an 8× 8 image
and then up-sampling using bilinear interpolation to the original size (64× 64).
In the third row we show the reconstruction loss if we use a vanilla VAE without
down-sampling. Finally, we show the reconstruction loss when we down-sample
to 8×8 encode that through a VAE and then up-sample the VAE reconstruction.

Fig. 2: The diagram of one iteration in SAID, where we omit the operation from
position code u to ϵ(t).
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Figure 1 illustrates that due to the bottleneck we have high reconstruction
error around the objects in the image. This error will drive the glimpse model
towards parts of the scene of high complexity.

3.2 Model Architecture and Training

In keeping with our philosophy or keeping our model simple. Our glimpsing net-
work consists of 2 layers of CNN and 2 layers of MLP. Each image is presented
K times. At each presentation the input to the glimpsing network is the residual
error, ∆(t) = x−x̂(t). The output of the glimpsing network provides the coordi-
nates of the bounding box that is then resampled to create an 8× 8 RGB image
patch, ϵ(t) that is used as the input to a standard VAE. In Figure 2, we illustrate
the structure of one iteration in our model. In the experiment, ϵ(t) is the original
image within the bounding box rather than the residual error (which is better for
the downstream tasks). This also makes x̂(t+1) = (1−m(t))⊗x̂(t)+m(t)⊗ϵ̂(t).
where m(t) is a mask equal to 1 in the bounding box and 0 otherwise that ob-
tained from the position code, and ⊗ denotes elementwise multiplication. Addi-
tionally, m(t) can be an alpha mask produced by the decoder of the VAE, the
importance of the alpha mask will be investigated in the ablation study. The
VAE reconstruction, ϵ̂(t), is reshaped to the original bounding box to create a
correction to the reconstruction. Both encoder and decoder contain 4 layers of
CNN with ReLU and 2 layers of MLP. We used a 10-dimensional latent repre-
sentation. To train the VAE we minimise the standard ELBO loss function

Lvae = − log(p(ϵ(t)|ϵ̂(t))) +DKL

(
q(z(t)|ϵ(t))

∥∥N (x|0, I)
)

(1)

where q(z(t)|ϵ(t)) is the distribution describing the latent. Note that the recon-
struction ϵ̂ is generated by sampling a latent vector from q(z(t)|ϵ(t)) and feeding
this to the decoder of the VAE.

Recall the glimpsing network predicts the position of the bounding box. We
encode this through a position parameter µ = (µx, µy) and width parameters
σ = (σx, σy). Adding a bounding box at iteration t reduces the cost of commu-
nicating the residual error by

Lres = − log(p(∆(t)) + log(p(∆(t− 1)) (2)

but requires an additional cost

Lkl = DKL

(
q(z(t)|ϵ(t))

∥∥N (x|0, I)
)
. (3)

Summing these two terms provide a loss function for the network that measures
(up to an additive constant) the reduction in cost of communicating the image
using the new latent code describing the correction to the residual error. Note
that in using the trained network when this difference becomes positive then we
stop glimpsing. In practice, training the glimpsing network with just these term
leads to poor performance. To improve this we assume the parameters µ and σ
represent parameters of a normal distribution where we regularise them with an
additional loss term

Lpos = DKL

(
N (u|µ,σ)

∥∥p(u)) . (4)
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This acts as a regularisation term for µ and σ. We call the whole network Spatial
Attention for Information Detection (SAID).

We also considered two modified network architectures. In the first we learn
an alpha channel so that the corrections are only applied to particular regions
within the bounding box. In the second case we include an additional channel
as the input, which we called scope. This is motivated by MONet [1] that uses
the same idea. This scope channel can force the network to look at the area that
has not been discovered even when there are areas that have been discovered
before contain high error pixels. Initially we set s(0) = 1. Recall that the mask,
m(t), is defined to be 1 in the bounding box and 0 elsewhere. Then the scope is
updated as

s(t+ 1) = s(t)⊗ (1−m(t)) (5)

so the scope will be 0 where a bounding box has been proposed and 1 otherwise.
Note that in our approach we learn after every iteration rather than build up a
gradient over multiple iterations. This makes the learning problem for our system
much simpler than methods such as MONet that applies the loss function only
after making a series of bounding box proposals. We investigate the role of the
alpha channel and scope in ablations studies described in Section 4.4.

4 Experiments

In this section we attempt to quantify the performance. Recall that the objec-
tive is to find glimpses that allows an image to be efficiently encoded through
a bottleneck, so it will not necessarily find glimpses that correspond to objects.
However, as we will show this is an emergent property of the network, at least for
simple scenes. We therefore compare our model to two models, SPACE [13] and
SPAIR [2] designed to find multiple objects in an image. To evaluate our model,
we use three commonly used datasets in unsupervised object-centric represen-
tation learning models. The first dataset is Multi-dSprites, which is developed
from dSprites [15] and each image consists of different shapes with different
colour, the maximum number of objects in this dataset is 4. The second dataset
is Multi-MNIST. For Multi-MNIST, we render MNIST digits of size 20×20 on
a 84×84 canvas. The maximum number of objects in this dataset is 5. The last
dataset is CLEVR [10]. For all the datasets we resize images into 64×64.

We trained our network, SAID, using the ADAM [11] optimizer with β1 =
0.5 and β2 = 0.999. We train our model for 200 epochs for all the datasets.

4.1 Quantitative Comparison

As a first test we consider object location on the Multi-MNIST dataset. Although
object location is not an objective of our model, for the Multi-MNIST dataset the
hand-written characters are well separated and so a natural choice of bounding
box would be around each character. There are however situations where the
bounding box only covers part of the objects or covers more than one object, as
shown in Figure 5. We perform a quantitative comparison of results on Multi-
MNIST using two metrics with SPACE and SPAIR. The two metrics are the
Average Precision (AP) and the Object Count Error. AP is a commonly used
metric in object detection task [6] and the Object Count Error is the difference
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Table 1: Comparison with respect to the quality of the bounding boxes in the
Multi-MNIST. Results are averaged over 5 random seeds.

AP Object
IoU Threshold ∈ [0.1:0.1:0.9] Count Error

SPAIR 0.501 ± 0.004 0.261 ± 0.032
SPACE 0.310 ± 0.041 0.031 ± 0.005
SAID 0.503 ± 0.005 0.810 ± 0.040

between the number of objects predicted by the models and the true number of
digits [2]. For SPACE and SPAIR, we set the grid size as 3×3. For our model,
we use the index of the iteration that the KL term of the VAE is smaller than
improvements on the mean squared error as the number of objects, and we set
K = 5 in training and K = 9 in AP measurement.

As shown in table 1, our model achieves similar AP with SPAIR, SPACE has
the worst AP. However, this result on Multi-MNIST does not reflect the ability
of object detection. The reason is the ground truth bounding box we are using
for MNIST in the AP calculation is larger than the digits, which degrades the
AP result when the model returns a smaller bounding box while it still detects
the objects well. In Figure 3, the first row is the ground truth bounding box
we can obtain in Multi-MNIST dataset, this brings disadvantages to the SPACE
model in the AP calculation since the third row shows the bounding box of
SPACE model is tighter than the ground truth and still maintain the accuracy.
Our model does not perform well on the Object Count Error, since there is no
zpres in our model and the objective of our model is to find high error areas
rather than find objects. Objects of high complexity are often selected more
than once leading to a count error. We note that our stop criteria is applicable
to any image and was not chosen to given an accurate object counts.

4.2 Downstream Task

Obviously a glimpsing model is only of value if the glimpses can be used in
some downstream task. Here we consider the task of returning the sum of all
the digits in a Multi-MNIST image. Each image contains 5 digits. This is a task
that has previously been used to test unsupervised multi-object detection. We
show the results on 80k training set and 20k test set. We compare our results to
the SPACE and SPAIR models. We run implementation of all three models to
ensure consistency.

For SPACE and our model, we use the same architecture of the encoder, and
the channel of the latent space is 10. For SPAIR, we observered that the model
tended to collapse at an early stage when we using these parameter setting. Thus,
we maintain the original architecture of the encoder, but increase the channel
of the latent space to 50 and the input size of the encoder is 15×15 rather than
8×8, which potentially brings benefits to the capacity of the encoder.

To compute the sum of the digits we construct a 3 layer MLP using the
latent codes, z(t), as inputs. The output of the MLP has a single output which
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GT

SPAIR

SPACE

SAID

Fig. 3: Qualitative comparison between the bounding boxes found for different
models. GT is the ground truth bounding boxes, SPAIR and SPACE are models
developed by other authors while SAID is our model.

we train to have the same numerical value as the digit (that is, the digit 3 should
have an output of 3). When testing we add the outputs from each glimpse and
then round that number to the nearest integer. We trained the MLP for 100
epochs. This is considerably simpler than the set up described in [2] who use an
LSTM to perform the addition. We note that our method explicitly treats the
glimpse for this problem as a set, where the result is invariant to the ordering
of the glimpses. We also demonstrate the results by feeding the ground truth
bounding box into the encoder rather than the predicted bounding box, which
we note as GT. GT provides an estimated upper-bound on the performance we
could achieve.

Table 2 shows the results of four models in 2 different conditions. Fixed rep-
resents a frozen encoder during the classifier training while Unfixed represents
an encoder tuning with the classifier. Due to the architecture issue, SPAIR per-
forms best under Fixed but worst under Unfixed. Our model performs better
than SPACE in both situations but there is still a huge gap between our model
and the ground truth bounding box.

4.3 Generalization

Our model uses a very general principle that we believe can be widely used in
different contexts. To explore this we look at out-of-distribution generalisation.
That is, when we train on one dataset (here we use CLEVR) and use the model
on a different dataset. We test the network on the Multi-dSprites and Multi-



Unsupervised Representation Learning Via Information Compression 9

Table 2: The performance on the downstream task of summing the digits in
the images in Multi-MNIST is shown using the ground truth (GT) bounding
boxes and bounding boxes found by SPAIR, SPACE and our network SAID.
The results are computed by averaging over 5 runs with different random seeds.

Fixed Unfixed
Train Test Train Test

GT 30.3% ± 1.2% 29.2% ± 1.1% 97.5% ± 0.9% 92.3% ± 1.1%
SPAIR 25.8% ± 2.2% 24.0% ± 2.1% 24.6% ± 1.5% 22.0% ± 1.1%
SPACE 15.1% ± 2.5% 14.4% ± 2.2% 42.3% ± 1.5% 30.1% ± 1.2%
SAID 22.3% ± 1.8% 21.3% ± 2.0% 57.8% ± 1.6% 31.9% ± 1.5%

MNIST datasets. We set the maximum number of iteration K = 10 which the
same as we used when training CLEVR, but we stop the iteration when the KL
is larger than the reduction in code length of the reconstruction error. Results
are shown in Figure 4. The first row is the result for Multi-dSprites, the model
trained on CLEVR can stop at reasonable iteration. But the model tends to
infer more times on Multi-MNIST, we assume it is because the binary images
are simpler to be transmitted than the RGB images, the VAE trained on CLEVR
can transmit binary images efficiently no matter if the bounding box covers the
digits correctly. The model can still locate the area of objects although some of
the bounding boxes failed at covering one object.

Fig. 4: Examples of bounding boxes found on the Multi-dSprites and Multi-
MNIST dataset are shown for a network trained of the CLEVR dataset.

4.4 Ablation Study

The results we show in the previous section is trained with a scope channel and
the input is the difference between the original image and a lossy image that
has been downsampled to 8×8 and then upsampled to the original size through
bilinear interpolation. Also, we have used an alpha mask instead of a binary
mask when we blend the images. In this section, we show the importance of the
scope channel and the alpha channel. We also show how the lossy image can
affect the results when we use different methods to get the lossy version.
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Table 3 shows the results on AP and Object Count Error, no alpha and
no scope mean we remove the alpha channel and scope channel respectively.
VAE8 means we use a 8×8 VAE to reconstruct the image after the downsample
interpolation, as shown in Figure 1. It can be observed that the alpha channel
does not make a huge difference to the model while the model gets a degeneration
performance when we remove the scope channel. Also, the model performs worse
when we use a VAE to obtain the lossy version of images. This is because after
using a 8×8 VAE, the error map tends to cover more background.

Table 3: The performance of ablation studies carried out on the Multi-MNIST
dataset. The average precision in the detection of bounding boxes is presented
together with the error in the count of the numberof objects. Different versions
of SAID are compared.

AP Object
IoU Threshold ∈ [0.1:0.1:0.9] Count Error

SAID (no alpha) 0.490 ± 0.008 0.731 ± 0.040
SAID (no scope) 0.341 ± 0.006 1.710 ± 0.110
SAID (VAE8) 0.452 ± 0.008 1.101 ± 0.031

SAID 0.503 ± 0.005 0.810 ± 0.040

4.5 CLEVR and Multi-dSprites

In the Multi-MNIST the objects are of approximately the same size and do not
suffer from occlusion. Clearly, this is very different to real images. To explore
these issues we tested our models on CLEVR and Multi-dSprites dataset.

Fig. 5: Examples of bounding boxes found by SAID on the CLEVR dataset.

Figure 5 shows the results on CLEVR dataset and Figure 6 shows the results
on Multi-dSprites dataset, we set K = 10 for CLEVR and K = 4 for Multi-
dSprites respectively. We stop the iteration when the KL divergences is greater
than the reduction in transmitting the residual error. In Figure 5, the first row,
the size of objects is close to 8×8, the model can stop at the correct iteration and
all the bounding boxes covers different objects, although the bounding boxes are
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less accurate. For the last row, the size of objects is much larger than 8×8. Our
model tends to infer more than the number of objects, this is due to the limited
bottleneck failing at transmitting the whole object at the first transmission. But
for those big objects, the model returns more accurate bounding boxes compared
to the first two rows. Since big objects tend to show a big error. In Figure 6, our
model does not stop after in a reasonable number of iterations. It has the same
issue as CLEVR dataset that the bounding box tends to cover parts of shapes
rather than the whole object. Also, our model cannot deal with overlap properly.
In part we attribute this failure to the weakness of the attention network which
struggles with finding bounding boxes of very different sizes.

Fig. 6: Examples of bounding boxes found on the Multi-dSprites dataset.

5 Conclusion

Information compression provides a powerful tool for recognising structure in
complex data sources. In this paper we have combined this with an information
bottleneck to produce a glimpsing network that encodes images through a series
of glimpses. By feeding the network the current residual error we can generate
a series of bounding box proposals around parts of the image with high uncer-
tainty in its reconstruction. We combine this with a VAE that can learn the
common structures within an image (e.g. objects, or rather typical residual er-
rors associated with objects). As the bounding boxes are rescaled, the structures
being learned by the VAE are translation and scale invariant. We have shown
that following these principles it is possible to train a very simple network that
has comparable performance on object detection tasks to much more complex
networks designed for multi-object detection. Our objective was to test as simple
a network as possible to prove the power of this learning paradigm.
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