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Abstract. Shapelet-based algorithms are widely used for time series
classification because of their ease of interpretation, but they are currently
outperformed by recent state-of-the-art approaches. We present a new
formulation of time series shapelets including the notion of dilation, and
we introduce a new shapelet feature to enhance their discriminative
power for classification. Experiments performed on 112 datasets show
that our method improves on the state-of-the-art shapelet algorithm,
and achieves comparable accuracy to recent state-of-the-art approaches,
without sacrificing neither scalability, nor interpretability.
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1 Introduction

Time series occur in a multitude of domains, covering a wide range of applications,
which have impacts in many parts of society. The ever-increasing quantity of
data and the publications of laws regarding models interpretability are setting
new constraints for applications across industries.

Recent research in time series classification produced highly accurate clas-
sifiers, using either deep learning approaches [10], or meta-ensemble methods
[13,18]. Despite being the most accurate approaches, they are among the slowest,
which make them hard to apply on use-cases with huge amount of data. Other
methods, based on random approaches, notably the RandOm Convolutional
KErnel Transform (ROCKET) [4], achieve comparable accuracy with extreme
scalability. Even though recent works on post-hoc methods and specific frame-
works [5] improved the interpretability of those approaches, they lack a "by
design" interpretability.

On the other hand, time series shapelets [25] have been widely used in time
series classification for their ease of interpretation, which is a critical aspect to
some application domains such as health and security. The downside is that
shapelet algorithms are often outperformed by recent approaches, both in terms
of accuracy and scalability. Most Shapelet approaches tried to solve the scalability
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issues at the expense of some classification accuracy, notably through the use
of symbolic approximation techniques [11], while others used random shapelets
[24]. Recently, a symbolic sequence ensemble learning [19] method was proposed,
which improved the predictive power of approximation-based methods, while
other work focused on finding a new discriminative feature [7] to consider during
the extraction process.

In this work, we present the Random Dilated Shapelet Transform, an adapta-
tion of time series shapelets that includes the notion of dilation, one of the core
mechanism of the success of convolutional kernel approaches. We also extend on
the work of [7] and introduce a new feature to enhance the discriminative power
of shapelets. Our contributions can be summarized as follows:

– an adaptation of time series shapelets allowing the use of dilation, and a
feature to capture a new discriminative property of shapelets,

– an interpretable, scalable and accurate shapelet algorithm, which allows
shapelet based algorithm to catch-up with the state-of-the-art,

– an experimental study about the sensitivity of our method parameters and
a comparative study against the state-of-the-art algorithms for time series
classification.

2 Background

In this section, we present a brief review of time series classification, and make
a focus on shapelet methods. From now on, we use calligraphic font (X ) to
denote a collection of elements (e.g. a set of time series), capital (X) for one
element (e.g. a time series), and lowercase (x) for a value of this element. In
this work we consider supervised classification: the ensemble of input time series
will be denoted by X = {X1, ..., Xn} with Xi = {x1, ..., xm} a time series and
Y = {y1, ..., yn} their respective classes.

2.1 Time series classification

We present a brief overview of the algorithms identified as state-of-the-art and
used in our experimental section, and we report the reader to a recent review [1]
for a more detailed view of the field.

– Shapelet Transform Classifier (STC) [2], is regarded as a state of the
art for shapelet algorithms in terms of accuracy. This algorithm iteratively
initializes new shapelets, assesses their discriminative power, and removes
those that are too similar. The goal being to maximize the discriminative
power of an ensemble of shapelets. A Rotation Forest is then applied as a
classifier.

– Temporal Dictionary Ensemble (TDE) [17] is an ensemble of dictionary-
based classifiers. It uses some variants of the BOSS classifier [20] andWEASEL
[21], as base estimators and optimizes their parameters through a Gaussian
process.
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– Diverse Representation Canonical Interval Forest Classifier (Dr-
CIF) [18], is an extension of the CIF algorithm [16]. After selecting random
intervals from different representations of the time series, it uses the Catch22
[14] method to extract a feature matrix.

– RandOm Convolutional KErnel Transform (ROCKET) [4], randomly
generates a huge set of convolutional kernels, and extracts as features the
maximum and the proportion of positive values of the convolution for each
time series and each kernel. It is followed by a Ridge classifier. An ensemble
version of this method, called ARSENAL, was introduced by [18].

– Inception-Time [10] is an ensemble of Inception networks, which introduce
Inception modules as replacement for traditional fully convolutional layers,
notably to mitigate the vanishing gradient problem.

– Hierarchical Vote Collective of Transformation-based Ensembles
(HC1) [13]is a meta-ensemble classifier using a variety of time series classifiers,
such as STC, with a novel ensemble learning scheme which estimate the
weight of each base classifier in the final decision. This estimation is based
on performance in a 10-fold validation scheme.
Variants of this method were developed, such as TS-CHIEF [22] and HC2 [18],
that both modify the set of base classifiers to improve accuracy. HC2 also
modified the meta-ensemble procedure, using a Out-Of-Bag estimate instead
of a 10-fold validation to estimate the performance of each base classifier,
which improved scalability compared to HC1.

2.2 Shapelets

Shapelets [25] were originally defined as time series subsequences representative
of class membership. In the following, we define a shapelet S as a vector S =
{s1, ..., sl} with l its length. All shapelet-based algorithms have the same protocol
to extract features from a shapelet S and a time series X = {x1, ..., xm}, by
using a distance vector f(S,X) = {f1, ..., fm−(l−1)} defined as :

fi =

√√√√ l∑
j=1

(Xi+(j−1) − sj)2 (1)

In this definition, a point fi is simply the Euclidean distance between S and
the subsequence of length l starting at index i in X. The minimum value of
f(S,X) is then extracted as a feature, which can be interpreted as an indicator
of the presence of the pattern represented by S in X. A popular variant of this
distance function consists in using a z-normalized Euclidean distance, where
S and all subsequences of X are z-normalized independently, allowing to add
scale invariance to the translation invariance of the initial formulation. Then,
as presented in the Shapelet Transform [12], by using a set of shapelets S, one
can then transform an ensemble of time series X into a feature matrix of shape
(|X |, |S|), and use it as input in a non-temporal classifier such as a decision tree.
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The step of generating and selecting shapelet candidates is the main difference
between most approaches. In order to speed up the exhaustive search, Fast
Shapelet [11] use input discretization, while Ultra Fast Shapelet [24] use random
sampling. FLAG [8] build shapelets location indicators from the data to reduce
the set of admissible candidates, and GENDIS [23] use an evolutionary algorithm
initialized by a clustering on the set of possible candidates. Learning Time Series
Shapelet [6] use a gradient-descent optimization that iteratively change the
values of a set of shapelets. MrSEQL [19], while not strictly speaking a shapelet
algorithm, searches for discriminative symbolic sequences in a variety of symbolic
representations of the inputs.

Since the publication of Localized Random Shapelet (LRS) [7], which showed
the benefit of extracting argmin d(S,X) to discriminate time series based on the
location of the minimum between S and X, it has been included in most recent
approaches. Based on their results, we will also use this feature in our method.

3 Proposed method

In this section, we introduce the main components of our method: the use of
dilation in the shapelet formulation and the features extracted from the distance
vector between a shapelet and a time series. We put emphasis on the dilation
and on the Shapelet Occurrence feature that are new contributions to shapelet
algorithms. We give some simple visual examples to illustrate these notions, and
report the visualization on real data to the experimental section.

3.1 Dilated Shapelets

To introduce the notion of dilation in shapelets, we define now a shapelet S as
S = {{v1, ..., vl}, d} with l the length parameter and d the dilation parameter.
In practice, the dilation is used in the distance function f , where each value of
the shapelet will be compared to a dilated subsequence of the input time series.
More formally, consider a time series X = {x1, ..., xm} and a dilated shapelet S,
we now define f(S,X) = {f1, ..., fm−(l−1)×d} as :

fi =

√√√√ l∑
j=1

(Xi+(j−1)×d − sj)2 (2)

The interest of using dilation in shapelets is to make them non-contiguous
subsequences. It allows a shapelet to either match a non-contiguous pattern, or
a contiguous one, by focusing on key points of the pattern without covering it
entirely, as illustrated in Figure 1. Note that this formulation is equivalent to the
original shapelet formulation when d = 1.

3.2 Shapelet Occurrence feature

If we consider a shapelet S and two time series X1 and X2, we can imagine
multiple ways of discriminating X1 and X2 using S.
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Fig. 1. An example of two possible shapelets (in orange), positioned on a synthetic
pattern (in blue): (a) one without dilation, and (b) a much smaller one but with dilation

– S can be present in X1 but not in X2. This is captured by min f(S,Xi),
with smaller distances indicating better matches between the shapelet and
the series.

– S can be present in both series, but not at the same place. This is captured
by the argmin feature introduced by LRS [7].

– S can be present in both series, but not at the same scale. In this case, a
normalized distance would not be able to discriminate the series.

– S can be present in both series, but occurs a different number of times in
X1 compared to X2. This is captured by a new feature, called Shapelet
Occurrence (SO).

Those points are illustrated in Figure 2. Deciding whether scaling is important
or not is highly dependent on the application, but without prior knowledge, one
cannot know which to choose. For this reason, we introduce a parameter in
Section 3.3 allowing to tune the amount of normalized shapelets.

Fig. 2. Synthetic examples of possible discriminative properties between two classes

To the best of our knowledge, the number of occurrences of a shapelet has
never been considered as a feature. This requires another modification to the
definition of S as S = {{v1, ..., vl}, d, λ}, with λ a threshold allowing us to
compute the Shapelet Occurrence (SO) feature as SO = |{i|f(S,X)i < λ}|.
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Although the parameter λ could be set randomly, we discuss in Section 3.3 a
method to set the value of this threshold.

3.3 Random Dilated Shapelet Transform (RDST)

Our objective for this algorithm is to produce an accurate but scalable approach.
As our shapelet formulation adds attributes compared to the initial formulation
[25], optimizing a set of dilated shapelets with a threshold λ will be costly, and
this explains why we choose a random approach.

For simplicity, we present our approach in the context of univariate and even
length time series, with X = {X1, ..., Xn} a set of time series (Xi = {x1, ..., xm})
and Y = {y1, ..., yn} their respective classes. Our method takes as input four
parameters that are: n_shapelets the number of shapelets to generate, L a set
of possible lengths for the shapelets, p_norm the proportion of shapelets that
will use z-normalization, and (P1, P2) ∈ [0, 100] a pair used as percentile bounds
for the sampling of the threshold λ.

Given the definition of a shapelet S = {{v1, ..., vl}, d, λ}, we initialize each
parameter as follows:

– the length l is uniformly drawn from L,
– the dilation d, in the same way as ROCKET [4], is set to d = b2xc with x

uniformly drawn in [0, log2
m
l ],

– we randomly choose whether the shapelet will use a z-normalized distance
with probability p_norm,

– for setting the values, a sample X is uniformly drawn from X , and an
admissible start point i (given l, d) is randomly selected. Then, values are set
to [Xi, ..., Xi+(l−1)×d].

– finally, given a shapelet S, to fix the value of λ, we take a sample X from the
same class as the one used for extracting the shapelet value, and uniformly
draw a value between the two percentiles (P1, P2) of f(S,X).

The strategy employed to find λ is a classic trade-off between time and
accuracy. If scalability was not a focus, we could compute the distance vector for
more samples in X , and optimize the value of λ based on an information measure.
After computing the distance vector between all pairs of time series and shapelets,
the output of our method is a feature matrix of size (|X |, 3 × n_shapelets),
with the three features extracted from the distance vector f(S,X) being the
min, argmin, SO(S,X).

Following the arguments of the authors of ROCKET [4], we use a Ridge
Classifier after the transformation of X , as the L2 regularization used in Ridge
is of critical importance due to the high number of features that are generated,
while being scalable and interpretable.

4 Experiments

Our focus in this section is to study the influence of the four parameters of our
method on classification accuracy, as well as comparing its performance to recent
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state-of-the-art approaches. All the experiments were run on a DELL PowerEdge
R730 on Debian 9 with 2 XEON E5-2630 Corei7 (92 cores) and 64GB of RAM.
We provide a python package3 using community standards to run the method
and the interpretability tool on any dataset, along with all result tables, and
reproducibility instructions for our experiments.

In the following, we use the 112 univariate datasets from the UCR archive
[3] and when comparing to state-of-the-art results, we use the same resamples
scheme as the one used in their experiments. We use critical difference diagrams
to display the mean ranks of objects, with cliques (formed by horizontal bars)
computed using the Wilcoxon-Holm post-hoc analysis [9], with a p-value of 0.05.
A clique indicates that the accuracy difference between objects is not statistically
significant.

4.1 Sensitivity Analysis

We conduct a sensitivity analysis on the four input parameters of our algorithm
and their effect on classification accuracy on 40 datasets selected randomly, with
raw results and selected datasets in a specific file in the online repository. For each
parameter analysis, all other parameters remain fixed at the following default
values : n_shapelets = 10000, p_norm = 0.9, L = [7, 9, 11], P1 = 5 and P2 = 15.
Figure 3 and Figure 4 give the mean accuracy ranks of each method over the 40
datasets, with the accuracy of each method and each dataset computed as the
mean of the same 10 resamples. Given the tested set of values, the most impactful
parameter is the number of shapelets, with a noticeable increase in performance
above 10000 shapelets. All other parameters only display minor gains and thus
seem to be stable. Based on those results, for all further experiments we set as
default parameters n_shapelets = 10000, p_norm = 0.8, L = [11] and P1 = 5,
P2 = 10, and report results for datasets used in sensitivity analysis and the
others.

Fig. 3. Accuracy ranks for (a) different number of shapelets, and (b) different shapelet
lengths

3 https://github.com/baraline/convst
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Fig. 4. Accuracy ranks for (a) different percentiles bounds, and (b) proportion of
z-normalized shapelets

4.2 Scalability

We perform a comparison of the scalability of our approach against Hive-Cote
1.0 (HC1), Hive-Cote 2.0 (HC2), DrCIF, ROCKET, and the Shapelet Transform
Classifier (STC). Note that when used as a component in HC1 and HC2, STC
is by default subject to a time contract of two hours. Except from this default
configuration in HC1 and HC2, we are not setting any time contract in other
algorithms. Both STC and RDST are by default sampling 10000 shapelets, and
ROCKET use 10000 kernels.

We are aware that the runtime of HC1, HC2 and STC could be reduced with
time contracts. But, as our goal in this section is to contextualize the gain in
classification accuracy against the time complexity of each method, we present
the results with the time contracts used to generate the accuracy results of the
next section.

We use the Crop Dataset and the Rock Dataset of the UCR archive for
evaluating the scalability respectively on the number of time series and their
length. As all competing algorithms implemented in the sktime package of [15]
can use parallel processing, we set each algorithm to use 90 cores. Figure 5
reports the mean training time over 10 resamples, showing the very competitive
scalability of RDST. Note that due to job time limitation on our machine and
the computational cost of HC2, we could not consider all samples for the Crop
dataset. We report the reader interested in the implementation details of our
algorithm to the web page of the project.

4.3 Comparative study

We present the results of our comparative study using the mean accuracy over the
same 30 resamples for each of the 112 datasets as HC2 [18] used in their study,
and compare our approach against their experimental result. Figure 6 gives the
mean accuracy rank of each method over the 40 datasets used for setting the
defaults parameters in sensitivity analysis, and for the 72 others. The full result
tables including standard deviation per dataset and more visualizations of the
results are available online as supplementary materials.

Given the scalability and simplicity of our method, having an accuracy
comparable to the prior developments of HC2 and to deep learning approaches
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Fig. 5. Result of the scalability study of the competing algorithms for current state-of-
the-art, for (a) number of time series and (b) time series length. Y-axis use log-scale.

Fig. 6. Mean accuracy ranks of each method for the 40 dataset used in sensitivity
analysis and the 72 others.

is a very promising result. Notably for future developments where focus would
shift to accuracy rather than scalability. For reference, using RDST without any
distance normalization is equivalent to STC in terms of mean accuracy rank,
with the same protocol as above.

4.4 Interpretability

Given a set of M shapelets, RDST generates 3M features. Each feature is linked
to a weight for each class in the Ridge classifier, as it is trained in a one-vs-all
fashion. Given a class, we can then visualize either global or local information.
Locally, we can inspect a shapelet to show how it discriminates the current class,
and where the shapelet is positioned with either training or testing data, as
shown in Figure 7. Globally, we can display the distribution of weights for each
feature type (min, argmin and SO) or by shapelet characteristics such as length,
dilation, or use of normalization as shown in Figure 8. While this only provides a
basic interpretation of the results, we believe a more formal framework could be
developed to extract explanations from this data.
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Fig. 7. The most important shapelet for class 0 of the Coffee dataset, according to
weights of the Ridge classifier, with distribution displayed on the testing data, and two
testing samples for visualization.

Fig. 8. A global interpretation of RDST, with (a) distribution of weights for each type
of feature, and (b) distribution of weights per dilation.

5 Conclusions and future work

The Random Dilated Shapelet Transform introduces new ways of increasing the
global performance of shapelet algorithms, notably through the use of dilation,
allowing the use of small non-contiguous subsequences as shapelets, efficiently
covering areas of interest in the data. We have shown in our experiments that
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this new method improves on the state-of-the-art for shapelet algorithms with
a good scalability compared to most of the approaches. This work offers many
perspectives for future work, notably a generalized version to process uneven
length or multivariate time series, as well as modifications of the shapelet genera-
tion process to better leverage class information. A more formal explainability
framework is also one of our main priorities with this work, since being able to
extract clear and visual explanations for domain experts is an extremely desirable
property.
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