Skip to main content

Progressive and Efficient Verification for Digital Signatures

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13269))

Abstract

Digital signatures are widely deployed to authenticate the source of incoming information, or to certify data integrity. Common signature verification procedures return a decision (accept/reject) only at the very end of the execution. If interrupted prematurely, however, the verification process cannot infer any meaningful information about the validity of the given signature. We notice that this limitation is due to the algorithm design solely, and it is not inherent to signature verification.

In this work, we provide a formal framework to handle interruptions during signature verification. In addition, we propose a generic way to devise alternative verification procedures that progressively build confidence on the final decision. Our transformation builds on a simple but powerful intuition and applies to a wide range of existing schemes considered to be post-quantum secure including the NIST finalist Rainbow.

While the primary motivation of progressive verification is to mitigate unexpected interruptions, we show that verifiers can leverage it in two innovative ways. First, progressive verification can be used to intentionally adjust the soundness of the verification process. Second, progressive verifications output by our transformation can be split into a computationally intensive offline set-up (run once) and an efficient online verification that is progressive.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Here \(\mathsf{pk}\) denotes a public verification key output by \(\mathsf{KeyGen}\).

References

  1. Armknecht, F., Walther, P., Tsudik, G., Beck, M., Strufe, T.: Promacs: progressive and resynchronizing macs for continuous efficient authentication of message streams. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, pp. 211–223 (2020)

    Google Scholar 

  2. Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on outsourced data. In: 2013 ACM SIGSAC CCS, pp. 863–874. ACM (2013)

    Google Scholar 

  3. Bernstein, D.J.: A secure public-key signature system with sxtremely fast verification

    Google Scholar 

  4. Beullens, W., Szepieniec, A., Vercauteren, F., Preneel, B.: Luov: signature scheme proposal for NIST PQC project (2019)

    Google Scholar 

  5. Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields and new tools for lattice-based signatures. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_1

  6. Boschini, C., Fiore, D., Pagnin, E.: Progressive and efficient verification for digital signatures. Cryptology ePrint Archive, 2021/832 (2021)

    Google Scholar 

  7. Boyen, X.: Lattice mixing and vanishing trapdoors: a framework for fully secure short signatures and more. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7_29

    Chapter  Google Scholar 

  8. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_27

  9. Catalano, D., Fiore, D., Warinschi, B.: Homomorphic signatures with efficient verification for polynomial functions. In: Advances in Cryptology - CRYPTO (2014)

    Google Scholar 

  10. Ding, J., Chen, M.-S., Petzoldt, A., Schmidt, D., Yang, B.-Y.: Rainbow. https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions. Accessed 21 Sept 2020

  11. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 164–175. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137_12

  12. Fiore, D., Mitrokotsa, A., Nizzardo, L., Pagnin, E.: Multi-key homomorphic authenticators. In: ASIACRYPT (2016)

    Google Scholar 

  13. Fischlin, M.: Progressive verification: the case of message authentication. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 416–429. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24582-7_31

  14. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourcing computation to untrusted workers. In: CRYPTO (2010)

    Google Scholar 

  15. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: ACM STOC (2008)

    Google Scholar 

  16. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signatures from standard lattices. In: STOC, pp. 469–477. ACM (2015)

    Google Scholar 

  17. Lamport, L.: Constructing digital signatures from a one-way function. Technical report, Technical Report CSL-98. SRI International (1979)

    Google Scholar 

  18. Le, D.V., Kelkar, M., Kate, A.: Flexible signatures: making authentication suitable for real-time environments. In: ESORICS. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29959-0_9

  19. Loveless, A., Dreslinski, R., Kasikci, B., Phan, L.T.X.: Igor: accelerating byzantine fault tolerance for real-time systems with eager execution. In: IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS) (2021)

    Google Scholar 

  20. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: EUROCRYPT (2012)

    Google Scholar 

  21. Plantard, T., Sipasseuth, A., Dumondelle, C., Susilo, W.: DRS: diagonal dominant reduction for lattice-based signature. In: PQC Standardization Conference (2018)

    Google Scholar 

  22. Sipasseuth, A., Plantard, T., Susilo, W.: Using Freivalds’ algorithm to accelerate lattice-based signature verifications. In: ISPEC. Springer, Cham (2019)

    Google Scholar 

  23. Taleb, A.R., Vergnaud, D.: Speeding-up verification of digital signatures. J. Comput. Syst. Sci. (2020)

    Google Scholar 

  24. Wang, Q., Khurana, H., Huang, Y., Nahrstedt, K.: Time valid one-time signature for time-critical multicast data authentication. In: IEEE INFOCOM (2009)

    Google Scholar 

Download references

Acknowledgments

This work was partly funded by: ELLIIT, the Swedish Foundation for Strategic Research (RIT17-0035), the Swiss National Science Foundation under the SNSF project number 182452 and the Postdoc.Mobility grant number 203075, the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program under project PICOCRYPT (grant agreement No. 101001283), by the Spanish Government under projects SCUM (ref. RTI2018-102043-B-I00), CRYPTOEPIC (ref. EUR2019-103816), and RED2018-102321-T, and by the Madrid Regional Government under project BLOQUES (ref. S2018/TCS-4339). Part of this work was made while C.B. was at IBM Research - Zurich (CH) and visiting the University of Aarhus (DK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Pagnin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boschini, C., Fiore, D., Pagnin, E. (2022). Progressive and Efficient Verification for Digital Signatures. In: Ateniese, G., Venturi, D. (eds) Applied Cryptography and Network Security. ACNS 2022. Lecture Notes in Computer Science, vol 13269. Springer, Cham. https://doi.org/10.1007/978-3-031-09234-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09234-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09233-6

  • Online ISBN: 978-3-031-09234-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics