Skip to main content

Augment Small Training Sets Using Matching-Graphs

  • Conference paper
  • First Online:
Pattern Recognition and Artificial Intelligence (ICPRAI 2022)

Abstract

Both data access and data acquisition have become increasingly easy over the past decade, leading to rapid developments in many areas of intelligent information processing. In many cases, the underlying data is complex, making vectorial structures rather inappropriate for data representation. In these cases graphs provide a versatile alternative to purely numerical approaches. Regardless the representation formalism actually used, it is inevitable for supervised pattern recognition algorithms to have access to large sets of labeled training samples. In some cases, however, this requirement cannot be met because the set of labeled samples is inherently limited. In a recent research project a novel encoding of pairwise graph matchings is introduced. The basic idea of this encoding is to formalize the stable cores of pairs of patterns by means of graphs, termed matching-graphs. In the present paper we propose a novel scenario for the use of these matching-graphs. That is, we employ them to enlarge small training sets of graphs in order to stabilize the training of a classifier. In an experimental evaluation on four graph data sets we show that this novel augmentation technique improves the classification accuracy of an SVM classifier with statistical significance.

Supported by Swiss National Science Foundation (SNSF) Project Nr. 200021\(\_\)188496.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets.

  2. 2.

    The statistical significance is computed via Z-test using a significance level of \(\alpha = 0.05\).

References

  1. Banko, M., Brill, E.: Mitigating the paucity-of-data problem: exploring the effect of training corpus size on classifier performance for natural language processing. In: Proceedings of the First International Conference on Human Language Technology Research, HLT 2001, San Diego, California, USA, 18–21 March 2001. Morgan Kaufmann (2001). https://aclanthology.org/H01-1052/

  2. Battistone, F., Petrosino, A.: TGLSTM: a time based graph deep learning approach to gait recognition. Pattern Recogn. Lett. 126, 132–138 (2019). https://doi.org/10.1016/j.patrec.2018.05.004, https://www.sciencedirect.com/science/article/pii/S0167865518301703. Robustness, Security and Regulation Aspects in Current Biometric Systems

  3. Borgwardt, K.M., Ghisu, M.E., Llinares-López, F., O’Bray, L., Rieck, B.: Graph Kernels: state-of-the-art and future challenges. Found. Trends Mach. Learn. 13(5–6), 24–94 (2020). https://doi.org/10.1561/2200000076

  4. Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recognition. Pattern Recogn. Lett. 1(4), 245–253 (1983). https://doi.org/10.1016/0167-8655(83)90033-8

  5. Carletti, V., Gaüzère, B., Brun, L., Vento, M.: Approximate graph edit distance computation combining bipartite matching and exact neighborhood substructure distance. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015. LNCS, vol. 9069, pp. 188–197. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18224-7_19

  6. Chen, X., Huo, H., Huan, J., Vitter, J.S.: Fast computation of graph edit distance. CoRR abs/1709.10305 (2017). http://arxiv.org/abs/1709.10305

  7. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. Int. J. Pattern Recogn. Artif. Intell. 18(3), 265–298 (2004). https://doi.org/10.1142/S0218001404003228

  8. Fuchs, M., Riesen, K.: Matching of matching-graphs - a novel approach for graph classification. In: 25th International Conference on Pattern Recognition, ICPR 2020, Virtual Event/Milan, Italy, 10–15 January 2021, pp. 6570–6576. IEEE (2020). https://doi.org/10.1109/ICPR48806.2021.9411926

  9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, San Francisco (1979)

    Google Scholar 

  10. Ghosh, S., Ghosh, S., Kumar, P., Scheme, E., Roy, P.P.: A novel spatio-temporal Siamese network for 3D signature recognition. Pattern Recogn. Lett. 144, 13–20 (2021). https://doi.org/10.1016/j.patrec.2021.01.012, https://www.sciencedirect.com/science/article/pii/S0167865521000258

  11. Helma, C., King, R.D., Kramer, S., Srinivasan, A.: The predictive toxicology challenge 2000–2001. Bioinformatics 17(1), 107–108 (2001). https://doi.org/10.1093/bioinformatics/17.1.107

  12. Jelinek, F.: Some of my best friends are linguists. Lang. Resour. Eval. 39(1), 25–34 (2005). https://doi.org/10.1007/s10579-005-2693-4

  13. Kenning, M., Deng, J., Edwards, M., Xie, X.: A directed graph convolutional neural network for edge-structured signals in link-fault detection. Pattern Recogn. Lett. 153, 100–106 (2022). https://doi.org/10.1016/j.patrec.2021.12.003, https://www.sciencedirect.com/science/article/pii/S016786552100430X

  14. Li, Z., Shao, H., Niu, L., Xue, N.: Progressive learning algorithm for efficient person re- identification. In: 25th International Conference on Pattern Recognition, ICPR 2020, Virtual Event/Milan, Italy, 10–15 January 2021, pp. 16–23. IEEE (2020). https://doi.org/10.1109/ICPR48806.2021.9413306

  15. Madi, K., Paquet, E., Kheddouci, H.: New graph distance for deformable 3D objects recognition based on triangle-stars decomposition. Pattern Recogn. 90, 297–307 (2019). https://doi.org/10.1016/j.patcog.2019.01.040, https://www.sciencedirect.com/science/article/pii/S0031320319300627

  16. Neuhaus, M., Bunke, H.: Bridging the Gap between Graph Edit Distance and Kernel Machines, Series in Machine Perception and Artificial Intelligence, vol. 68. WorldScientific (2007). https://doi.org/10.1142/6523

  17. Pereira, F., Norvig, P., Halevy, A.: The unreasonable effectiveness of data. IEEE Intell. Syst. 24(02), 8–12 (2009). https://doi.org/10.1109/MIS.2009.36

  18. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image Vis. Comput. 27(7), 950–959 (2009). https://doi.org/10.1016/j.imavis.2008.04.004

  19. Riesen, K., Bunke, H.: Classification and clustering of vector space embedded graphs. In: Emerging Topics in Computer Vision and Its Applications, pp. 49–70. World Scientific (2012). https://doi.org/10.1142/9789814343008_0003

  20. Sanfeliu, A., Fu, K.: A distance measure between attributed relational graphs for pattern recognition. IEEE Trans. Syst. Man Cybern. 13(3), 353–362 (1983). https://doi.org/10.1109/TSMC.1983.6313167

  21. Schoneveld, L., Othmani, A., Abdelkawy, H.: Leveraging recent advances in deep learning for audio-visual emotion recognition. Pattern Recogn. Lett. 146, 1–7 (2021). https://doi.org/10.1016/j.patrec.2021.03.007, https://www.sciencedirect.com/science/article/pii/S0167865521000878

  22. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6, 60 (2019). https://doi.org/10.1186/s40537-019-0197-0

  23. Singh, S., Steiner, B., Hegarty, J., Leather, H.: Using graph neural networks to model the performance of deep neural networks. CoRR abs/2108.12489 (2021). https://arxiv.org/abs/2108.12489

  24. Stauffer, M., Tschachtli, T., Fischer, A., Riesen, K.: A survey on applications of bipartite graph edit distance. In: Foggia, P., Liu, C.-L., Vento, M. (eds.) GbRPR 2017. LNCS, vol. 10310, pp. 242–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58961-9_22

  25. Sutherland, J.J., O’Brien, L.A., Weaver, D.F.: Spline-fitting with a genetic algorithm: a method for developing classification structure-activity relationships. J. Chem. Inf. Comput. Sci. 43(6), 1906–1915 (2003). https://doi.org/10.1021/ci034143r

  26. Wale, N., Watson, I.A., Karypis, G.: Comparison of descriptor spaces for chemical compound retrieval and classification. Knowl. Inf. Syst. 14(3), 347–375 (2008). https://doi.org/10.1007/s10115-007-0103-5

  27. Zhao, T., Liu, Y., Neves, L., Woodford, O.J., Jiang, M., Shah, N.: Data augmentation for graph neural networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, 2–9 February 2021, pp. 11015–11023. AAAI Press (2021). https://ojs.aaai.org/index.php/AAAI/article/view/17315

  28. Zhou, J., Shen, J., Yu, S., Chen, G., Xuan, Q.: M-evolve: structural-mapping-based data augmentation for graph classification. IEEE Trans. Netw. Sci. Eng. 8(1), 190–200 (2021). https://doi.org/10.1109/TNSE.2020.3032950

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Fuchs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fuchs, M., Riesen, K. (2022). Augment Small Training Sets Using Matching-Graphs. In: El Yacoubi, M., Granger, E., Yuen, P.C., Pal, U., Vincent, N. (eds) Pattern Recognition and Artificial Intelligence. ICPRAI 2022. Lecture Notes in Computer Science, vol 13364. Springer, Cham. https://doi.org/10.1007/978-3-031-09282-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09282-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09281-7

  • Online ISBN: 978-3-031-09282-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics