Skip to main content

Early Detection and Classification of Patient-Ventilator Asynchrony Using Machine Learning

  • Conference paper
  • First Online:
Book cover Artificial Intelligence in Medicine (AIME 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13263))

Included in the following conference series:

  • 1652 Accesses

Abstract

During mechanical ventilation, a common problem known as patient-ventilator asynchrony (PVA) occurs when there is a mismatch between the needs of the patient’s breathing and the breath cycle delivered by the ventilator. PVA is problematic because it can be associated with adverse effects such as discomfort for the patient, increased work of breathing, longer mechanical ventilation duration and ventilator-induced lung injury. An automated means of early PVA detection and classification could lead to improved health outcomes and help reduce the impact of PVA on hospital resources. This paper presents a machine learning framework to detect PVA events using only the first half second of data after the start of a PVA event. When trained on more than 5000 PVA events sampled from 25 subjects, our logistic classifier achieves a sensitivity (specificity) of 99.81% (99.72%) for detecting PVA events. We then present a system capable of early classification of Ineffective Effort (IE) and Double Trigger (DT) events, which achieves a sensitivity (specificity) of 63.73% (92.88%). By demonstrating the feasibility of early PVA event detection and classification, our findings suggest that more effective intervention processes could be possible, including automated interventions with different response strategies for different PVA event types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murias, G., Lucangelo, U., Blanch, L.: Patient-ventilator asynchrony. Curr. Opin. Crit. Care 22(1), 53–59 (2016). https://doi.org/10.1097/MCC.0000000000000270

    Article  Google Scholar 

  2. Chang, D.W.: Clinical Application of Mechanical Ventilation. Cengage Learning (2013)

    Google Scholar 

  3. Daugherty, E.L., Branson, R., Rubinson, L.: Mass casualty respiratory failure. Curr. Opin. Crit. Care 13(1), 51–56 (2007)

    Article  Google Scholar 

  4. Ge, H., et al.: Lung mechanics of mechanically ventilated patients with COVID-19: analytics with high-granularity ventilator waveform data. Front. Med. 7, 541 (2020)

    Article  Google Scholar 

  5. Sassoon, C.S., Foster, G.T.: Patient-ventilator asynchrony. Curr. Opin. Crit. Care 7(1), 28–33 (2001). https://doi.org/10.1097/00075198-200102000-00005

    Article  Google Scholar 

  6. Epstein, S.K.: How often does patient-ventilator asynchrony occur and what are the consequences? Respir. Care 56(1), 25–38 (2011). https://doi.org/10.4187/respcare.01009

    Article  Google Scholar 

  7. Wrigge, H., Girrbach, F., Hempel, G.: Detection of patient-ventilator asynchrony should be improved: and then what? J. Thorac. Dis. 8(12), E1661–E1664 (2016). https://doi.org/10.21037/jtd.2016.12.101

    Article  Google Scholar 

  8. Arellano, D.H.: Identifying patient-ventilator asynchrony using waveform analysis. Palliat. Med. Care: Open Access 4(4), 1–4 (2017). https://doi.org/10.15226/2374-8362/4/4/00147

    Article  MathSciNet  Google Scholar 

  9. Fulcher, B.D., Jones, N.S.: Highly comparative feature-based time-series classification. IEEE Trans. Knowl. Data Eng. 26(12), 3026–3037 (2014). https://doi.org/10.1109/tkde.2014.2316504

    Article  Google Scholar 

  10. Mulqueeny, Q., Ceriana, P., Carlucci, A., Fanfulla, F., Delmastro, M., Nava, S.: Automatic detection of ineffective triggering and double triggering during mechanical ventilation. Intensive Care Med. 33(11), 2014–2018 (2007). https://doi.org/10.1007/s00134-007-0767-z

    Article  Google Scholar 

  11. Chen, C.-W., Lin, W.-C., Hsu, C.-H., Cheng, K.-S., Lo, C.-S.: Detecting ineffective triggering in the expiratory phase in mechanically ventilated patients based on airway flow and pressure deflection: Feasibility of using a computer algorithm*. Crit. Care Med. 36(2), 455–461 (2008). https://doi.org/10.1097/01.ccm.0000299734.34469.d9

    Article  Google Scholar 

  12. Cuvelier, A., Achour, L., Rabarimanantsoa, H., Letellier, C., Muir, J.-F., Fauroux, B.: A noninvasive method to identify ineffective triggering in patients with noninvasive pressure support ventilation. Respiration 80(3), 198–206 (2010). https://doi.org/10.1159/000264606

    Article  Google Scholar 

  13. Yu, K.H., Beam, A.L., Kohane, I.S.: Artificial intelligence in healthcare. Nat. Biomed. Eng. 2(10), 719–731 (2018). https://doi.org/10.1038/s41551-018-0305-z

    Article  Google Scholar 

  14. Gholami, B., et al.: Replicating human expertise of mechanical ventilation waveform analysis in detecting patient-ventilator cycling asynchrony using machine learning. Comput. Biol. Med. 97, 137–144 (2018). https://doi.org/10.1016/j.compbiomed.2018.04.016

    Article  Google Scholar 

  15. Rehm, G., et al.: Creation of a robust and generalizable machine learning classifier for patient ventilator asynchrony. Methods Inf. Med. 57(04), 208–219 (2018). https://doi.org/10.3414/me17-02-0012

    Article  Google Scholar 

  16. Zhang, L., et al.: Detection of patient-ventilator asynchrony from mechanical ventilation waveforms using a two-layer long short-term memory neural network. Comput. Biol. Med. 120, 103721 (2020). https://doi.org/10.1016/j.compbiomed.2020.103721

    Article  Google Scholar 

  17. Ching, T., et al.: Opportunities and obstacles for deep learning in biology and medicine: 2019 update (2019)

    Google Scholar 

  18. Quinn, T.P., Jacobs, S., Senadeera, M., Le, V., Coghlan, S.: The three ghosts of medical AI: can the black-box present deliver? Artif. Intell. Med. 124, 102158 (2021). https://doi.org/10.1016/j.artmed.2021.102158

    Article  Google Scholar 

  19. Mulqueeny, Q., et al.: Automated detection of asynchrony in patient-ventilator interaction. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5324–5327. IEEE, September 2009

    Google Scholar 

  20. Wang, C., Aickelin, U., Luo, L., Ristanoski, G.: Patient-ventilator asynchrony detection via similarity search methods. In: ICMHI 2021 Proceeding, vol. 13, no. 1, pp. 15–20. ACM Press (2021). https://doi.org/10.12720/jait.13.1.15-20

  21. Fulcher, B.D., Little, M.A., Jones, N.S.: Highly comparative time-series analysis: the empirical structure of time series and their methods. J. R. Soc. Interface 10(83), 20130048 (2013). https://doi.org/10.1098/rsif.2013.0048

    Article  Google Scholar 

  22. Hannan, L.M., et al.: Randomised controlled trial of polysomnographic titration of noninvasive ventilation. Eur. Respiratory J. 53(5), 1802118 (2019). https://doi.org/10.1183/13993003.02118-2018

    Article  Google Scholar 

  23. Thille, A.W., Rodriguez, P., Cabello, B., Lellouche, F., Brochard, L.: Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 32(10), 1515–1522 (2006). https://doi.org/10.1007/s00134-006-0301-8

    Article  Google Scholar 

  24. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  25. Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

    Book  MATH  Google Scholar 

  26. De Wit, M., Miller, K.B., Green, D.A., Ostman, H.E., Gennings, C., Epstein, S.K.: Ineffective triggering predicts increased duration of mechanical ventilation*. Crit. Care Med. 37(10), 2740–2745 (2009). https://doi.org/10.1097/ccm.0b013e3181a98a05

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Erdi Gao or Goce Ristanoski .

Editor information

Editors and Affiliations

Appendix - Description of Signals

Appendix - Description of Signals

Signal name

Description

Oximetry

Blood oxygen levels, displayed as a percentage

PtcCO2

Transcutaneous carbon dioxide

Leak - Tx

Air leakage from NIV mask

Pos

Body position sensor: back-supine, front-prone, sides-left and right

Light

Environmental light sensor (lights “on” or “off”)

Pmask

NIV mask pressure signal

Thor

Breathing effort detected by respiratory belt placed over thoracic region

Abdo

Breathing effort detected by respiratory belt placed over abdominal region

Flow - Tx

Airflow through nasal prongs

DB Meter

Decibel meter to detect snoring

ECG+ECG-

Cardiac activity and heart rate

EMGs+- EMGs-

Electromyogram - electrodes placed on both sides of the jaw (bilateral masseter muscles) to detect clenching of the jaw (bruxism) during sleep

E1

Picks up eye muscle movement (E1 and E2). Electrode placed on outer corner of left eye

E2

Electrode placed on outer corner of right eye

F4-M1

Electrode placed on right side of head over the frontal area. Note: M1 refers to reference electrode placed over left mastoid bone area behind the left ear

C4-M1

Electrode placed on right side of the head, centrally

O2-M1

Electrode place on right side of the head, towards the lower back

dEMG+-dEMG-

Electromyogram - electrodes placed over diaphragm area

atEMG/L_T3-atEMG

Electromyogram - electrodes placed on left anterior tibialis muscle on the shin to detect periodic limb movement (PLM) during sleep

atEMG/R_T4-atEMG

Electromyogram-electrodes placed on right anterior tibialis muscle on the shin to detect PLM during sleep

Nasal pressure

Pressure signal derived from nasal prongs

  1. Source: Austin PSG Studies Team

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, E., Ristanoski, G., Aickelin, U., Berlowitz, D., Howard, M. (2022). Early Detection and Classification of Patient-Ventilator Asynchrony Using Machine Learning. In: Michalowski, M., Abidi, S.S.R., Abidi, S. (eds) Artificial Intelligence in Medicine. AIME 2022. Lecture Notes in Computer Science(), vol 13263. Springer, Cham. https://doi.org/10.1007/978-3-031-09342-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09342-5_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09341-8

  • Online ISBN: 978-3-031-09342-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics