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Abstract. The COVID-19 pandemic is continuously evolving with dras-
tically changing epidemiological situations which are approached with
different decisions: from the reduction of fatalities to even the selection
of patients with the highest probability of survival in critical clinical sit-
uations. Motivated by this, a battery of mortality prediction models with
different performances has been developed to assist physicians and hos-
pital managers. Logistic regression, one of the most popular classifiers
within the clinical field, has been chosen as the basis for the generation
of our models. Whilst a standard logistic regression only learns a single
model focusing on improving accuracy, we propose to extend the pos-
sibilities of logistic regression by focusing on sensitivity and specificity.
Hence, the log-likelihood function, used to calculate the coefficients in
the logistic model, is split into two objective functions: one represent-
ing the survivors and the other for the deceased class. A multi-objective
optimization process is undertaken on both functions in order to find
the Pareto set, composed of models not improved by another model in
both objective functions simultaneously. The individual optimization of
either sensitivity (deceased patients) or specificity (survivors) criteria
may be conflicting objectives because the improvement of one can im-
ply the worsening of the other. Nonetheless, this conflict guarantees the
output of a battery of diverse prediction models. Furthermore, a spe-
cific methodology for the evaluation of the Pareto models is proposed.
As a result, a battery of COVID-19 mortality prediction models is ob-
tained to assist physicians in decision-making for specific epidemiological
situations.
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1 Introduction

The entire world has been paralyzed due to a virus, COVID-19, with unusually
high levels of mortality and transmission. As of 10 January 2022, the numbers
are still rising, with around 290 million infections and 5.5 million deaths since the
beginning of the pandemic [1]. The fear and bewilderment experienced during
the first months motivated researchers from all over the world to provide valuable
information in the fight against COVID-19. The need to anticipate and correctly
identify an early prognosis became an urgent challenge. Artificial intelligence
through machine learning (ML) was the perfect tool to address this problem.

From the multitude of papers published, Wynants et al. [9] developed a
review and critical appraisal of prediction models for diagnosis and prognosis of
COVID-19. Out of the hundreds of models collected, only the contributions of
Yann et al. [10] and Knight et al. [7] were identified as clinically relevant. Yann et
al. [10] proposed a mortality model trained and tested on patient data obtained
just one day before discharge, using XGBoost as a classifier. Knight et al. [7]
compute from a logistic regression an index between 0 and 21 that establishes a
prognosis of the patient’s risk mortality. Subsequently, Gupta et al. [5], from the
same research group as the previous work, propose a deterioration model based
on a logistic regression model.

All these models provide information of interest to healthcare professionals
when making final decisions. However, the continual changes in the epidemio-
logical situation mean that having only a single model is limited, and non-useful
for physicians. At some pandemic stages physicians seek to reduce the number
of deceased by improving the sensitivity of the model i.e., focusing on decreas-
ing the number of patients predicted as surviving who subsequently decease.
Nonetheless, when the resources are limited or health centres are overcrowded,
focusing on improving the specificity of the model i.e., reducing the number of
patients detected as deceased who subsequently survive, is a realistic option for
physicians. In line with this trend, we propose not only a single model based on
a single metric, but a battery of models with a diverse spectrum of performances
in both areas of interest. Hence, depending on the pandemic stage, physicians
will have the possibility of selecting the most suitable model.

For this purpose, a set of logistic regression models is trained in a specific way.
The common log-likelihood function used to learn the logistic regression coeffi-
cients is divided into two different objective functions: one focused on deceased
and the other on survivors. A multi-objective optimization is applied to both ob-
jective functions to obtain a set of models, known as Pareto or non-dominated
set which can not be improved by another model in both objective functions
simultaneously. Furthermore, a specific methodology for the evaluation of the
Pareto models is proposed. Consequently, a battery of non-dominated COVID-
19 mortality prediction models is obtained.

The paper is organized as follows. Section 2 covers data collection and pre-
processing. Section 3, the design and development aspects: an in-depth explana-
tion of the multi-objective optimization problem, the method for the evaluation
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of the Pareto models and the validation of the models. Section 4 presents the
final results and Section 5 a brief conclusion.

2 Clinical dataset

2.1 Data collection and characteristics

Osakidetza, the Basque Country public health service in Spain, made a prospec-
tive cohort study recruiting patients infected by severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) confirmed by naso- and/or oropharyngeal
swab polymerase chain reaction (PCR). Collected data contains blood tests, de-
mographic and clinical data from the emergency department or up to 24 hours
after hospital admission. The target, mortality, indicates infected deceased and
hospital discharges labeled as survivors. Furthermore, all patients in the study
are from Basque Country hospitals and pertain to the first (from February to
April 2020) and second wave (from July to November 2020).

Fig. 1. Structure of the clinical dataset composed of demographic, clinical features and
42 different blood tests as inputs. Mortality represents the output of our model. (see
Appendix)

2.2 Data pre-processing

In order to pre-process the data, we start by analyzing the distribution of values.
Those features with unexpected distributions are studied in detail, contrasting
information about their range and establishing valid ranges for collected data.
All those features with a coherent distribution did not undergo any range mod-
ification. Apart from this modification, two filters are applied to treat missing
values, one filter on the features and another on the patients [2].

– Feature filter. Blood tests, demographic and clinical features with more than
30% of missing values are removed from the study.

– Patient filter. Patients with three or more missing values in the features
(blood tests, demographic or clinical data) are removed for further analysis.
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Remaining missing values are afterwards imputed by unsupervised similarity
[8]. Specifically, a five nearest-neighbours method with Euclidean distance is used
to impute the data.

2.3 Final dataset

Finally, a total of 2215 patients and 53 features are retained (see Fig. 1). The
final cohort is unbalanced with many more survivors than deceased (86.55% vs.
13.45%), and the sex distribution is balanced between male and female (57.25%
vs. 42.75%). All features used in the modelling process are compiled in the Ap-
pendix. Moreover, features are normalized before starting with the development
of the models.

3 Design and development aspects

Standard logistic regression returns a single model with specific evaluation scores
that is not useful in changing epidemiological situations. However, having a
battery of mortality models with different performances allows physicians and
hospital managers to select the right model for a specific pandemic scenario. With
this objective in mind, logistic regression coefficients are obtained by focusing
on both sensitivity and specificity scores [6]. Instead of using the log-likelihood
function (see Eq. 1), new functions are obtained from this one.

J(θ) = −
N∑
i=1

yi · log(Pi(θ)) + (1− yi) · log(1− Pi(θ)) (1)

The log-likelihood function is composed of the class (yi), a summation on
the N instances and the sigmoidal function (Pi) in terms of the coefficients (θ).
As we address a binary mortality problem, the log likelihood function could be
split into two objective functions: one for survivors (class 0) and the other for
deceased patients (class 1) (see Eq. 2 and 3 respectively).

J0(θ) = −
G∑
i=1

(1− yi) · log(1− Pi(θ)) (2)

J1(θ) = −
K∑
i=1

yi · log(Pi(θ)) (3)

The instances (N = G + K ) of the problem are divided into G and K sur-
vivors and deceased patients, respectively. The two new objective functions allow
us to focus on key metrics for physicians when choosing a model: specificity (re-
call 0) and sensitivity (recall 1). Instead of performing a complex optimization
of sensitivity and specificity scores, we have opted for a straightforward process:
the optimization of J0 and J1 functions equivalent to these scores.
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However, it is not feasible to compute the coefficients by gradient descent
with two objective functions. Therefore, we rely on multi-objective optimiza-
tion to address this issue. It is worth noting that the individual optimization of
J0, whose minimization optimizes the specificity, or J1, whose minimization opti-
mizes sensitivity, may be conflicting objectives. The improvement of one of them
may surely imply the worsening of the other. By means of the multi-objective
optimization paradigm we try to find a set of diverse models: some with balanced
performances, others focused on specificity, and others on sensitivity.

3.1 Multi-objective optimization

Multi-objective optimization provides the ability to address the problem in the
exposed way:

– Computation of logistic regression coefficients. The paradigm seeks model
coefficients that optimize both objective functions in order to maximize the
performance of the model.

– Obtaining a battery of models, known as a Pareto set, with different
performance scores. The Pareto set is composed of models not improved by
another model in both objective functions simultaneously.

– Resolution of the imbalance problem. Separation of the log-likelihood
into two class-dependent functions causes both classes to have the same
relevance when applying the multi-objective optimization procedure.

Multi-objective optimization development. The multi-objective optimiza-
tion is undertaken by one of the most popular implementations called non-
dominated sorting genetic algorithm II (NSGA-II) [3, 4].

NSGA-II procedure (see Fig. 2) is adopted taking as the individuals of the
population the coefficients of a logistic regression. Note that any unspecified
steps are matched to the generic one of the algorithm. The process begins with
a parent population P0 composed of M different models, where coefficients are
randomly selected by means of Latin hypercube sampling. A non-domination
sorting, divided into different fronts, is carried out over the pair of objective
functions. After that, an individual selection, a simulated binary crossover and
a polynomial mutation are used to create an offspring population Q0, of size M .
Thus, the first generation is obtained.

The procedure is different for the next generations. For the t − th genera-
tion of the genetic algorithm, a combined population Rt = Pt ∪ Qt of size 2M
is initially formed. Then, population Rt is sorted according to non-domination
and the best M models are selected. In order to choose exactly M models, the
models of the last non-dominated front are sorted by crowding distance sort-
ing. Consecutively, a new population Pt+1 is obtained and used for subsequent
individual selection, simulated binary crossover and polynomial mutation in or-
der to create a new offspring population Qt+1. This procedure is repeated for
a number of generations established. As a result, a Pareto set of solutions with
their associated objective functions values and models coefficients is obtained.
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Fig. 2. NSGA-II procedure.

In our implementation the initial population is fixed to 500 random models,
the number of generations is 200 and a constraint on the objective functions
values (J0 + J1 < 1.5) is applied to mitigate bias.

3.2 Validation of the models

In order to maximize the representativeness of Pareto set models, our aim is
to implement NSGA-II on the entire data cohort. Nonetheless, the validation
of the models from the obtained Pareto set is not trivial. Performing a cross-
validation is not possible because the models obtained in the Pareto set of each
fold are different and no relationship between them can be established. Therefore,
we propose a novel Method for the Evaluation of PAreto Models (MEPAM).
The feasibility of the method is studied by comparing MEPAM’s performance
internally estimated in a train partition with the performance estimated in an
external test set. Once MEPAM is accepted as feasible, the process is applied to
the full cohort in order to validate the final models that will be deployed. Note
that both used scores, sensitivity (recall 1) and specificity (recall 0), are called
recalls.

Method for the evaluation of Pareto models (MEPAM). We propose a
method (see Fig. 3) for the evaluation of the models located in the Pareto set
obtained with a entire data cohort. Specifically, the evaluation of the models
consists of assigning to each model a recall value for each of the classes. It is
needed to note that the method is described for a generic dataset. The following
sections show how MEPAM is implemented on our dataset.

First of all, the multi-objective optimization framework is implemented on
the entire dataset and a Pareto set is obtained (See (∗) Fig. 3). All of the models
obtained in this Pareto set are the ones we want to validate. For this purpose,
and as the core of the method, the dataset is also split into four stratified
folds: four training sets with their respective test sets. The objective of the four
stratified folds is to obtain a representative set of validated models in order to be
able to infer a realistic evaluation of the models from the Pareto set of the entire
dataset. Thus, for each of the train subsets, the multi-objective optimization
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problem is solved by NSGA-II obtaining four different Pareto sets. Moreover,
each Pareto set is evaluated in its respective test fold generating a pair of recalls
(R0, R1) for each model (See (∗∗) Fig. 3).

Fig. 3.Workflow for the validation of Pareto set models from a generic dataset. Method
for the Evaluation of Pareto Models (MEPAM) is described within the yellow shading.

Accordingly, we proceed to validate the models from the Pareto set of the
entire dataset by a recall estimation. For the validation of a single model from
the Pareto set of the entire dataset, we focus on its objective functions (J0, J1)
and collect the models with the four closest existing objective function pairs in
the four Pareto sets of the stratified folds. Euclidean distance is used to collect
these models for which recalls (R0, R1) are known. The mean of the R0 recall of
these models is considered as the estimated recall R0 for the model to validate.
The same procedure is followed for the generation of the estimated recall R1. By
repeating the process for each of the models included in the Pareto set of the
entire dataset, an evaluation of the Pareto models is achieved.

MEPAM feasibility. After the explanation of the method, its feasibility (see
Fig. 4) is studied on our data cohort, which is divided into train (80%) and test
(20%) sets.

Fig. 4. Workflow to determine MEPAM feasibility.
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MEPAM is applied to the training cohort for its validation by deriving an
internal estimation of models recalls. Models obtained in the training cohort are
externally evaluated by using the test set. Therefore, if test set recalls and those
estimated internally in the train partition exhibit a low difference between their
respective models, MEPAM method is assumed as feasible to be implemented
in the full data cohort to evaluate the final models.

Validation of the final models. At this stage no test set is extracted and the
models are computed from all available data. MEPAM is implemented to the
full data cohort in order to estimate the recalls of the final models.

4 Results

MEPAM feasibility. After the execution of NSGA-II algorithm on the training
cohort, a Pareto set with 500 models is obtained. On the left graph of Fig. 5,
the external recall evaluation on the test set and the internally estimated recalls
by MEPAM in the train partition are displayed.

Fig. 5. Left graph. R1 (Sensitivity) vs. R0 (Specificity). Blue dots represent the recall
of the Pareto set models internally estimated by MEPAM. Red dots represent recalls
externally computed on the test set. LASSO and Ridge recalls are plotted. Right table:
Euclidean distance from estimated recalls to externally evaluated recalls on the test
set.

Furthermore, LASSO and Ridge logistic regression recall values are shown
as a comparative reference for the models. These models are trained with 80%
of the data and tested with the remaining 20%. Although for high specificity
and low sensitivity values slightly overestimated recalls are obtained, we can
appreciate a solid behaviour of MEPAM.

In addition, Euclidean distance from the recalls estimated by MEPAM to
those computed externally on the test set is always lower than 0.15, and 58.6%
of models show a difference below 0.05 (see right Table in Fig. 5). Consequently,
MEPAM is considered as a accurate performance estimation method.
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Validation of the final models. NSGA-II is implemented on the full data
cohort obtaining 500 different mortality prediction models in the Pareto set.
The left graph of Fig. 6 highlights the difference between estimated recalls by
MEPAM and those by LASSO and Ridge (trained with the 80% of the data and
tested on the remaining 20%).

Fig. 6. Left graph. R1 (Sensitivity) vs. R0 (Specificity). Blue dots represent estimated
recalls by MEPAM on the full data cohort. LASSO and Ridge recalls are plotted. Right
table: Examples of three models with their associated estimated performances. A model
with high sensitivity, a balanced model and a model with high specificity are shown.

Although we do not obtain models as balanced as LASSO and Ridge regres-
sions, a wide and competitive range of models is achieved. It should be noted
that our objective is to provide a battery of mortality prediction models with
different performances. Models with different degrees of sensitivity and speci-
ficity allow physicians to broaden the range of possibilities depending on the
epidemiological situation (see right Table in Fig. 6) . In other words, depending
on the availability of hospital resources, the number of patients admitted and
other clinical aspects, physicians and hospital managers can choose the model
that best suits a particular situation.

5 Conclusion

From a cohort of first and second wave data of the Basque Country, Spain, a
battery of models with different performances is obtained. The multi-objective
optimization framework allows us to focus on two key metrics: sensitivity and
specificity. Although the optimization of both scores may be conflicting, it can
also be beneficial for the learning of models with different performances. A new
procedure known as MEPAM for an honest validation of the Pareto set models
is also proposed.

The strength of the battery of mortality models resides not in outstanding
performances but in the provision of models with varied performances for im-
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mediate use. Although having this large set of models can be overwhelming, a
reduce set of different models (e.g. 3, 5) can be chosen to obtain a less aggressive
and more comprehensible and explainable set of models.

A wave and its strength are not possible to predict. However, physicians
have external help for any situation. From low intensity waves, where a sensitive
model may be of interest to avoid fatalities, to waves of exceptional strength that
collapse hospitals and deplete resources where specific models may be considered.
Furthermore, the variety of models obtained in the Pareto set allows our health
system to fight against any unexpected outbreak. Definitively, this battery of
COVID-19 mortality prediction models is a powerful tool to support physicians
and hospital managers in different epidemiological situations.
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Appendix

A detailed explanation of the variables used in the model is shown in Table 1.

Table 1. Blood tests, demographic, clinical and mortality outcome information col-
lected from medical records. Depending on the feature, mean (µ), standard deviation
(σ), median or interquartile range (Q1-Q3 ) are displayed.

Feature Overall

Mortality, n(%)
Deceased 298 (13.45%)
Survivors 1917 (86.55%)

Gender, n(%)
Male 1268 (57.25%)
Female 947 (42.75%)

Age, µ(σ)(years) 67.12 (17.55)

Oxygen Sat., µ(σ)(%) 95.14(3.04)

Heart rate, µ(σ)(bpm) 79.84(14.73)

No. of comorbi., µ(σ, range) 0.39(0.66, [0,1])

Symptoms, µ(σ, range) 0.3(0.67, [0,3])

Pain Scale, µ(σ, range) 0.21(0.55, [0,4])

Temperature (ºC), µ(σ) 36.78(0.82)

DBP, µ(σ)(mmHg) 74.78(11.63)

SBP, µ(σ)(mmHg) 128.42(20.89)

Lipemia, median (Q1-Q3) 8.9 (4.0, 13.0)

Leukocytes, median (Q1-Q3)(x103/µL) 6.17 (4.76, 8.21)

Neutrophils, median (Q1-Q3)(%) 73.20(65.10, 80.90)

Neutrophils, median (Q1-Q3)(x103/µL) 4.44(3.17, 6.28)

Monocytes, median (Q1-Q3)(%) 7.60(5.50, 10.0)

Monocytes, median (Q1-Q3)(x103/µL) 0.46(0.33, 0.65)

Lymphocytes, median (Q1-Q3)(%) 17.40(11.40, 24.25)

Lymphocytes, median (Q1-Q3)(x103/µL) 1.03(0.73, 1.38)

Basophils, median (Q1-Q3)(%) 0.20(0.11, 0.40)

Basophils, median (Q1-Q3)(x103/µL) 0.012(0.01, 0.02)

Eosinophils, median (Q1-Q3)(%) 0.2(0, 0.55)

Eosinophils, median (Q1-Q3)(x103/µL) 0.01(0, 0.03)

Feature Overall

PT, median (Q1-Q3)(%) 91(78, 100)

HCB, median (Q1-Q3)(x106/µL) 4.63(4.22, 5.04)

MCV, median (Q1-Q3)(fL) 91.20(87.6, 94.8)

PLT, median (Q1-Q3)(x103/µL) 181(143, 236)

CL, median (Q1-Q3)(mEq/L) 101.0(98.6, 103.6)

ALT, median (Q1-Q3)(U/L) 26(17, 41)

MCH, median (Q1-Q3)(pg) 29.9(28.6, 31.1)

INR, median (Q1-Q3) 1.06(1.00, 1.17)

CREA, median (Q1-Q3)(mg/dL) 0.92(0.76, 1.13)

CRP, median (Q1-Q3)(mg/L) 56.42(22.11, 110.64)

BR, median (Q1-Q3)(mg/dL) 0.48(0.36, 0.67)

MPV, median (Q1-Q3)(fL) 10.10(8.46, 11.10)

APTT, median (Q1-Q3)(sg) 32.54(29.60, 36.35)

NA, median (Q1-Q3)(mEq/L) 138(136, 140)

HB, median (Q1-Q3)(g/dL) 13.9(12.5, 15.0)

K, median (Q1-Q3)(mEq/L) 4.1(3.8, 4.4)

UREA, median (Q1-Q3)(mg/dL) 36(27, 50)

Haemolysis, median (Q1-Q3) 6.0(2.0, 18.0)

RDW, median (Q1-Q3)(%) 13.10(12.30, 14.05)

HCT, median (Q1-Q3)(%) 42.20(38.50, 45.60)

Jaundice, median (Q1-Q3) 1.0(0.7, 10)

D-Dimer, median (Q1-Q3)(ng/ml) 750(460, 1400)

MCHC, median (Q1-Q3)(ng/ml) 32.7(31.9, 33.4)

GLU, median (Q1-Q3)(mg/dL) 110.3(98, 132.5)

PCT, median (Q1-Q3)(ng/ml) 0.09(0.05, 0.17)

LDH, median (Q1-Q3)(U/L) 272(223, 343)
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