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Abstract

In this paper, we continue a line of work on obtaining succinct population protocols for
Presburger-definable predicates. More specifically, we focus on threshold predicates. These are
predicates of the form n > d, where n is a free variable and d is a constant.

For every d, we establish a 1-aware population protocol for this predicate with log, d +
min{e, z} + O(1) states, where e (resp., z) is the number of 1’s (resp., 0’s) in the binary repre-
sentation of d (resp., d —1). This improves upon an upper bound 4 log, d+ O(1) due to Blondin
et al. We also show that any 1-aware protocol for our problem must have at least log,(d) states.
This improves upon a lower bound log; d due to Blondin et al.

1 Introduction

Population protocols were initially introduced as a model of distributed computation in large net-
works of low-memory sensors [2]. There are also similarities between population protocols and some
models of social networks [10] and chemical reactions [11], see a discussion in [5]. Perhaps, popula-
tion protocols are most known for their deep connection to logic, namely, to Presburger arithmetic.
More specifically, there is a theorem that a predicate over the set of natural numbers is definable
in Presburger arithmetic if and only if it can be computed by some population protocol [4]. In
this paper, we continue a line of work on the minimization of population protocols [7, 8, (]: given
a Presburger-definable predicate, what is the minimal size of a population protocol computing it?
More specifically, we obtain some new upper and lower bounds for threshold predicates.
We start by describing the model of population protocols in more detail.

The model. In this paper, we only consider population protocols for unary predicates. On
a high level, population protocols are a sort of finite-state distributed algorithms. A population
protocol can have an arbitrary natural number n on input. A population protocol computes a
unary predicate R: Z* — {0, 1} if for every n € Z™, having n on input, this protocol in some sense
“converges” to R(n).

In this framework, natural numbers are represented as populations of indistinguishable agents
(or, in other words, as piles of indistinguishable items). Namely, a natural number n corresponds
to a population with n agents. It turns out that this way of representing natural numbers is quite
convenient for Presburger arithmetic. Intuitively, this is because to add two numbers in this model,
we just have to join the corresponding piles.

A population protocol II is specified by a finite set of states, a transition function mapping
pairs of states into pairs of states, and a partition of the set of states into “O-states” and “1-states”.
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Having a population of n agents on input, II works as follows. First, it puts every agent into
an initial state (which is specified in the description of the protocol and is the same for all n).
Then agents start to encounter each other. We assume that the time is discrete and that a single
encounter of 2 agents happens in each unit of time. This process is infinite and is not controlled by
II. However, when two agents meet, their states are updated according to the transition function
of IT (given a pair of their states before the encounter, it gives a pair of their states after the
encounter).

Recall that states of Il are partitioned into 1-states and O-states. This partition is responsible
for the opinions of the agents on the value of a predicate. Namely, agents in 1-states (resp., O-states)
“think” that n belongs to a predicate (resp., does not belong to a predicate).

Finally, we clarify what does it mean that IT converges to 1 (resp., 0) on n. We want all agents
to be in 1-states (resp., in O-states) forever after some finite time. However, it is meaningless to
require this for all possible infinite sequences of encounters. For example, it might be that the same
two agents meet each other over and over again. There is no chance agents will learn anything
about n in this way. So will only consider sequences of encounters that form fair executions of our
protocol.

To define this, we first need a notion of a configuration. An n-size configuration of II is a
function from the set of n agents to the set of states of II. In turn, an execution of II is an infinite
sequence of configurations such that (a) in the first configuration all agents are in the initial state;
(b) every configuration, except the first one, is obtained from the previous one via some encounter.
In turn, an execution is fair if for any two configurations C7 and C5 the following holds: if Cy
appears infinitely often in our execution, and if C is reachable from C4 via some finite sequence of
encounters, then Cy also appears infinitely often in our execution. Finally, we say that II converges
to 1 (resp., 0) on n if all fair executions have this property: all but finitely many configurations of
this execution include only agents in 1-states (resp., O-states).

Threshold predicates. In this paper, we are interested in threshold predicates, that is, pred-
icates of the form:
1 n>d,

0 otherwise,

R(n) = {

where d € ZT. For brevity, below we use the following notation for these predicates: R(n) = I{n >
d}.

The problem of computing this family of predicates by population protocols is called sometimes
the flock-of-birds problem. This is because of the following analogy due to Angluin et al. [2]. Imagine
a flock of birds, where each bird is equipped with a temperature sensor. Some birds are sick due to
the elevated temperature. Our sensors have very low action radius: two sensors can interact with
each other only if they are, say, at most 1 meter apart. Let there be n sick birds. From time to
time, two sick birds approach each other sufficiently close so that their sensors can interact. We
want to know whether n (the number of sick birds) is at least some threshold d. This turns into a
problem of computing the predicate R(n) = I{n > d} by a population protocol.

The first population protocol computing this predicate was given in [2] (in fact, this was the first
population protocol ever considered in the literature). It works as follows. Imagine that initially
every agent has 1 coin. An agent can hold up to d — 1 coins. Consider an arbitrary encounter of
two agents. If two agents meet and have less than d coins in total, one of them gets all the coins of
the other one. In turn, if they have at least d coins in total, they both become “converted”. That
is, they start to think to n > d (initially everybody thinks that n < d). Finally, any agent who
meets a converted agent also becomes converted.



Let us see why this protocol computes the predicate R(n) = I{n > d}. First, assume that
n < d. Then in the beginning we have less than d coins. The total number of coins is preserved
throughout the protocol. In particular, no two agents can have at least d coins in total. Thus,
everybody will always think that n < d, as required.

Assume now that n > d. After any sequence of encounters it is still possible to reach a con-
figuration in which everybody is converted. Indeed, go to a configuration with the least possible
number of non-bankrupt agents (bankrupt agents are agents with 0 coins). In this minimal con-
figuration, any two non-bankrupt agents must have at least d coins in total (otherwise, one could
reduce the number of such agents). Thus, it is possible to convert somebody. It remains to pair all
the agents one by one with a converted agent.

To finish the argument, consider any fair execution with n > d agents. Let C be any configura-
tion which appears infinitely often in this execution. There is a configuration D which is reachable
from C' and in which everybody is converted. Thus, D must belong to our execution in some place.
Starting from this place, everybody will always think that n > d.

l-awareness. The protocol which we just described has the following feature. If n < d, then
no agent will ever think that n > d. In other words, to start thinking that n > d, an agent must
obtain some proof of this fact. In our case, a proof is a physical presence of d coins.

Blondin et al. [7] call this kind of protocols I-aware protocols. Formally, they are defined as
follows. Let R: Z* — {0,1} be a predicate. We say that a protocol computing this predicate is
I-aware if the following holds: for every n with R(n) = 0, no execution of n agents ever contains
an agent thinking that R(n) = 1.

It is not hard to see that 1-aware protocols can only compute threshold predicates and the
all-zero predicate. Indeed, if it is possible to make one of n agents think that R(n) = 1, then the
same is possible for all populations with more than n agents. Hence, any predicate R which can
be computed by a 1-aware population protocol is monotone: if R(n) = 1, then R(m) = 1 for every
m > n.

Thus, l-aware population protocols are a quite natural model for computing threshold predi-
cates. In this paper, for every d we study the following question: what is the minimal number of
states in a l-aware population protocol, computing the predicate R(n) = I{n > d}?

Our results. Observe first that the protocol of Angluin et al., described above, requires d + 1
states. Indeed, in this protocol, agents just memorize how many coins they hold. This is a number
from 0 to d — 1. We also need one more state for converted agents.

This can be drastically improved when d is a power of 2. Consider the same protocol, but forbid
any “transfers” of coins unless two agents have the same number of coins. Then an agent can hold
either 0 coins or a power of 2 of them. Thus, this modified protocol requires only about logs d
states.

When n > d, it works for the same reasons as before — minimize the number of non-bankrupt
agents and observe that there must 2 of them holding at least d coins (because otherwise they must
hold different powers of 2 whose sum is smaller than d). In fact, this protocol also works when d is
the sum of two powers of 2, but for other d it does not. A problem is that it might be impossible
to get two agents with d coins in total (for example, when there are d =4 + 2 + 1 = 7 coins, two
agents can hold at most 4 + 2 = 6 coins).

Nevertheless, for every d, Blondin et al. [7] have constructed a 1-aware protocol with O(log d)
states, computing the predicate R(n) = I{n > d}. Their construction has two steps. First, they
solve the problem with a protocol in which encounters can involve not only 2 but up to log,d
agents. Second, they show a general result, transforming any protocol with “crowded” encounters



into a standard protocol. The second part of their argument is rather technical. As a result, they
get a protocol with 4logyd + O(1) states. Our first result is the following improvement of this
upper bound.

Theorem 1. For any d € 2™ the following holds: there exists a deterministic 1-aware population
protocol with logy d + min{e, z} + O(1) states, computing the predicate R(n) = I{n > d}. Here e
(resp., z) is the number of 1’s (resp., 0’s) in the binary representation of d (resp., d —1).

This upper bound never exceeds %log2d + O(1). Indeed, the number of 1’s in the binary
representation of d is larger at most by one than the number of 1’s in the binary representation of
d — 1. Hence, e + z does not exceed the length of the binary representation of d — 1 plus one. This
implies that minfe, 2} < 4 log, d + O(1).

In fact, we devise two different protocols for Theorem 1: one with logy d + e + O(1) states, and
the other with logy d + z + O(1) states. The first one is given in Section 4 and the second one is
given in Section 5. These two protocols require different ideas. Unlike the construction of Blondin
et al., our constructions are direct.

Additionally, Blondin et al. in [7] show that any l-aware protocol computing R(n) = I{n > d}
must have at least logs d states. Our second result is an improvement of this lower bound.

Theorem 2. For any d € Z™T the following holds: any 1-aware population protocol computing the
predicate R(n) =I{n > d} has at least logy d + 1 states.

Theorem 2 is proved in Section 3.

Other related works. In this paper we only deal with 1-aware protocols. For general pop-
ulation protocols, the gap between upper and lower bounds is much wider. A simple counting
argument shows that for infinitely many d, the minimal size of a population protocol computing
R(n) = {n > d} is Q(log"/* d). We are not aware of any explicit sequence of d’s on which this lower
bound is attained. Recently, Czerner and Esparza [8] have shown that for every d, the minimal
size of a population protocol computing R(n) = I{n > d} is Q(logloglog d).

Similar questions have been studied for other predicates. Namely, Blondin et al. [6] obtained
the following general result. Assume that a predicate R is definable in Presburger arithmetic via
some quantifier-free formula of length [ (where all constants are written in binary; for example, the
predicate R(n) = I{n > d} can be given by a formula of length logyd + O(1)). Then there is a
population protocol with (91 states computing R.

Let us mention a related line of research which aims to minimize another parameter of population
protocols — the time of convergence [3]. It is defined as the expected number of encounters until all
agents stably have the right opinion on the value of a predicate. We refer the reader to [1, 9] for
the recent results in this area.

2 Preliminaries

We only consider population protocols for unary predicates. Moreover, we only define l-aware
population protocols. For more detailed introduction to population protocols, see [5].

Notation. By Z* we denote the set of positive integers. For n € ZT, we write [n] =
{1,2,...,n}. We also write A = B U C for three sets A,B,C if A= BUC and BNC = &.
By 24 we mean the power set of a set A.

Definition 1. A population protocol 11 is a tuple (@, Qo, Q1, Ginit, ), where



e ( is a finite set of states of I1;
e o, Q1 C Q are such that QQ = Qo LU Q1.
e Qinit € Q is the initial state of 11;
e §:Q%— 29"\ {@} is the transition function of II.
We say that 11 is deterministic if |0(q1,q2)| = 1 for every q1,q2 € Q.

Let IT = (Q, Qo, Q1, Ginit, 0) be a population protocol. Consider any n € Z*. An n-size config-
uration of I is a function C': [n] — Q. Intuitively, elements of [n] are agents, and the function C'
maps every agent to the state this agent in. Define the initial n-size configuration as I,,: [n] — Q,
I,,(7) = Ginit for all i € [n]. A pair of two n-size configurations (C7, Cy) is called a transition if there
exist i,j € [n], i # j such that

(Ca(1), C2(4)) € 6((C1(4),C1(5))) and Co(k) = Cy(k) for all k € [n] \ {7, }.

That is, Cy must be obtained from C via an encounter of two distinct agents i and j. These agents
update their states according to J, and other agents do not change their states.

We stress that 2 agents participating in an encounter are ordered. It is convenient to imagine
that one of the agents “initiates” the encounter and the other agent “responds” to it. This is why
0 is defined over ordered pairs of states and not over 2-element subsets of ).

Next, let C' and D be two n-size configurations. We say that D is reachable from C' if for some
k > 1 and for some sequence C7,Co,...,C} of configuration we have:

e C1=C,C, = D;
o for every 1 <i < k we have that (C;,C;y1) is a transition.

An execution is an infinite sequence {C;}32; of configurations such that Cy = I,, for some n
and (C;, Ciy1) is a transition for every i € ZT. We call an execution E = {C;}$°, fair if for every
two configurations C, D the following holds: if, first, C' occurs infinitely often in F, and second, D
is reachable from C', then D also occurs infinitely often in FE.

Definition 2. Let R: Z — {0,1} be some predicate. We say that a population protocol T =
(Q,Qo, Q1, Ginit,0) is a I-aware population protocol computing R if for any n € ZT the following
holds:

o if R(n) =0, then for every configuration C' which is reachable from I, we have C([n]) C Qp.

o if R(n) = 1, then for every fair execution {C;}2, which start from Cy = I,, there ezists ig
such that for every i > iy we have Ci([n]) C Q.

3 Proof of Theorem 2

Assume that IT = (Q, Qo, Q1¢init,0) is a l-aware population protocol computing the predicate
R(n) =I{n > d}. Let C: [n] — @ be a configuration of IT and ¢ € @ be a state. We say that ¢
can occur from C' if there exists a configuration D of II such that (a) D is reachable from C'; (b)
D(i) = q for some i € [n|. Additionally, by a g-agent we mean an agent whose state is g.

For q € Q, let f(q) denote the minimal n € Z* such that g can occur from I,,. If there is no such
n at all, set f(q) = +oo. Obviously, |Q| > |f(Q)], so it is sufficient to prove that |f(Q)| > log, d+1.



Observe that 1 = f(ginit). Hence, 1 € f(Q). By definition of 1-awareness, there exists a state
q € Q1 which can occur from I; (just consider any fair execution starting from Iz). On the other
hand, no state from () can occur from I,, for n < d. Hence, f(q) = d and d € f(Q). It remains to
establish the following lemma.

Lemma 3. Let a < b be two consecutive elements of f(Q). Then b < 2a.

Loosely speaking, this lemma asserts that f(Q) does not contain large gaps. Since 1,d € f(Q),
it shows that between 1 and d there must be about logy(d) elements of f(Q). In more detail, let
1 =141 <ig <...<i,=d be elements of f(Q) up to d, in the increasing order. By Lemma 3, we
have:

in < 201, iy < g1

By taking the product of these inequalities, we obtain:
d =i, <2F1.j =2kt
Hence, |f(Q)] > k > logy(d) + 1.

of Lemma 3. Consider the minimal k such that some g € @ with f(q) = b can occur from I} after
k encounters. Note that k£ > 1. Indeed, if k¥ = 0, then ¢ = g;ni¢. However, f(q) = b >a > 1, so
q # Qinit-

Due to minimality of k, a g-agent occurs in the last of these k encounters. Consider this agent
and also the second agent participating in this encounter. Let their states prior to the encounter
be g1 and go. We conclude that a g-agent can occur whenever we have a gj-agent and a ¢o-agent
in a population (these agents have to be distinct, even when ¢; = ¢2).

Since ¢ and ¢y can occur from I, we have that f(q1), f(¢2) < b. In turn, since ¢, g2 can occur
from I, in less than k encounters, we have f(q1) # b and f(g2) # b, by minimality of k. Hence,
f(q1), f(g2) < a, because a is the predecessor of b in f(Q). To finish the proof, it is sufficient to
show that f(q) < f(q1) + f(g2). In other words, we have to show that ¢ can occur from I'r(g,)4 f(go)-
By definition, a gj-agent can occur from I,y and a ge-agent can occur from Iy(,,). Hence, if we
have f(q1)+ f(g2) agents in the initial state, the first f(q1) of them are able to produce a ¢j-agent,
while the last f(g2) of them are able to produce a go-agent. In turn, these two agents are able to
produce a g-agent. O O

4 Proof of Theorem 1: The First Protocol

In this section we establish a 1-aware population protocol with log,(d) + e+ O(1) states, computing
the predicate R(n) =I{n > d}. Here, e is the number of 1’s in the binary representation of d.
Let i1 > i > ... > 1. be such that

d=2" 4922 4 4 9,

Imagine that initially every agent holds 1 coin. During the protocol, some agents may run out of
coins; we will call these agents bankrupts. At each moment of time, a non-bankrupt agent can hold
1,2,4,...,2171 or 211 coins. Additionally, every bankrupt maintains a counter k € {0,1,...,e—1}.
Under some circumstances, an agent can come into a special final state (informally, this happens
when this agent becomes convinced that n > d). When an agent comes into the final state, it
forgets the number of coins it had (this will not be problematic because everything will be decided
at this point). So, some agents in the final state might be bankrupt, while the others not. In total,



besides the final state, we have i; 4+ 1 < logy(d) + 1 states for non-bankrupt agents and e states for
bankrupt agents; this is at most log,(d) + e + 2 states.

We now describe the transitions of our protocol. First, assume that two non-bankrupt agents
both having 2¢ coins meet. If i = 41, then both agents come into the final state. If i < iy, then one
of the agents gets all the coins of the other one. That is, one of the agents is left with 2+ coins,
and the other one becomes a bankrupt with & = 0. Now, if an agent with 2 coins meets an agent
with 27 coins and j # i, nothing happens.

Next, we describe transitions that involve bankrupts. If two bankrupts meet, nothing happens.
Now, assume that a bankrupt whose counter equals k meets an agent with 2’ coins. There are four
cases:

1. if k <e—1and ¢ =iy, then k increments by 1;

2. if k=e—1 and i = i., then the bankrupt comes into the final state;

3. if £ > 0 and i > ¢ > i1, then the bankrupt comes into the final state;
4. in any other case, the bankrupt sets k& = 0.

Finally, if an agent is already in the final state, then everybody this agent meets also comes into
the final state.

The description of the protocol is finished. To show that this protocol is a l-aware protocol
computing the predicate R(n) = I{n > d}, it is sufficient to show the following two things:

e (soundness) if n < d, then no agent can come into the final state;

o (completeness) if n > d, then, after any finite sequence of encounters, it is still possible to
bring one of the agents into the final state.

Here n is the number of agents in a population. Indeed, soundness ensures that our protocol satisfies
the definition of 1-awareness for n < d. Now, consider any n > d. Take any fair execution E of n
agents. We have to show that there exists a moment in F, starting from which all agents are always
in the final state. Let C' be any configuration which occurs infinitely often in E. By definition of
an execution, C' is reachable from [,,. Hence, by completeness, there is a configuration D which is
reachable from C' and which has an agent in the final state. Now, let this agent meet all the other
agents. We obtain a configuration D’ which is reachable from D and in which all agents are in the
final state. By definition of fairness, D’ occurs in E. Finally, note that once all agents are in the
final state, they will always be in this state.

We start by showing the soundness. Assume for contradiction that there are n < d agents,
but one of them came into the final state. First, it could happen if two agents with 2/ coins met.
However, the total number of coins is preserved throughout the protocol, and initially there are
n<d=2" 42724 . 4 2 <2.21 coins, contradiction.

Second, it might be that some bankrupt came into the final state. This can happen after an
encounter with a non-bankrupt agent. Assume that this non-bankrupt agent held 2¢ coins. Then
there are two options: if k was the value of the counter of our bankrupt agent, then either k = e—1
and ¢ =i, or k > 0 and i > ¢ > 7. Note that in both cases we have 2U 42 420 > (.
We will show that there must be at least 2° 4 ... + 2% + 27 distinct coins, and this would be a
contradiction.

Consider the counter of our bankrupt. Its current value is k. It cannot increase by more than 1
at once. So the last k& changes of the counter were as follows: it became equal to 1, then it became
equal to 2 and so on, up to a moment when it reached its current value. At the moment when it



became equal to 1, our bankrupt saw an agent with 2°! coins. After that, when it became equal to
2, our bankrupt saw an agent with 2% coins, and so on. In the end, when the counter reached its
current value, our bankrupt saw 2% coins. Additionally, in the very last encounter, it saw 2’ coins.
We claim these 21 4 272 + ... + 2% + 2% are distinct. To see this, fix any coin. At each moment of
time, it belongs to some group of coins. A point it that the size of this group can only increase over
time. Now, recall that 20 > 22 > ... > 2% > 2! Since our bankrupt first saw a group of 2°! coins,
then a smaller group of 2?2 coins and so on, none of these coins were seen twice. The soundness is
proved.

We now show the completeness. Assume that there are n > d agents. Consider any configuration
C' which is reachable from the initial one. Let D be a configuration which is reachable from C' and
has the least number of non-bankrupt agents. If in D there are two agents that both have 2" coins,
then we can bring them into the final state. Assume from now on that in D there is at most one
agent with 20 coins. Then no two non-bankrupt agents have the same number of coins in D —
otherwise, one could decrease the number of non-bankrupt agents.

Assume that in D there are t non-bankrupt agents, the first one with 27! coins, the second one
with 272 coins, and so on. Here 0 < ji,...,j; <i;. W.lo.g. j1 > jo > ... > j;. Note that

n=201 4202 4 420t >d=2901 4904 4k

In particular, iy = j;. Moreover, either ¢ = e and j; = i1, ... je = %, or there exists 1 < k < e such
that j; =41,...Jk = i and i > Jpr1 > tht1-

Now, take any bankrupt (there will be at least one bankrupt already after the first transition).
If its counter is not 0, we reset it to 0 by pairing our bankrupt with the agent holding 271 = 2" coins.
It is now easy to bring this bankrupt into the final state. Indeed, if t = e and j; = i1,... je = ¢,
pair our bankrupt with the agent holding 2! coins, then with the agent holding 2% coins, and so
on, up to the agent holding 2 coins. Now, if there exists 1 < k < e, such that j; = iq,...jp = ix
and i, > jry1 > igr1, pair our bankrupt with the agent holding 2/t = 2% coins, then with the
agent holding 272 = 2?2 coins, and so on, up to the agent holding 2/++1 coins.

5 Proof of Theorem 1: The Second Protocol

In this section we establish a 1-aware population protocol with logy(d)+ 2+ O(1) states computing
the predicate R(n) = I{n > d}. Here, z is the number of 0’s in the binary representation of d — 1.

As a warm-up, we first consider d = 2¢*! — 1. In this case, z = 1. The protocol from the
previous section requires about 2log, d states for such d. We present a simple protocol which only
needs log, d + O(1) states for such d.

5.1 Warm-up: case d = 2F+1 — 1.,

Again, initially each agent holds 1 coin. As before, we distinguish between bankrupt and non-
bankrupt agents. A non-bankrupt agent can hold 1,2,...,2¥"! or 2¥ coins. Thus, there are k + 1
possible states of non-bankrupt agents, 1 state indicating bankrupts, and also 1 final state — in
total, k + 3 = logy d + O(1) states.

We now describe the transitions of the protocol. Assume that two agents both having 2' coins
for some 0 < i < k — 1 meet. Then, as in the previous section, one of them gets 2'T! coins and the
other one becomes bankrupt. Now, when two agents both having 2°~! coins meet, one of them gets
2% coins and the other one gets 1 coin “out of nowhere”. When two agents with 2* coins meet, both
of them come into the final state. Finally, if an agent is already in the final state, then everybody



this agent meets also comes into the final state. All the other encounters do not change states of
agents.

The rest of the argument has the same two parts — “soundness” and “completeness”. “Sound-
ness” means that if n, the total number of agents, is smaller than d, then no agent can come into
the final state. “Completeness” means that if n > d, then, after any sequence of encounters, it is
still possible to bring one of the agents into the final state. Similarly to the argument from the
previous section, “soundness” and “completeness” imply that our protocol is a l-aware protocol
computing R(n) = I{n > d}.

Let us start with the soundness. Assume that n < d. We claim that an “out of nowhere” coin
may occur at most once. Indeed, consider the first time it occurs. At this moment, one of the
agents gets 2% coins. Nothing happens with these 2¥ coins unless we get one more agent with 2%
coins. However, all the other agents in total have (n—2%)+1 < (281 —1—-2%)4+1 = 2* coins. Thus,
from now on it is impossible to get two agents with 25=1 coins. In particular, it is impossible to get
a coin “out of nowhere”. This means that the total number of coins never exceeds n + 1 < 2F+1,
However, to bring somebody into the final state, we must have at least 27! coins. The soundness
is proved.

Let us now show the completeness. Assume that n > d. Let C be any configuration, reachable
from the initial configuration of n agents. Assume for contradiction that no configuration with an
agent in the final state is reachable from C. Let D be a configuration which is reachable from C
and has the most coins in total (as any agent can hold up to 2* coins, the total number of coins
is bounded by n2¥). Next, let D’ be a configuration which is reachable from D and has the least
number of non-bankrupts. We have at most 1 agent with 2¢ coins in D’ — otherwise we could
reach the final state. Also, in D’ there is at most one agent with 2~ coins — otherwise we could
increase the total number of coins. Similarly, for every 0 < ¢ < k — 1, there is at most one agent
with 2% coins — otherwise one could decrease the number of non-bankrupts. Thus, we have at most
1+2+...42% =d coins in total. Initially, there are n > d coins. The total number of coins does
not decrease in our protocol. Hence, in D’ there must be exactly d = 1 + 2+ ... 4+ 2F coins. In
particular, in D’ there must be an agent with 2¥ coins. When an agent with 2* coins occurs, we
also get a coin “out of nowhere”. This means that in D’ the total number of coins is bigger than in
the initial configuration. That is, initially there were at most d — 1 coins, contradiction.

5.2 General case

We assume that d is not a power of 2 (otherwise we could use the protocol from Section 4). Let 2%
be the largest power of 2 below d. Define a = 2¥*1 — d. Observe that:

ol _1=11...1=(d-1)+a
k+1

Since 2F < d < 2**1 there are k+ 1 digits in the binary representation of d — 1. Hence, the number
of 1’s in the binary representation of a equals the number of 0’s in the binary representation of
d — 1 (that is, equals z).
Assume that
a=20 4 2ob2 4 4 obs (1)

where by > by > ... > b,. Note that a = 2871 — d < 2F+1 — 2k — 92k Hence, b; < k.
The protocol in the general is essentially the same as for the case d = 251 — 1, except that
instead of just 1 coin “out of nowhere” we get a coins “out of nowhere” every time two agents with

2F=1 coins meet. However, there will be additional technical difficulties, as @ might not be a power
of 2.



In more detail, a non-bankrupt agent may have
se{l1,2,...,2F 20y ob2 obi | gba | 9bs 1 obiy obz 4 95 — ) coins.

Thus, a non-bankrupt agent can be in one of the k + z states. Taking into the account the state
indicating bankrupts and the final state, in total we have k + z + 2 < logy d + z + O(1) states. We
will call agents that hold 20" + 22 4 ... + 2% coins for some i > 1 non-standard.

Let us now describe transitions of the protocol. When two agents with 2’ coins meet, where
0 < i < k—1, one of them gets 27! coins and the other one becomes bankrupt. When two
agents with 271 coins meet, one of them gets 2* coins and the other one gets a coins “out of
nowhere”. When two agents with 2* coins meet, both of them come into the final state. Now, when
a non-standard agent with 2% + ... + 2% meets a bankrupt, this bankrupt gets 2% coins, and the
non-standard agent is left with 2% 4 ... 4 2%-1 coins (if 4 = 2, the non-standard agent becomes
standard). Finally, if an agent is already in the final state, then everybody this agent meets also
comes into the final state. All the other encounters do not change the states of agents.

Let us now show the soundness of our protocol. Assume that the number of agents is n < d.
We show that no agent can be brought into the final state. For that, we first show that we can get
a coins out of nowhere at most once. Indeed, consider the first time this happened. We get one
agent with 2% coins. Other agents have n — 2F 4 a = n — 2F + (2F+1 — d) < 2* coins in total (the
inequality holds because n < d). Thus, we will never have two agents with 2! coins again. Thus,
in any execution, the total number of coins never exceeds n+a = n + (281 —d) < 281, However,
to bring somebody into the final state, we must have two agents with 2¥ coins.

Let us now show the completeness of our protocol. Assume that n > d. Let C' be any configura-
tion, reachable from the initial one. Assume for contradiction that no configuration with an agent
in the final state is reachable from C. Let C be a configuration which is reachable from C' and has
the most coins in total (as before, this number is bounded by n2¥). Next, let Cy be a configuration
which is reachable from C7 and minimizes the following parameter:

p = the number of standard non-bankrupt agents

+ 3 x the number of coins belonging to non-standard agents.

In C; there is at most one agent with 2* coins — otherwise, we could reach the final state. There is
also at most one agent with 2~ coins — otherwise, one could increase the total number of coins.
Similarly, for any 0 < i < k — 1, there is at most one agent in Cy with 2' coins (otherwise, by
pairing two agents with 2 coins, one could decrease p).

If there is no agent with 2¥ coins in C5, then we never got a coins out of nowhere on our path to
Cs. Indeed, when we get a coins out of nowhere, we get an agent with 2¥ coins, and nothing happens
with this agent unless the final state is reached. So there are 0 non-standard agents in Cs (they are
created only when we get coins out of nowhere). Hence, there are at most 14+2+...+2F1 < 2% < ¢
coins in (5, contradiction.

Hence, in Cy there is exactly one agent with 2¥ coins. Clearly, this also means that on our
path to Cy we got a coins out of nowhere exactly once. This is because the only transition creating
an agent with 2% coins is the transition creating a coins out of nowhere. Indeed, other transitions
with standard agents create smaller power of 2, and transitions with non-standard agents involve at
most a < 2F coins. We conclude that, first, in Cy there is exactly one agent with 2¥ coins, second,
there are n + a coins in total, and third, there is at most 1 non-standard agent (it could be created
only once, when we got a coins out of nowhere).

Assume first that all agents in Cy are standard. Then n+a < 1+2+ ... +2F = 2kl _ 1
Hence, n < oktl 1 _—g=d— 1, contradiction.
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Now, assume that in Cs there is exactly one non-standard agent who holds 2% + ... + 2% coins,
i > 1. Let us show that in C5 there exists a bankrupt agent. Indeed, assume for contradiction that
all agents in C5 are non-bankrupt. Now, leave every agent with exactly one coin. There will be
exactly n coins. That is, exactly a coins were taken. However, from the agent with 2¥ coins we
took 2¥ — 1 coins. Additionally, we took at least 1 coin from the non-standard agent. Hence, we
took at least 2¥ coins. Since a < 2, we obtain a contradiction.

Now, pair the non-standard agent with any bankrupt agent. We claim that the parameter p will
decrease (this will be a contradiction with the definition of C5). Indeed, as a result, we get at most
2 new standard non-bankrupt agents. However, the number of coins belonging to the non-standard
agent decreases by at least 1. Therefore, p decreases.
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