Skip to main content

Heterogeneous Multi-commodity Network Flows over Time

  • Conference paper
  • First Online:
Computer Science – Theory and Applications (CSR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13296))

Included in the following conference series:

  • 335 Accesses

Abstract

In the 1950’s, Ford and Fulkerson introduced dynamic flows by incorporating the notion of time into the network flow model (Oper. Res., 1958). In this paper, motivated by real-world applications including route planning and evacuations, we extend the framework of multi-commodity dynamic flows to the heterogeneous commodity setting by allowing different transit times for different commodities along the same edge.

We first show how to construct the time-expanded networks, a classical technique in dynamic flows, in the heterogeneous setting. Based on this construction, we give a pseudopolynomial-time algorithm for the quickest flow problem when there are two heterogeneous commodities. We then present a fully polynomial-time approximation scheme when the nodes have storage for any number of heterogeneous commodities. The algorithm is based on the condensed time-expanded network technique introduced by Fleischer and Skutella (SIAM J. Comput., 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B., Weihe, K.: Network flows: theory, algorithms and applications. ZOR-Methods Models Oper. Res. 41(3), 252–254 (1995)

    Google Scholar 

  2. Aronson, J.E.: A survey of dynamic network flows. Ann. Oper. Res. 20(1), 1–66 (1989)

    Article  MathSciNet  Google Scholar 

  3. Dhamala, T.N.: A survey on models and algorithms for discrete evacuation planning network problems. J. Indust. Manage. Optim. 11(1), 265–289 (2015)

    Article  MathSciNet  Google Scholar 

  4. Fleischer, L., Skutella, M.: Minimum cost flows over time without intermediate storage. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 66–75. Society for Industrial and Applied Mathematics (2003)

    Google Scholar 

  5. Fleischer, L., Skutella, M.: Quickest flows over time. SIAM J. Comput. 36(6), 1600–1630 (2007)

    Article  MathSciNet  Google Scholar 

  6. Fleischer, L., Tardos, É.: Efficient continuous-time dynamic network flow algorithms. Oper. Res. Lett. 23(3–5), 71–80 (1998)

    Article  MathSciNet  Google Scholar 

  7. Ford, L.R., Fulkerson, D.R.: Constructing maximal dynamic flows from static flows. Oper. Res. 6(3), 419–433 (1958)

    Article  MathSciNet  Google Scholar 

  8. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (1962)

    Google Scholar 

  9. Hall, A., Hippler, S., Skutella, M.: Multicommodity flows over time: efficient algorithms and complexity. Theoret. Comput. Sci. 379(3), 387–404 (2007)

    Article  MathSciNet  Google Scholar 

  10. Halpern, J.: A generalized dynamic flows problem. Networks 9(2), 133–167 (1979)

    Article  MathSciNet  Google Scholar 

  11. Hoppe, B.: Efficient dynamic network flow algorithms. Cornell University, Technical report (1995)

    Google Scholar 

  12. Hoppe, B., Tardos, É.: The quickest transshipment problem. Math. Oper. Res. 25(1), 36–62 (2000)

    Article  MathSciNet  Google Scholar 

  13. Kotnyek, B.: An annotated overview of dynamic network flows. Ph.D. thesis, INRIA (2003)

    Google Scholar 

  14. Powell, W.B., Jaillet, P., Odoni, A.: Stochastic and dynamic networks and routing. Handbooks Oper .Res. Manage. Sci. 8, 141–295 (1995)

    Article  MathSciNet  Google Scholar 

  15. Skutella, M.: An introduction to network flows over time. In: Cook, W., Lovasz, L., Vygen, J. (eds) Research Trends in Combinatorial Optimization, pp. 451–482. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-76796-1_21

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Bei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Bei, X., Qiao, Y., Tao, D., Chen, Z. (2022). Heterogeneous Multi-commodity Network Flows over Time. In: Kulikov, A.S., Raskhodnikova, S. (eds) Computer Science – Theory and Applications. CSR 2022. Lecture Notes in Computer Science, vol 13296. Springer, Cham. https://doi.org/10.1007/978-3-031-09574-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09574-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09573-3

  • Online ISBN: 978-3-031-09574-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics