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Abstract

Input-driven pushdown automata (also known as visibly pushdown automata and as
nested word automata) are a subclass of deterministic pushdown automata and a superclass
of the parenthesis languages. Nguyen and Ogawa (“Event-clock visibly pushdown automata”,
SOFSEM 2009) defined a timed extension of these automata under the event-clock model,
and showed that this model can be determinized using the method of region construction.
This paper defines a further extension of this model with the event clock on the call-return
operations, and proposes a new, direct determinization procedure for these automata: an
n-state nondeterministic automaton with k different clock constraints is transformed to a
deterministic automaton with 2n

2

states, 2n
2+k stack symbols and the same clock constraints

as in the original automaton. The construction is shown to be asymptotically optimal with
respect to both the number of states and the number of stack symbols.

Keywords: Timed systems, input-driven pushdown automata, visibly pushdown automata,
determinization, state complexity.

1 Introduction

Timed automata (TA), introduced by Alur and Dill [2], are finite automata operating in real time.
These automata enjoy decidable emptiness problem (equivalently, the state reachability problem)
and is implemeneted as UPPAAL 1 for safety checking. The decidability of emptiness holds under
various extensions with the pushdown stack, such as Dense-Timed Pushdown Automata (DTPDA)
of Abdulla et al. [1] with ages (representing local clocks), which are further analyzed by Clemente
and Lasota [10].

Although the emptiness problem for timed automata is decidable, timed automata are not
closed under complementation, and their nondeterministic case cannot generally be determinized.
Their inclusion problem is decidable only in the case of a single clock [19], and for two or more
clocks it becomes undecidable [2].

As an alternative timed device, the class of event-clock automata (ECA) was introduced by
Alur et al. [3] and further studied by Geeraerts et al. [11]: this class allows determinization and
complementation, and hence it enjoys decidable inclusion problem. An ECA is defined with
a “prophecy clock” and a “history clock” bound to each input symbol. The history clock ←−xa
associated to an input symbol a is always reset when a is read, and the prophecy clock −→xa predicts
the next occurrence of a.
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In general, when a pushdown stack is introduced, this often destroys the decidablity of the
inclusion problem, since asynchronous behavior of two pushdown stacks disrupts a direct product
of two devices. Even starting from finite automata, adding the pushdown stack makes the
inclusion undecidable.

To remedy this, a constraint on the synchronous behaviour of pushdown stacks is imposed
upon the model. The resulting input-driven pushdown automata [9, 13] (IDPDA), also known as
visibly pushdown automata [5] and as nested word automata [6], are defined over an alphabet split
into three parts: left brackets Σ+1, on which the automaton must push one stack symbol, right
brackets Σ−1, on which the automaton must pop one stack symbol, and neutral symbols Σ0, on
which the automaton ignores the stack. Unlike the standard pushdown automata, IDPDA are
closed under all Boolean operations, and they can be determinized. There is a Myhill–Nerode-like
characterization for these automata [4]. Major contributions of Alur and Madhusudan [5, 6]
include a lower bound on the number of states needed to determinize these automata, which
started a line of research on the succinctness of description for this model [16], and a Büchi-like
extension for ω-words [12,18].

Combining the ideas of input-driven pushdown and event-clock automata, event-clock visibly
pushdown automata were proposed by Nguyen and Ogawa [14], followed and extended by Bhave
et al. [7] and Bozzelli et al. [8]. This paper revisits this model, with the aim to investigate
the determinization and the emptiness problem, which leads the decidability of the inclusion
problem. We further extend the model by introducing special event clocks recording the duration
of the call/return relation. The resulting model is called event-clock input-driven pushdown
automata (ECIDPDA). We observe that the Boolean operations and the determinization work
in the presence of event clocks on the call/return relation. The determinization is direct, in the
sense that it does not rely on the classical discretization or “untime translation” method, which
allows the bisimulation of timed transitions to be maintained, and is not based on the region
construction, which handles the extension by the age of a stack symbol in Bhave et al. [7].

As per the proposed construction, presented in Section 4, any given n-state nondeterministic
automaton with k different clock constraints and with any number of stack symbols is transformed
to a deterministic automaton with 2n

2 states, 2n
2+k stack symbols and the same clock constraints

as in the original automaton. Furthermore, in Section 5, this construction is shown to be
asymptotically optimal both with respect to the number of states and with respect to the number
of stack symbols.

2 Definitions

Event-clock automata operate on timed strings over an alphabet Σ, that is, sequences of the
form w = (a1, t1) . . . (an, tn), where a1 . . . an ∈ Σ∗ is a string, and t1 < . . . < tn are real numbers
indicating the time of the symbols’ appearance.

For input-driven pushdown automata, the alphabet Σ is split into three disjoint classes:
Σ = Σ+1 ∪ Σ−1 ∪ Σ0, where symbols in Σ+1 are called left brackets, symbols in Σ−1 are right
brackets, and Σ0 contains neutral symbols. An input-driven automaton always pushes one stack
symbol upon reading a left bracket, pops one stack symbol upon reading a right bracket, and does
not access the stack on neutral symbols. Typically, a string over such an alphabet is assumed
to be well-nested with respect to its left and right brackets, but the most general definition of
input-driven automata also allows ill-nested inputs.

The proposed event-clock input-driven pushdown automata (ECIDPDA) operate on timed
strings over an alphabet Σ = Σ+1 ∪ Σ−1 ∪ Σ0. These automata operate like input-driven
automata, and additionally can evaluate certain constraints upon reading each input symbol.
These constraints refer to the following clocks:
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• a symbol history clock ←−xa, with a ∈ Σ, provides the time elapsed since the symbol a was
last encountered;

• a symbol prediction clock −→xa, with a ∈ Σ, foretells the time remaining until the symbol a
will be encountered next time;

• a stack history clock ←−−−xpush, defined on a right bracket, evaluates to the time elapsed since
the matching left bracket;

• a stack prediction clock −−→xpop, defined on a left bracket, foretells the time remaining until
the matching right bracket.

These values are formally defined as follows.

Definition 1. Let Σ = Σ+1 ∪Σ−1 ∪Σ0 be an alphabet. The set of clocks over Σ is C(Σ) = {←−xa |
a ∈ Σ } ∪ {−→xa | a ∈ Σ } ∪ {←−−−xpush,

−−→xpop}. Then, the value of a clock C ∈ C(Σ) on a timed string
w = (a1, t1) . . . (an, tn) at position i ∈ {1, . . . , n} is defined as follows.

• The value of a symbol history clock ←−xa on w at i is ti − tj, where j ∈ {1, . . . , i− 1} is the
greatest number with aj = a. If no such j exists, the value of ←−xa is undefined.

• The value of a symbol prediction clock −→xa on w at i is tj − ti, where j ∈ {i+ 1, . . . , n} is
the least number with aj = a. If no such j exists, the value of −→xa is undefined.

• The value of a stack history clock ←−−−xpush on w at i is defined only if ai is a right bracket
ai ∈ Σ−1, and this bracket has a matching left bracket aj ∈ Σ+1 at a position j < i. In this
case, the value of ←−−−xpush on w at position i is ti − tj; otherwise it is undefined.

• The value of a stack prediction clock −−→xpop on w at i is defined only if ai is a left bracket
ai ∈ Σ+1, and this bracket has a matching left bracket aj ∈ Σ−1 at a position j > i. In this
case, the value of −−→xpop on w at position i is tj − ti; otherwise it is undefined.

The original model by Nguyen and Ogawa [14] used only symbol history clocks ←−xa and symbol
prediction clocks −→xa. Stack history clocks ←−−−xpush were first introduced by Bhave et al. [7], who
called them the age of stack symbols. As compared to the definition of Bhave et al. [7], another
clock type, the stack prediction clock −−→xpop, has been added to the model: it is symmetric to the
stack history clock ←−−−xpush.

A clock constraint is a logical formula that restricts the values of clocks at the current position:
clocks values can be compared to constants, and any Boolean combinations of such conditions
can be expressed.

Definition 2. Let Σ = Σ+1 ∪ Σ−1 ∪ Σ0 be an alphabet. The set of clock constraints over Σ,
denoted by Φ(Σ), consists of the following formulae.

• For every clock C ∈ C(Σ) and for every non-negative constant τ ∈ R, the following are
atomic clock constraints: C 6 τ ; C > τ .

• If ϕ and ψ are clock constraints, then so are (ϕ ∨ ψ) and (ϕ ∧ ψ).

• If ϕ is a clock constraint, then so is ¬ϕ.

Let w = (a1, t1) . . . (an, tn) be a timed string, let i ∈ {1, . . . , n} be a position therein. Each
clock constraint can be either true or false on w at position i, which is defined inductively on its
structure.

• A clock constraint C 6 τ is true if the value of C on w at position i is defined and is at
most τ .
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Figure 1: Clock values for the string w = (0.1, c)(0.2, <)(0.4, <)(0.5, c)(0.7, >)(0.8,>)(1, d), at
the last right bracket, as in Example 1.

• A clock constraint C > τ is true if the value of C on w at position i is defined and is at
least τ .

• (ϕ ∨ ψ) is true on w at i, if so is ϕ or ψ;

• (ϕ ∧ ψ) is true on w at i, if so are both ϕ and ψ;

• ¬ϕ is true on w at i, if ϕ is not.

The following abbreviations are used: C = τ stands for (C 6 τ ∧ C > τ); C < τ stands for
(C 6 τ ∧ ¬(C > τ)); C > τ stands for (C > τ ∧ ¬(C 6 τ)).

Example 1. Let Σ = Σ+1 ∪ Σ−1 ∪ Σ0, with Σ+1 = {<}, Σ−1 = {>} and Σ0 = {c, d}, be an
alphabet. Let w = (0.1, c)(0.2, <)(0.4, <)(0.5, c)(0.7, >)(0.8,>)(1, d) be a well-nested timed string
over this alphabet, illustrated in Figure 1.

Then, the values of the clocks at position 6 (the last right bracket) are as follows: ←−−−xpush =
0.8− 0.2 = 0.6, ←−x< = 0.8− 0.4 = 0.4, ←−xc = 0.8− 0.5 = 0.3, ←−x> = 0.8− 0.7 = 0.1, ←−xd undefined,
−→x< undefined, −→xc undefined, −→x> undefined, −→xd = 1− 0.8 = 0.2, −−→xpop undefined. Accordingly, the
clock constraint ←−−−xpush > 0.1 ∨ −→xc > 0 is true, whereas ←−xc > 0.1 ∧ −→xd < 0.2 is false.

An event-clock automaton is equipped with a finite set of such clock constraints, and, at each
step of its computation, it knows the truth value of each of them, and can use this information to
determine its transition. The following definition is based on Nguyen and Ogawa [14] and on
Bhave et al. [7].

Definition 3. A nondeterministic event-clock input-driven pushdown automaton (ECIDPDA) is
an octuple M = (Σ+1,Σ0,Σ−1, Q,Q0,Γ, 〈δa〉a∈Σ, F ), in which:

• Σ = Σ+1 ∪ Σ−1 ∪ Σ0 is an input alphabet split into three disjoint classes;

• Q is a finite set of states;

• Γ is the pushdown alphabet;

• Q0 ⊆ Q is the set of initial states;

• for each neutral symbol c ∈ Σ0, the state change is described by a partial function δc : Q×
Φ(Σ)→ 2Q;

• the transition function by each left bracket symbol < ∈ Σ+1 is δ< : Q×Φ(Σ)→ 2Q×Γ, which,
for a given current state and the truth value of clock constraints, provides zero or more
transitions of the form (next state, symbol to be pushed);
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• for every right bracket symbol > ∈ Σ−1, there is a partial function δ> : Q×(Γ∪{⊥})×Φ(Σ)→
2Q specifying possible next states, assuming that the given stack symbol is popped from the
stack, or the stack is empty (⊥);

• F ⊆ Q is the set of accepting states.

The domain of the transition function by each symbol must be finite.
An accepting computation of A on a timed string w = (a1, t1) . . . (an, tn) is any sequence

(q0, α0), (q1, α1), . . . , (qn, αn), with q0, . . . , qn ∈ Q, and α0, . . . , αn ∈ Γ∗, that satisfies the
following conditions.

• It begins in an initial state q0 ∈ Q0 with the empty stack, α0 = ε.

• For each i ∈ {1, . . . , n}, with ai = c ∈ Σ0, there exists a clock constraint ϕi that is true on
w at position i, with qi ∈ δc(qi−1, ϕi) and αi = αi−1.

• For each i ∈ {1, . . . , n}, with ai = < ∈ Σ+1, there exists a clock constraint ϕi that is true
on w at position i, with (qi, s) ∈ δ<(qi−1, ϕi) and αi = sαi−1 for some s ∈ Γ.

• For each i ∈ {1, . . . , n}, with ai = > ∈ Σ−1, if αi−1 = sβ for some s ∈ Γ and β ∈ Γ∗, then
there exists a clock constraint ϕi that is true on w at position i, with qi ∈ δ>(qi−1, s, ϕi)
and αi = β

• For each i ∈ {1, . . . , n}, with ai = > ∈ Σ−1, if αi−1 = ε, then there exists a clock constraint
ϕi that is true on w at position i, with qi ∈ δ>(qi−1,⊥, ϕi) and αi = ε.

• The computation ends in an accepting state qn ∈ F with any stack contents.

The language recognized by A, denoted by L(A), is the set of all timed strings, on which A
has at least one accepting computation.

Definition 4. A nondeterministic event-clock input-driven automaton A = (Σ, Q,Q0, δ, F ) is
said to be deterministic, if the following conditions hold.

1. There is a unique initial state: |Q0| = 1.

2. Every transition function δa, with a ∈ Σ0 ∪ Σ+1, satisfies |δa(q, ϕ)| 6 1 for all q ∈ Q and
ϕ ∈ Φ(Σ), and whenever δa(q, ϕ) and δa(q, ϕ′), with ϕ 6= ϕ′, are both non-empty, the clock
constraints ϕ and ϕ′ cannot both be true at the same position of the same string.

3. Similarly, every transition function δ>, with > ∈ Σ−1, satisfies |δ>(q, s, ϕ)| 6 1 for all
q ∈ Q, s ∈ Γ∪ {⊥} and ϕ ∈ Φ(Σ), and whenever δc(q, s, ϕ) and δ(q, s, ϕ′), with ϕ 6= ϕ′, are
both non-empty, the clock constraints ϕ and ϕ′ cannot both be true at the same position of
the same string.

The first result of this paper is that nondeterministic event-clock input-driven pushdown
automata can be determinized. Determinization results for every similar models were earlier
given by Nguyen and Ogawa [14] and by Bhave et al. [7]. However, their constructions relied
on the method of region construction, in which the space of clock values is discretized. On the
other hand, the construction in the present paper has the benefit of being direct, in the sense
that the transition function for a deterministic automaton directly simulates the transitions of a
nondeterministic automaton. Later it will be proved that this easier construction is also optimal
with respect to the number of states and stack symbols. The proposed construction is not much
more difficult than the construction for standard input-driven automata, without time. The latter
construction is used as a model, and is recalled in the next section.
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3 Determinization of standard IDPDA without clocks

The proposed new determinization of nondeterministic event-clock input-driven pushdown au-
tomaton extends the well-known determinization for standard input-driven pushdown automata,
discovered by von Braunmühl and Verbeek [9] and later by Alur and Madhusudan [5,6].

To begin with the definition, nondeterministic input-driven automata (NIDPDA), operating
on standard strings w = a1 . . . an, are defined exactly like that ECIDPDA, with all mentions
of clock constraints removed: a transition function by a neutral symbol is δc : Q → 2Q, it is
δ< : Q→ 2Q×Γ for a left bracket and δ> : Q× (Γ ∪ {⊥})→ 2Q for a right bracket. An NIDPDA
is deterministic (DIDPDA) if each transition function gives a singleton set for any arguments.

Theorem 1 (von Braunmühl and Verbeek [9]). An NIDPDA A = (Σ, Q,Γ, Q0,⊥, [δa]a∈Σ, F ) over
an alphabet Σ = Σ+1∪Σ−1∪Σ0 can be simulated by a DIDPDA B = (Σ, Q′,Γ′, Q′0,⊥, [δ′a]a∈Σ, F

′),
with the set of states Q′ = 2Q×Q, and with the stack alphabet Γ′ = Σ+1 × 2Q×Q.

Proof. Every state P ⊆ Q × Q of B contains pairs of states of A, each corresponding to the
following situation: whenever (p, q) ∈ P , both p and q are states in one of the computations of A,
where q is the state at the current position, whereas p was the state just before starting to read
the longest well-nested substring ending at the current position.

The initial state of B, defined as q′0 = { (q, q) | q ∈ Q0 }, represents the behaviour of A on the
empty string, which begins its computation in an initial state, and remains in the same state.
The set of accepting states reflects all computations of A ending in an accepting state.

F ′ = {P ⊆ Q×Q | there is a pair (p, q) ∈ P with q ∈ F }

The transition functions δ′a, with a ∈ Σ, are defined as follows.

• For a neutral symbol c ∈ Σ0 and a state P ∈ QB, the transition δ′c(P ) = {(p, q′) | ∃(p, q) ∈
P : q′ ∈ δc(q)} directly simulates one step of A in all currently traced computations.

• On a left bracket < ∈ Σ+1, the transition in a state P ∈ QB is δ′<(P ) = (P ′, (<,P )), where

P ′ = {(q′, q′) | (∃(p, q) ∈ P )(∃γ ∈ Γ) : (q′, γ) ∈ δ<(q)}.

Thus, B pushes the current context of the simulation onto the stack, along with the current
left bracket, and starts the simulation afresh at the next level of brackets, where it will
trace the computations from all states q′ reachable by A at this point.

• For a right bracket > ∈ Σ−1 and a state P ′ ⊆ QB, the automaton pops a stack symbol
(<,P ) ∈ ΓB containing a matching left bracket and the context of the previous simulation.
Then, each computation in P is continued by simulating the transition by the left bracket,
the behaviour inside the brackets stored in P ′, and the transition by the right bracket.

δ′>(P ′, (<,P )) = {(p, q′′) | (∃(p, q) ∈ P )(∃(p′, q′) ∈ P ′)(∃s ∈ Γ) : (p′, s) ∈ δ<(q), q′′ ∈ δ>(q′, s)}.

• For an unmatched right bracket > ∈ Σ−1, the transition in a state P ∈ QB advances
all currently simulated computations of A in the same way as for a neutral symbol:
τ>(P,⊥) = {(p, q′) | ∃(p, q) ∈ P : q′ ∈ δ>(q′,⊥)}.

The correctness of the construction can be proved by induction on the bracket structure of an
input string.

This construction is asymptotically optimal: as proved by Alur and Madhusudan [5, 6], 2Θ(n2)

states are necessary in the worst case. Okhotin, Piao and Salomaa [15, Thm. 3.2] refined this
estimation to show that in the worst case a deterministic automaton also requires 2Θ(n2) stack
symbols.
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4 Direct determinization of event-clock IDPDA

The determinization construction in Theorem 1 shall now be extended to handle event-clock
input-driven automata.

The original untimed construction in Theorem 1 is based upon considering the original
automaton’s behaviour on a left bracket and on a matching right bracket at the same time, while
reading the right bracket. In this way, the stack symbol pushed while reading the left bracket is
matched to the symbol popped while reading the right bracket, and all possible computations
of this kind can be considered at once. However, in the event-clock case, the nondeterministic
decisions made on a left bracket are based upon the clock values at that time, and if the simulation
of thise decisions were deferred until reading the matching right bracket, then those clock values
would no longer be available. Since event-clock automata cannot manipulate clock values explicitly,
they, in particular, cannot push the clock values onto the stack for later use. However, what can
be done is to test all elementary clock constraints while reading the left bracket, store their truth
values in the stack, and later, upon reading the right bracket, use this information to simulate
the behaviour of the original automaton on the left bracket. This idea is implemented in the
following construction, which uses the same set of states as in Theorem 1, but more complicated
stack symbols.

Theorem 2. Let A = (Σ+1,Σ0,Σ−1, Q,Q0,Γ, 〈δa〉a∈Σ, F ) be a nondeterministic event-clock
input-driven automaton. Let Ψ be the set of atomic constraints used in its transitions. Then there
exists a deterministic event-clock input-driven automaton with the set of states Q′ = 2Q×Q, and
with the pushdown alphabet Γ′ = 2Q×Q×Σ+1× 2Ψ, which recognizes the same set of timed strings
as A.

Proof. States of the deterministic automaton B are again pairs (p, q) ∈ P , which means, as in
Theorem 1, that there is a computation of the original automaton A on the longest well-nested
suffix of the input, which begins in the state p and ends in the state q.

The initial state of B is q′0 = { (q0, q0) | q ∈ Q0 }.
For a neutral symbol c ∈ Σ0 and a state P ∈ Q′, the transition δ′c(P ) advances all current

computations traced in P by the next symbol c. Each computation continues by its own transition,
which requires a certain clock constraint to be true. Whether each clock constraint ϕ ∈ Φ(Σ)
is true or false, can be deduced from the truth assignment to the atomic constraints. In other
words, for every set of atomic constraints S ⊆ Ψ assumed to be true, ϕ is either true or false
under the assignment S. Also let ξS =

∧
C∈S C ∧

∧
C∈Ψ\S ¬C be a clock constraint asserting that

among all atomic constraints, exactly those belonging to S are true. Then, for every set S, the
new automaton has the following transition.

δc(P, ξS) = { (p, q′) | ∃(p, q) ∈ P, ∃ϕ : q′ ∈ δc(q, ϕ), ϕ is true under S }

On a left bracket < ∈ Σ+1, the transition of B in a state P ∈ Q′ pushes the current context
of the simulation onto the stack, and starts the simulation afresh at the next level of brackets,
where it will trace the computations beginning in different states r ∈ Q. A computation in a state
r is started only if any computations of A actually reach that state. In addition, B pushes the
current left bracket (<), as well as the truth value of all atomic constraints at the present moment,
S ⊆ Ψ. This is done in the following transitions, defined for every set of atomic constraints
S ⊆ Ψ.

δ′<(P, ξS) =
(
{ (r, r) | ∃(p, q) ∈ P, ∃ϕ ∈ Φ(Σ)) : ϕ is true under S, r ∈ δ<(q) }, (P,<, S)

)
All these data are only stored in the stack; at present, the transitions of A on this left bracket
(<) are considered only to the extent of determining all reachable states r. If a matching right
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Figure 2: (left) A computation of a nondeterministic event-clock IDPDA; (right) Its simulation
by a deterministic event-clock IDPDA.

bracket (>) is eventually read, then the computations of A reflected in P shall be simulated
further at that moment: then B shall pop (P,<, S) from the stack and reconstruct what has
happened to each of the computations of A at this point and further on. On the other hand, if
this left bracket (<) is unmatched, then the acceptance shall be determined on the basis of the
computations traced on the nested level of brackets.

When B encounters a matched right bracket > ∈ Σ−1 in a state P ′ ⊆ Q ×Q, it pops a
stack symbol (P,<, S) ∈ Γ′ containing the matching left bracket (< ∈ Σ+1), the data on all
computations on the current level of brackets simulated up to that bracket (P ⊆ Q×Q), and the
truth value of all atomic clock constraints at the moment of reading that bracket (S ⊆ Ψ).

Then, each computation in P is continued by simulating the transition by the left bracket
(<), the behaviour inside the brackets stored in P ′, and the transition by the right bracket (>).
Let u<v> be the longest well-nested suffix of the string read so far. Every computation of A on
u, which begins in a state p and ends in a state q, is represented by a pair (p, q). Upon reading
the left bracket (<), the automaton A makes a transition to a state p′, pushing a stack symbol
s, along with checking a clock constraint ϕ. The automaton B can now check the same clock
constraint by using the set of S of atomic clock constraints that held true at the earlier left
bracket (<). For every set of atomic constraints S′ ⊆ Ψ′, the following transition is defined.

δ′>(P ′, (P,<, S), ξS′) =
{

(p, q′′)
∣∣ (∃(p, q) ∈ P )(∃(p′, q′) ∈ P ′)(∃s ∈ Γ)(∃ϕ,ϕ′ ∈ Φ(Σ)) :

ϕ is true under S, (p′, s) ∈ δ<(q, ϕ), ϕ′ is true under S′, q′′ ∈ δ>(q′, s, ϕ′)
}

When B reads an unmatched right bracket > ∈ Σ−1 while in a state P ⊆ Q × Q, it
continues the existing computations on the new bottom level of brackets.

δ>(P,⊥, ξS) = { (p′, p′) | ∃(p, q) ∈ P, ∃ϕ : p′ ∈ δ>(q,⊥, ϕ), ϕ is true under S }

The set of accepting states reflects all computations of A ending in an accepting state.

F ′ = {P ⊆ Q×Q | there is a pair (p, q) ∈ P, with q ∈ F }

A formal correctness claim for this construction reads as follows.

Claim 1. Let uvw be a timed string, where v is the longest well-nested suffix of uv, and let
P ⊆ Q×Q be the state reached by B on uvw after reading uv. Then a pair (p, p′) is in P if and
only if there is a computation of A on uvw that passes through the state p right after reading u,
and later, after reading the following v, enters the state p′.

The claim can be proved by induction on the bracket structure of an input string.

It is interesting to note that the above determinization construction does not rely on the exact
form of clock constraints: the resulting deterministic automaton uses any kind of constraints
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used by the original nondeterministic automaton, and only communicates the results through the
stack in the form of Boolean values. The same construction would apply verbatim for any kind of
contraints expressed in the model: these could be any constraints mapping any pair of a timed
string (a1, t1) . . . (a`, t`) and a position i ∈ {1, . . . , `} to true or false.

5 A lower bound on the determinization complexity

The timed determinization construction in Theorem 2 produces 2n
2 states and 2n

2+k stack symbols,
where n is the number of states in the nondeterministic automaton and k is the number of atomic
clock constraints. It shall now be proved that this construction is asymptotically optimal. The
following theorem, proved in the rest of this section, is a timed extension of a result by Okhotin,
Piao and Salomaa [15, Thm. 3.2].

Theorem 3. For every n and for every k, there is an O(n)-state nondeterministic ECIDPDA
over an alphabet of size k +O(1), with nk stack symbols and k atomic constraints referring only
to symbol history clocks, such that every deterministic ECIDPDA recognizing the same timed
language must have at least 2n

2 states and at least 2n
2−O(n)+k stack symbols.

The automaton is defined over the following alphabet: Σ+1 = {<}, Σ−1 = {>}, Σ0 =
{a, b, c,#} ∪ { ei | 1 6 i 6 k }.

The problem solved by the automaton requires some notation to express. For a set of pairs
R = {(i1, j1), . . . , (i`, j`)} ⊆ {0, . . . , n− 1}2, let uR ∈ {a, b,#} be the string that lists all pairs in
R in the lexicographical order, under the following encoding.

uR = #ai1bj1 #ai2bj2 . . .#ai`bj`

For every set of symbols X = {ei1 , . . . , ei`} ⊆ {e1, . . . , ek}, let vX = e1 . . . ekei1 . . . ei` be the
string that first lists all the symbols in {e1, . . . , e`}, and then only the symbols in X.

Now, let m > 1 be the number of levels in the string to be constructed, let
s1, . . . , sm, sm+1 ∈ {0, . . . , n− 1}2 be numbers, let R1, . . . , Rm ⊆ {0, . . . , n− 1}2 be relations, and
let X1, Y1, . . . , Xm, Ym ⊆ {e1, . . . , e`} be 2m sets of symbols. This information is encoded in the
following string.

w = vX1<uR1vX2<uR2 . . . vXm<uRm︸ ︷︷ ︸
w1

csm+1vYm>c
sm . . . vY2>c

s2vY1>c
s1︸ ︷︷ ︸

w2

The string is extended to a timed string by supplying time values with the following property: in
each string vXi , its first k symbols occur more than 1 time unit earlier than the subsequent left
bracket (<), whereas its remaining symbols representing the elements of Xi occur less than 1 time
unit earlier than the left bracket; similarly, in each string vYi , its first k symbols occur more than
1 time unit earlier than the next right bracket (>), while its remaining symbols occur less than 1
time unit earlier than the bracket. This allows an event-clock automaton to see the set Xi using
clock constraints while reading the left bracket (<), and to see Yi while at the right bracket (>).2

A timed string is said to be well-formed if it is defined as above, for some m, si, Ri, Xi and
Yi. A well-formed string is said to be valid, if the following conditions hold.

• First, (si, si+1) ∈ Ri for each i, that is, every two subsequent numbers given in the suffix
w2 must be listed as #asbt in the encoding uRi at the corresponding level of brackets.

2Some further technical extensions to the encoding are necessary to make sure that the automaton cannot see
anything else using any clock constraints. It is sufficient to list all symbols at predefined moments of time before
and after every substring, so that no checks based on clock constraints could reveal anything on the contents of
these substrings. To keep the notation simple, these details are omitted in the present version of this paper.

9



vX1

csm+1

>
vYm

. . .
csm

. . .

>
vY2

cs2

>
vY1

cs1<
uR1 vX2 <

uR2

vXm <
uRm

(s1,e1)
(s2,e2)

(sm,em)

qsm+1

Figure 3: A nondeterministic event-clock IDPDA checking the validity of a well-formed string.

• Secondly, Xi ∩ Yi 6= ∅ for each i, that is, there exists a symbol e ∈ {e1, . . . , ek} that occurs
less than 1 time unit before the left bracket (<), and later occurs again less than 1 time
unit before the right bracket (>).

Lemma 1. For every n and k, there exists a nondeterministic ECIDPDA using O(n) states, nk
stack symbols and k clock constraints, which accepts every valid well-formed string and does not
accept any invalid well-formed string.

Proof. This automaton operates as follows. First, it skips the symbols of vX1 . At the first transition
upon the left bracket (<), it nondeterministically guesses the number s1 ∈ {0, . . . , n− 1} and a
symbol e1 in X1 (checked by a clock constraint ←−xe1 < 1); then it pushes the pair (s1, e1) onto the
stack and enters a state in which it remembers the number s1 Inside the brackets, the automaton
skips some prefix of uR1 until eventually, at some separator #, it nondeterministically decides to
find s1 here. If this separator is followed by a substring other than as1 , the automaton rejects;
otherwise, it forgets the number s1 and reads a number s2 from the following substring bs2 . Then
it skips the rest of uR1 and the whole string vX2 while remembering the number s2. Upon seeing
the next left bracket (<), the automaton nondeterministically guesses a symbol e2 in X2 (and
verifies it by a clock constraints) and pushes the pair (s2, e2) onto the stack, entering the next
level of brackets in a state in which it remembers s2.

The process continues, until the automaton eventually finishes reading the first half of the
input (w1). At this time, it has pairs (s1, e1), . . . , (sm, em) in the stack and a number sm+1 in the
current state, which satisfy two conditions: first, (si, si+1) ∈ Ri for all i, and secondly, ei ∈ Xi

for each i. In the rest of the computation, while reading w2, the automaton shall verify that
the strings csm+1 , csm , . . . , cs1 encode exactly these numbers, and that each sets Yi encoded in a
string vYi contains the corresponding symbol ei.

As the automaton starts reading the string csm+1 in the state sm+1, it checks this single
number. Then it skips the substring vYm . Upon reading the right bracket (>), the automaton
pops the pair (sm, em) and uses clock constraints to verify that em is in Ym. The number sm is
read into the current state, and the automaton proceeds to check the rest of the numbers and
symbols in the same way.

If any checks fail, the automaton rejects immediately. If all checks are passed, the automaton
finishes reading the string and accepts.

Lemma 2. For every n and k, every deterministic ECIDPDA that accepts every valid well-formed
string and does not accept any invalid well-formed string must have at least 2n

2 states.

Proof. This is a standard argument, which does not use clocks at all. It is sufficient to use one-level
well-formed strings, defined for two numbers s, t ∈ {0, . . . , n−1}2, one relation R ⊆ {0, . . . , n−1}2
and two sets of symbols X,Y,⊆ {e1, . . . , e`}.

w = vX<uR︸ ︷︷ ︸
w1

ctvY>c
s︸ ︷︷ ︸

w2
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At the moment of reading the left bracket (<), a deterministic automaton knows only the set X
and nothing else. The symbol pushed at this moment does not depend on the relation R. Then,
after finishing reading w1 the automaton has to remember the entire set R in its internal state,
so that it could later check that the pair (s, t) is in R.

Suppose that the automaton has fewer than 2n
2 states. Then, there exist two distinct relations,

R and R′, with (s, t) ∈ R \R′, for which the automaton, in its computations on the valid string
w = v{e1}<uRc

tv{e1}>c
s and on the invalid string w′ = v{e1}<uR′c

tv{e1}>c
s, enters the same

state before reading ct. Then the automaton either accepts both w and w′ or rejects both strings,
which is a contradiction.

Lemma 3. For every n and k, every deterministic ECIDPDA that accepts every valid well-formed
string and does not accept any invalid well-formed string must have at least 2n

2−O(n)+k stack
symbols.

Proof. The proof is modelled on the proof by Okhotin, Piao and Salomaa [15, Lemma 3.4], with
the clock constraints added.

The argument uses binary relations that are both left-total and right-total: that is, relations
R ⊆ {0, . . . , n− 1}2 in which, for every x ∈ {0, . . . , n− 1}, there is an element y with (x, y) ∈ R,
and, symmetrically, for every y, there is an element x with (x, y) ∈ R. There are at least
2n

2 − 2n · 2n(n−1) such relations, hence their number is estimated as 2n
2−O(n).

Fix the number of levels m > 1, and let R1, . . . , Rm ⊆ {0, . . . , n− 1}2 be left- and right-total
relations, and let X1, . . . , Xm ⊆ {e1, . . . , e`} be non-empty sets of symbols. These parameters
define the first part w1 of a well-formed string. It is claimed that, after reading w1, a deterministic
automaton somehow has to store all relations R1, . . . , Rm and all sets X1, . . . , Xm in the available
memory: that is, in m stack symbols and in one internal state.

Suppose that, for some R1, . . . , Rm, R
′
1, . . . , R

′
m ⊆ {0, . . . , n − 1}2 and

X1, . . . , Xm, X
′
1, . . . , X

′
m ⊆ {e1, . . . , e`}, with (R1, . . . , Rm, X1, . . . , Xm) 6=

(R′1, . . . , R
′
m, X

′
1, . . . , X

′
m), the automaton, after reading the corresponding first parts w1

and w′1, comes to the same state with the same stack contents.

w1 = vX1<uR1vX2<uR2 . . . vXm<uRm

w′1 = vX′1<uR′1vX′2<uR′2 . . . vX′m<uR′m

First, as in the argument by Okhotin, Piao and Salomaa [15, Lemma 3.4], assume that
these parameters differ in an i-th relation, with (s, t) ∈ Ri \ R′i. Let si = s. Since all relations
Ri−1, . . . , R1 are right-total, there exists a sequence of numbers si−1, . . . , s1, with (sj , sj+1) ∈ Rj

for all j ∈ {1, . . . , i− 1}. Similarly, let si+1 = t. Since the relations Ri+1, . . . , Rm are left-total,
there is a sequence si+2, . . . , sm+1, with (sj , sj+1) ∈ Rj for all j ∈ {i+ 1, . . . ,m}. Construct the
following continuation for w1 and w′1.

w2 = csm+1vXm>c
sm . . . vX2>c

s2vX1>c
s1

The concatenation w1w2 is then well-formed and valid, whereas the concatenation w′1w2 is well-
formed and invalid, because (si, si+1) /∈ R′i. Since the automaton either accepts both or rejects
both, a contradiction is obtained.

Now assume that the prefixes w1 and w′1 use the same relations R1, . . . , Rm and differ in an
i-th set, with e ∈ Xi \X ′i. Since all relations are left-total, there exists a sequence of numbers
s1, . . . , sm, sm+1, with (sj , sj+1) ∈ Rj = R′j for all j ∈ {1, . . . ,m}. This time, the continuation
includes the sequence of numbers and takes all sets Xj from w1, except for Xi, which is replaced
by {e}.

w2 = csm+1vXm>c
sm . . . vXi+1>c

si+1v{e}>c
sivXi−1>c

si−1 . . . vX1>c
s1
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Then, both concatenations w1w2 and w′1w2 are well-formed. However, the concatenation w1w2 is
valid, whereas w′1w2 is invalid, because X ′i ∩ {e} = ∅. But the automaton again either accepts
both concatenations or rejects both of them, which is a contradiction.

This shows that, for each m > 1, the automaton must be able to reach at least (2n
2 − 2n ·

2n(n−1))m(2k − 1)m distinct configurations after reading different strings of the given form. Let Q
be the automaton’s set of states and let Γ be its stack alphabet. Then the following inequality
must hold for every m.

|Γ|m · |Q| > (2n
2 − 2n · 2n(n−1))m(2k − 1)m

Taking the m-th root of both sides yields the next inequality.

|Γ| · m
√
|Q| > (2n

2 − 2n · 2n(n−1))(2k − 1)

Since m
√
|Q| < 2 for m large enough, this proves the desired lower bound on the number of stack

symbols.
|Γ| > 2n

2−O(n)+k

The proof of Theorem 3 follows from Lemmata 1–3.

6 Improved determinization

Another determinization construction given below additionally eliminates all references to the
stack prediction clock (−−→xpop). If the input string is well-nested, such constraints could be handled
within the construction in Theorem 2: whenever the nondeterministic automaton reads a left
bracket (<) while checking such constraints, the simulating deterministic automaton shall defer
the verification of these constraints until the matching right bracket (>). However, if a left bracket
(<) turns out to be unmatched, then the constraint verification cannot be thus deferred, and the
construction has to be augmented with extra states to handle this possibility.

Theorem 4. Let A = (Σ+1,Σ0,Σ−1, Q,Q0,Γ, 〈δa〉a∈Σ, F ) be a nondeterministic event-clock
input-driven automaton, let Ψ0 be the set of all atomic set prediction constraints used in its
transitions, and let Ψ be the set of all other atomic constraints used in its transitions. Then there
exists a deterministic event-clock input-driven automaton with the set of states Q′ = 2Q×Q × 2Q

and with the pushdown alphabet Γ′ = 2Q×Q×2Q×Σ+1×2Ψ, which never uses the stack prediction
clock (−−→xpop), and recognizes the same language.

Proof. This time, the states of B are pairs (P,R), with P ⊆ Q × Q and R ⊆ Q. The set P is
constructed in generally the same way as in Theorem 2, with a few changes needed to eliminate
all references to the stack prediction clock (−−→xpop). The set R contains all states reached by any
computations of A at this point, under the assumption that none of the stack symbols currently
in the stack shall ever be popped, that is, all the corresponding left brackets are unmatched. If the
end of the string is reached, this confirms the assumption, and acceptance can be determined
based on R. On the other hand, if the top stack symbol is ever popped, then all the data collected
in R are invalid and shall be discarded.

The initial state is q′0 =
(
{ (q0, q0) | q ∈ Q0 }, {q0}

)
.

On a neutral symbol c ∈ Σ0, the transition δ′c(P,R), for P ⊆ Q×Q and R ⊆ Q, advances
all the computations in P and in R by c. No stack prediction constraints are involved. For
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every set of atomic constraints S ⊆ Ψ assumed to be true, the new automaton has the following
transition.

δc(P,R, ξS) =
(
{ (p, q′) | ∃(p, q) ∈ P, ∃ϕ : q′ ∈ δc(q, ϕ), ϕ is true under S },
{ r′ | ∃r ∈ R, ∃ϕ : r′ ∈ δc(r, ϕ), ϕ is true under S }

)
On a left bracket < ∈ Σ+1, the transition δ′<(P,R), for P ⊆ Q × Q and R ⊆ Q, pushes

the current context of the simulation onto the stack. At the next level of brackets, it starts
a new simulation in the first component of the state, whereas in the second component, the
computations in R are continued under the assumption that the left bracket (<) being read is
unmatched. The following transition is defined for every set of atomic constraints S ⊆ Ψ assumed
to be true, with all atomic set prediction constraints assumed to be false.

δ′<((P,R), ξS) =
[(
{ (p′, p′) | p′ ∈ Q },

{ r′ | ∃r ∈ R, ∃ϕ ∈ Φ(Σ)) : ϕ is true under S, r′ ∈ δ<(r) }
)
,

(P,R,<, S)
]

On a matched right bracket > ∈ Σ−1, assume that B is in a state (P ′, R′) and pops a stack
symbol (P,R,<, S) ∈ Γ′. For each transition, let S′ ⊆ Ψ be the set of all atomic clock constraints
assumed to be true at the present moment. Under this assumption, the set S̃ ⊆ Ψ0 of stack predic-
tion constraints that were valid at the matching left bracket (<) can be determined from the sym-
metric stack history constraints in S′ by setting S̃ = {−−→xpop op τ | (←−−−xpush op τ) ∈ S′, op ∈ {6,>} }.
In all other respects, the set of pairs in the new state is determined by the same rules as in
Theorem 2.

Turning to the second component in the new state, the set R′ is discarded, because it is
valid only under the assumption that no stack symbols shall be popped, whereas the present
transition is an evidence to the contrary. Therefore, B takes the earlier set R and continues all
the computations traced therein.

δ′>((P ′, R′), (P,R,<, S), ξS′) =
[{

(p, q′′)
∣∣

(∃(p, q) ∈ P )(∃(p′, q′) ∈ P ′)(∃s ∈ Γ)(∃ϕ,ϕ′ ∈ Φ(Σ)) :

ϕ is true under S ∪ S̃, (p′, s) ∈ δ<(q, ϕ),

ϕ′ is true under S′, q′′ ∈ δ>(q′, s, ϕ′)
}
,{

r′′′
∣∣ (∃r ∈ R)(∃(r′, r′′) ∈ P ′)(∃s ∈ Γ)(∃ϕ,ϕ′ ∈ Φ(Σ)) :

ϕ is true under S, (r′, s) ∈ δ<(r, ϕ),

ϕ′ is true under S′, r′′′ ∈ δ>(r′′, s, ϕ′)
}]

On an unmatched right bracket > ∈ Σ−1 if B is in a state (P,R), then it discards P
and starts new computations on the new bottom level of brackets, whereas the computations
represented by R are continued into that level.

δ>((P,R),⊥, ξS) =
(
{ (p′, p′) | p′ ∈ Q },
{ r′ | ∃r ∈ R, ∃ϕ : r′ ∈ δ>(r,⊥, ϕ), ϕ is true under S }

)
A state (P,R) is set to be accepting if R contains at least one accepting state of A.

F ′ = { (P,R) | R ∩ F 6= ∅ }

Indeed, if B finishes reading the input string in a state (P,R), then all stack symbols currently in
the stack shall never be popped, and therefore R is the set of all states, in which A may finish
reading this string.
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Claim 2. On a timed string uvw, where v is the longest well-nested suffix of uv, after reading
uv, the automaton B reaches a state (P,R), with the following values of P ⊆ Q×Q and R ⊆ Q.
The set P contains a pair (p, p′) if and only if there is a computation of A on uvw that passes
through the state p right after reading u, and later, after reading the following v, enters the state
p′. Under the assumption that all left brackets unmatched in u are unmatched in uvw, the set R
contains a state r if and only if there is a computation of A on uvw that reaches the state r after
reading uv. If the assumption on the unmatched brackets does not hold, then the value of R is
undefined.

This claim is proved by the same kind of induction as in the proof of Theorem 2.
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