Skip to main content

A Multi-constraint Deep Semi-supervised Learning Method for Ovarian Cancer Prognosis Prediction

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13345))

Abstract

Evaluating ovarian cancer prognosis is important for patients’ follow-up treatment. However, the limited sample size tends to lead to overfitting of the supervised evaluation task. Considering to get more useful information from different perspectives, we proposed a semi-supervised deep neural network method called MCAP. MCAP introduced the heterogeneity information of the tumors through unsupervised clustering constraint, to help the model better distinguish the difference in the prognosis of ovarian cancer. Besides, the data recovering constraint is used to ensure learning a high-quality and low-dimensional representation of the genes in the network. For making a comprehensive analysis for ovarian cancer, we applied MCAP to seven gene expression datasets collected from TCGA and GEO databases. The results proved that the MCAP is superior to the other prognosis prediction methods in both 5-fold cross-validation and independent test.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al.: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, 71(3), 209–49 (2017)

    Google Scholar 

  2. Cox, D.: Regression models and life-tables. J. Roy. Stat. Soc. B 34(2), 187–202 (1972)

    MathSciNet  MATH  Google Scholar 

  3. Wang, H., Zhou, L.: Random survival forest with space extensions for censored data. Artif. Intell. Med. 79, 52–61 (2017)

    Article  Google Scholar 

  4. Wang, Q., Zhou, Y., Zhang, W., Tang, Z., Chen, X.: Adaptive sampling using self-paced learning for imbalanced cancer data pre-diagnosis. Expert Syst. Appl. 152, 113334 (2020)

    Article  Google Scholar 

  5. Jhajharia, S., Varshney, H.K., Verma, S., Kumar, R. (eds.) A neural network based breast cancer prognosis model with PCA processed features. In: 2016 International Conference on Advances in Computing, Communications and Informatics (2016)

    Google Scholar 

  6. Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for Cox’s proportional hazards model via coordinate descent. J. Stat. Softw. 39(5), 1–13 (2011)

    Article  Google Scholar 

  7. Wang, W., Liu, W.: PCLasso: a protein complex-based, group lasso-Cox model for accurate prognosis and risk protein complex discovery. Briefings in Bioinf. (2021)

    Google Scholar 

  8. Chai, H., Zhou, X., Zhang, Z., Rao, J., Zhao, H., Yang, Y.: Integrating multi-omics data through deep learning for accurate cancer prognosis prediction. Comput. Biol. Med. 134, 104481 (2016)

    Article  Google Scholar 

  9. Katzman, J.L., Shaham, U., Cloninger, A., Bates, J., Jiang, T., Kluger, Y.: DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network. BMC Med Res Methodol. 18(1), 24 (2018)

    Article  Google Scholar 

  10. Chaudhary, K., Poirion, O.B., Lu, L., Garmire, L.X.: Deep learning–based multi-omics integration robustly predicts survival in liver cancer. Clin. Cancer Res. 24(6), 1248–1259 (2018)

    Article  Google Scholar 

  11. Chai, H., Zhang, Z., Wang, Y., Yang, Y.: Predicting bladder cancer prognosis by integrating multi-omics data through a transfer learning-based Cox proportional hazards network. CCF Trans. High Perform. Comput. 3(3), 311–319 (2021). https://doi.org/10.1007/s42514-021-00074-9

    Article  Google Scholar 

  12. Qiu, Y.L., Zheng, H., Devos, A., Selby, H., Gevaert, O.: A meta-learning approach for genomic survival analysis. Nat. Commun. 11(1), 1–11 (2020)

    Article  Google Scholar 

  13. Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., et al.: limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43(7), e47 (2015)

    Article  Google Scholar 

  14. Zhang, Y., Yang, Q.: A survey on multi-task learning. IEEE Trans. Knowl. Data Eng. (2021)

    Google Scholar 

  15. Guo, X., Gao, L., Liu, X., Yin, J. (eds.) Improved Deep Embedded Clustering with Local Structure Preservation. Ijcai (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongyue Zhang or Yuedong Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chai, H., Guo, L., He, M., Zhang, Z., Yang, Y. (2022). A Multi-constraint Deep Semi-supervised Learning Method for Ovarian Cancer Prognosis Prediction. In: Tan, Y., Shi, Y., Niu, B. (eds) Advances in Swarm Intelligence. ICSI 2022. Lecture Notes in Computer Science, vol 13345. Springer, Cham. https://doi.org/10.1007/978-3-031-09726-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09726-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09725-6

  • Online ISBN: 978-3-031-09726-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics