
Definitional Quantifiers Realise Semantic
Reasoning for Proof by Induction

Yutaka Nagashima1[0000−0001−6693−5325]

Independent researcher, Cambridge, UK
united.reasoning@gmail.com

Abstract. Proof assistants offer tactics to apply proof by induction,
but these tactics rely on inputs given by human engineers. To automate
this laborious process, we developed SeLFiE, a boolean query language to
represent experienced users’ knowledge on how to apply the induct tactic
in Isabelle/HOL: when we apply an induction heuristic written in SeLFiE

to an inductive problem and arguments to the induct tactic, the SeLFiE

interpreter judges whether the arguments are plausible for that problem
according to the heuristic by examining both the syntactic structure of
the problem and definitions of the relevant constants. To examine the
intricate interaction between syntactic analysis and analysis of constant
definitions, we introduce definitional quantifiers. For evaluation we build
an automatic induction prover using SeLFiE. Our evaluation based on
347 inductive problems shows that our new prover achieves 1.4 · 103%
improvement over the corresponding baseline prover for 1.0 second of
timeout and the median value of speedup is 4.48x.

1 Introduction

The automation of proof by induction is a long standing challenge in Computer
Science. Conventionally, human researchers manually investigate both inductive
problems and relevant definitions to decide how to apply proof by induction. To
mechanise such analysis, this paper introduces definitional quantifiers: quanti-
fiers that range over the defining clauses of relevant constants to capture semantic
properties of inductive problems.

1.1 Motivating Example

Consider the following two ways to define a reverse function for lists presented
in a tutorial of Isabelle/HOL [39]:

@ :: α list ⇒ α list ⇒ α list

[] @ ys = ys

| (x # xs) @ ys = x # (xs @ ys)

rev1 :: α list ⇒ α list

rev1 [] = []

ar
X

iv
:2

01
0.

10
29

6v
2

 [
cs

.P
L

]
 2

0
M

ay
 2

02
2

2 Yutaka Nagashima

| rev1 (x # xs) = rev1 xs @ [x]

rev2 :: α list ⇒ α list ⇒ α list

rev2 [] ys = ys

| rev2 (x # xs) ys = rev2 xs (x # ys)

where # is the list constructor, [x] is a syntactic sugar for x # [], and @ is
the infix operator to append two lists into one. How do you prove the following
equivalence lemma?

lemma "rev2 xs ys = rev1 xs @ ys"

Since both reverse functions are defined recursively, it is natural to guess we
can tackle this problem with proof by induction. But how do you apply proof by
induction to this inductive problem? In this paper, we present SeLFiE, a boolean
query language to encode induction heuristics in a declarative form, and its fast
interpreter developed from scratch. SeLFiE is embedded in Isabelle/ML, the
implementation language of Isabelle/HOL, and implemented for Isabelle2020.
The key idea behind SeLFiE is definitional quantifiers: new kinds of quantifiers
that allow for definitional reasoning in a domain-agnostic style.

1.2 Background

A prominent proof automation approach for proof assistants is the so-called
hammer-style tools, such as HOL(y) Hammer [19] for HOL-light [13], CoqHam-
mer [9] for Coq, and Sledgehammer [2] for Isabelle/HOL [39]. Sledgehammer,
for example, translates proof goals in the polymorphic higher-order logic of Is-
abelle/HOL to monomorphic first-order logic and attempts to prove the trans-
lated goals using various external automated provers. Even though Sledgeham-
mer brought powerful automation to Isabelle/HOL [3]; when it comes to induc-
tive theorem proving the essence of inductive problems is lost in the translation,
severely impairing the performance of Sledgehammer.

This is unfortunate: most analyses of programs and programming languages
involve reasoning about recursive data structures and procedures containing re-
cursion or iteration [6], and inductive problems are essential to these analyses.

We address this long standing challenge with SeLFiE. SeLFiE stands for
semantic-aware logical feature extraction. SeLFiE has two main features: defini-
tional quantifiers, and domain-agnosticism. Domain-agnosticism allows users to
encode induction heuristics that can transcend problem domains, whereas def-
initional quantifiers allow SeLFiE heuristics to examine not only the syntactic
structures of inductive problems but also the definitions of relevant constants.

Our implementation, available at GitHub [30], is specific to Isabelle/HOL:
we implemented our system as an Isabelle theory for smooth user experience.
However, the underlying concept of definitional reasoning is transferable to other
proof assistants, such as Coq, Lean [29], and HOL[46]: no matter which proof
assistant we use, we need to reason over not only the syntactic structure of proof

Definitional Quantifiers 3

goals but also definitions relevant to the goals to decide how to apply proof by
induction.

The rest of the paper is organized as follows. Section 2 shows how to apply
proof by induction in Isabelle using the example from Section 1.1 and clarifies
the need for reliable heuristics. Section 3 gives an overview of what we mean
by encoding induction heuristics and applying them to inductive problems in
Isabelle/HOL. Since it is still a new approach to reason over inductive prob-
lems using a boolean query language, Section 4 reviews LiFtEr [31], an existing
framework developed to encode syntax-based heuristics for Isabelle/HOL. In
particular, we observe how LiFtEr’s quantifiers allow us to write heuristics in
a domain-agnostic style. Then, we identify what induction heuristics we cannot
encode in LiFtEr. In Section 5, we present SeLFiE and its fast interpreter de-
veloped from scratch. In addition to the domain-agnosticism given by LiFtEr’s
quantifiers, SeLFiE enables definitional reasoning using new language constructs
that allow for the reasoning about both the syntactic structure of proof goals
and the definitions of relevant constants. In Section, 6 we introduce a recom-
mendation system for the induct tactic as a use case of SeLFiE and build a fast
automatic inductive prover using this recommendation system, and we discuss
how much performance gain SeLFiE brought to inductive theorem proving in
Isabelle/HOL.

2 Proof by Induction in Isabelle/HOL

Modern proof assistants come with tactics to facilitate proof by induction. For
example, Isabelle/HOL offers the induct tactic. The user-interface of the induct
tactic allows for an intuitive application of proof by induction. For example,
Nipkow et al. [39] proved our motivating example as follows:

lemma model_proof: "rev2 xs ys = rev1 xs @ ys"

apply(induct xs arbitrary: ys) by auto

That is to say, they firstly applied structural induction on xs while general-
izing ys. Since xs is a list of any type, this application of structural induction
resulted in the following two sub-goals:

1. ∀ys. rev2 [] ys = rev1 [] @ ys

2. ∀a xs ys. (∀ys. rev2 xs ys = rev1 xs @ ys) =⇒
rev2 (a # xs) ys = rev1 (a # xs) @ ys

where ∀ and =⇒ represent the universal quantifier and implication of Isabelle’s
underlying logic respectively. The first sub-goal is the base case for the structural
induction, whereas the second sub-goal is the step case where we are asked
to prove that this conjecture holds for (a # xs) and ys, assuming that the
conjecture holds for the same xs and an arbitrary ys. Then, they proved the
remaining sub-goals using the general purpose tactic, auto. For the step case,
auto rewrote the left-hand side of the meta-conclusion as follows:

4 Yutaka Nagashima

rev2 (a # xs) ys using the second clause defining rev2

↪→ rev2 xs (a # ys)

whereas auto rewrote the right-hand side as follows:

rev1 (a # xs) @ ys using the second clause defining rev1

↪→ (rev1 xs @ [a]) @ ys using the associative property of @

↪→ rev1 xs @ ([a] @ ys) using the second clause defining @

↪→ rev1 xs @ (a # ([] @ ys)) using the first clause defining @

↪→ rev1 xs @ (a # ys)

Applying such rewriting, auto internally transformed the step case to the fol-
lowing intermediate goal:

∀a xs ys. (∀ys. rev2 xs ys = rev1 xs @ ys) =⇒
rev2 xs (a # ys) = rev1 xs @ (a # ys)

Since ys was generalized in the induction hypothesis, auto proved rev2 xs (a #

ys) = rev1 xs @ (a # ys) by considering it as a concrete case of the induction
hypothesis. If Nipkow et al. had not passed ys to the arbitrary field, the induct
tactic would have produced the following sub-goals:

1. rev2 [] ys = rev1 [] @ ys

2. ∀a xs ys. (rev2 xs ys = rev1 xs @ ys) =⇒
rev2 (a # xs) ys = rev1 (a # xs) @ ys

This step case requests us to prove that the original goal holds for (a # xs) and
ys, assuming that it holds for the same xs and the same ys that appear in the
induction hypothesis. If we apply auto to these sub-goals, auto proves the base
case, but it leaves the step case as follows:

∀a xs. rev2 xs ys = rev1 xs @ ys =⇒
rev2 xs (a # ys) = rev1 xs @ (a # ys)

That is, auto is unable to complete the proof attempt because ys is shared
both in the conclusion and induction hypothesis, illustrating the importance of
variable generalization.

Note that we did not have to develop induction principles manually for
model proof since the induct tactic found out how to apply structural induc-
tion from the arguments passed by Nipkow et al. In fact, for most of the time
Isabelle users do not have to develop induction principles manually, but they
only have to pass the right arguments to the induct tactic.

Furthermore, there are often multiple equally appropriate ways to prove one
theorem. For example, we could have proved our running example with the fol-
lowing script: apply (induct xs ys rule: rev2.induct) by auto. This script
applies computation induction using the auxiliary lemma, rev2.induct, in the
rule field. Fortunately, in many cases Isabelle automatically creates such aux-
iliary lemmas when defining relevant constants. In our case, Isabelle derived
rev2.induct automatically when defining rev2. This way, the induct tactic
reduces the problem of how to apply induction to the following three questions:

Definitional Quantifiers 5

Fig. 1: The overview of SeLFiE.

– On which terms do we apply induction?

– Which variables do we pass to the arbitrary field to generalize them?

– Which rule do we pass to the rule field?

However, answering these questions is a well-known challenge, which used to
require hard-won expertise. We developed SeLFiE to encode such expertise.

3 Overview of SeLFiE

Figure 1 shows how SeLFiE transfers such experienced users’ knowledge to new
users: when experienced users tackle inductive problems of their own, they en-
code their expertise about how they use the induct tactic as SeLFiE heuristics.
Each SeLFiE heuristic is an assertion that takes a triple of a proof goal, relevant
constant definitions, and arguments passed to the induct tactic. A well-written
SeLFiE assertion should return True if the arguments to the induct tactic are
likely to be useful to prove the problem, whereas it should return False if the
combination is not likely to be useful to prove the problem. When new users
want to know if their use of the induct tactic is appropriate or not, they apply
the assertion written by an expert to their own problem and learn if their choice
of arguments is compatible with the induction heuristic encoded by the expert.
Note that we highlighted parts of Figure 1 to emphasize the main differences
from the SeLFiE’s predecessor, LiFtEr, developed for a similar purpose.

Originally, we developed SeLFiE’s interpreter as an interactive tool to test a
choice of proof by induction in terms of experts’ heuristics. However, we can also
use SeLFiE to build fully automated inductive provers as shown in Section 6. In
the following, we review LiFtEr and explain why we need a reasoning framework
that can take relevant definitions into account to encode reliable heuristics.

6 Yutaka Nagashima

Syntax 1 The abstract syntax of LiFtEr / SeLFiE in one. The language com-
ponents unique to SeLFiE are highlighted.

argument := term | number
literal := term occ | rule | argument | . . .
assertion := atomic | literal | connective | quantifier | (assertion)

| λ assertions. assertion | assertion assertions
type := term | term occ | rule | number

modifier := induction | arbitrary | rule

quantifier := ∃x : type. assertion | ∀x : type. assertion
| ∃x : term ∈ modifier. assertion | ∀x : term ∈ modifier. assertion
| ∃x : term occ ∈ y : term. assertion
| ∀x : term occ ∈ y : term. assertion
| ∃D(term , λ arguments. assertion , arguments)

| ∀D(term , λ arguments. assertion , arguments)

connective := True | False |assertion ∨ assertion | assertion ∧ assertion
|assertion → assertion | ¬ assertion

atomic := term is free (term)

| are_same_term (term , term)

| is_nth_argument_of (term occ, number, term occ)

| is_nth_argument_in (term occ, number, term occ)

| are_of_same_term (term occ , term occ) | ...

4 Syntactic Reasoning in LiFtEr

4.1 LiFtEr: Logical Feature Extraction

LiFtEr is the first framework designed to describe how to use the induct tactic
without relying on domain-specific constructs. Syntax 1 outlines LiFtEr’s syn-
tax, which resembles that of first-order logic. When reading Syntax 1, we ignore
highlighted parts, which we discuss in Section 5.1.

As shown in Syntax 1, LiFtEr offers four primitive variable types: natural
numbers, induction rules, terms, and term occurrences. An induction rule is an
auxiliary lemma passed to the rule field of the induct tactic. The domain of
terms is the set of all sub-terms appearing in the inductive problem at hand,
whereas the domain of term occurrences is the set of all occurrences of such
sub-terms. LiFtEr distinguishes terms and term occurrences explicitly because
we often have multiple distinct occurrences of the same term in a syntax tree
and have to analyze the locations of such occurrences. For instance, the variable
ys appears twice in our theorem about list reversal. But what matters when
deciding which variables to generalize is the occurrence of ys on the left-hand
side and its location relative to the only occurrence of rev2, as we shall see in
Section 5.2. Quantifiers over terms can be restricted to those terms that appear
as arguments to the induct tactic under consideration.

Definitional Quantifiers 7

Program 1 Naive generalization heuristic in LiFtEr

∀ free var : term.

term_is_free (free var)
∧
¬ ∃ induct : induction. are_same_terms (free var, induct)

−→
∃ generalized : arbitrary. are_same_terms (free var, generalized)

4.2 Naive Generalization Heuristic in LiFtEr

As we saw in Section 2, the key to the successful application of the induct tactic
for our motivating example is the generalization of ys using the arbitrary field.
When explaining why they decided to generalize ys, Nipkow et al. introduced
the following generalization heuristic [38]:

Generalize induction by generalizing all free variables (except the induc-
tion variable itself).

We can encode this generalization heuristic in LiFtEr as shown in Program 1.
In plain English, Program 1 reads as follows:

For any term, free var, in a proof goal, if free var is a free variable but
not passed to the induct tactic as an induction term, there exists a term,
generalized, in the arbitrary field such that free var and generalized are
the same term.

If we evaluate this heuristic for our ongoing example and its model proof by
Nipkow et al., the LiFtEr interpreter returns True, approving the generalization
of ys. But this heuristic seems too coarse to produce reliable recommendations.
In fact, Nipkow et al. articulate the limitation of this heuristic:

However, it (this generalization heuristic) should not be applied blindly.
It is not always required, and the additional quantifiers can complicate
matters in some cases. The variables that need to be quantified are typ-
ically those that change in recursive calls.

Unfortunately, it is not possible to encode this provision in LiFtEr because it
involves reasoning on the structure of the syntax tree representing the definition
of a constant appearing in a proof goal, which is rev2 in this particular case.
In other words, LiFtEr heuristics can describe the structures of proof goals in
a domain-independent style, but they cannot describe the structures of relevant
constants’ definitions. What is much needed is a framework to reason about both
arbitrary proof goals and their relevant definitions in terms of the arguments
passed to the induct tactic in a domain-agnostic style. And this is the main
challenge addressed by SeLFiE.

8 Yutaka Nagashima

5 Semantic Reasoning in SeLFiE

5.1 Semantics-Aware Logical Feature Extraction

We designed SeLFiE to overcome LiFtEr’s limitation while preserving its capa-
bility to transcend problem domains. Syntax 1 presents the abstract syntax of
SeLFiE. Since SeLFiE inherits design choices from LiFtEr, we re-use Syntax 1;
however, we now include the highlighted constructs into our consideration.

Compared to LiFtEr, which resembles first-order logic, SeLFiE adopts lambda
abstractions and function applications to support the definitional quantifiers,
∃D and ∀D. These new quantifiers range over definitions of constants, so that
we can handle constant definitions abstractly to develop semantic-aware induc-
tion heuristics that can transcend problem domains, whereas the conventional
quantifiers from LiFtEr range over terms and term occurrences, so that we can
handle terms and their occurrences abstractly to develop syntax-based induction
heuristics in a domain-agnostic style.

More specifically, each definitional quantifier takes a triple of:

– a term whose defining clauses are to be examined,
– a lambda function, which examines the relevant definitions, and
– a list of arguments, each of which is either a term or natural number. They

are passed to the aforementioned lambda function to bridge the gap between
the analysis of a proof goal and the analysis of relevant definitions.

For example, ∃D (const, λxs. f xs, as) returns True if λxs. f xs returns
True when applied to as for at least one clause that defines const. Similarly, ∀D
(const, λxs. f xs, as) returns True if λxs. f xs returns True when applied
to as for all clauses that define const.

The conventional quantifiers outside and inside definitional quantifiers be-
have differently: inside the lambda function passed as the second argument to
definitional quantifiers, conventional quantifiers’ domains are based on the rele-
vant definitions under consideration. For example, a quantifier over terms inside
a definitional quantifier ranges over terms that appear in the relevant defining
clause under consideration.

In the following we focus on the operational aspect of definitional quantifiers,
so that readers can grasp their nature using a concrete example in Section 5.2.

Figure 2 illustrates the overall workflow of the SeLFiE interpreter when ap-
plied to an inductive problem and arguments of the induct tactic. In this figure,
we assume that the SeLFiE assertion has only one definitional quantifier for a
simpler explanation; however, in general, a SeLFiE heuristic may contain multi-
ple definitional quantifiers. The small square, labelled as inner part, represents
the lambda function passed as the second argument to this definitional quan-
tifier, whereas outer part represents everything else in the SeLFiE assertion.
Now based on this figure we explain how the SeLFiE interpreter works using the
following eight steps from S1 to S8.

S1. Firstly, the SeLFiE interpreter takes a SeLFiE heuristic.

Definitional Quantifiers 9

Fig. 2: The workflow of the SeLFiE interpreter.

S2. Then, the preprocessor of SeLFiE transforms the syntax tree representing
the inductive problem into a look-up table. This look-up table replaces slow
traversals in the syntax tree with quick accesses to term occurrences using
their paths from the root node.

S3. The SeLFiE interpreter processes the outer part of the assertion using the
newly implemented LiFtEr interpreter.

S4. When the SeLFiE interpreter reaches the definitional quantifier, it extracts
the clauses that define the first argument of the definitional quantifier from
the underlying proof context.

S5. The interpreter transforms the syntax tree representing the relevant defini-
tions into look-up tables.

S6. The LiFtEr interpreter applies the inner part of the assertion, which is the
lambda function passed as the second argument of the definitional quantifier,
to the list of arguments, which is the third argument of the definitional
quantifier, based on the look-up tables produced in S5.

S7. The result of S6 is then returned to the LiFtEr interpreter.

S8. The LiFtEr interpreter continues to evaluate the remaining outer part using
the return value from the inner part.

We named our language SeLFiE partly because we extended LiFtEr, so that
LiFtEr can call itself to support definitional quantifiers, but also because SeLFiE
heuristics can attain the semantics of inductive problems using definitional quan-
tifiers. Our motto is that:

10 Yutaka Nagashima

Program 2 Syntactic analysis of more reliable generalization heuristic in SeLFiE

∀ arb term : term ∈ arbitrary.

∃ f term : term.

∃ f occ : term_occ ∈ f term.

∃ arb occ ∈ arb term.

∃ generalize nth : number.

is_nth_argument_of (arb occ, generalize nth, f occ)
∧
∃D(f term, generalize_nth_argument_of, [generalize nth, f term])

Program 3 Definitional analysis of a generalization heuristic in SeLFiE

generalize_nth_argument_of :=

λ [generalize nth, f term].

∃ lhs occ : term_occ. is_left_hand_side (lhs occ)
∧
∃ nth param on lhs : term_occ.

is_nth_argument_in (nth param on lhs, generalize nth, lhs occ)
∧
∃ nth param on rhs : term_occ.

¬ are_of_same_term (nth param on rhs, nth param on lhs)
∧
∃ f occ on rhs : term_occ ∈ f term.

is_nth_argument_of (nth param on rhs, generalize nth, f occ on rhs)

We analyze inductive problems semantically by analyzing their relevant
definitions syntactically.

5.2 Semantics-Aware Generalization Heuristic

We now improve the naive generalization heuristic from Section 4.2 in SeLFiE.
More specifically, we encode the provision to the generalization heuristic dis-
cussed in Section 4.2 as Program 2 and Program 3. Intuitively, when applied to
model proof, these programs realise the following dialogue:

– Program 2 asks “Should we generalize ys, which appears as the second ar-
gument of rev2?”

– Program 3 answers “Yes, because the second argument changes from the
left-hand side to the right-hand side in the second clause defining rev2.”

Keeping this dialogue in mind, we examine how the SeLFiE interpreter formally
processes this heuristic for our running example.

S1. We pass Program 2 and 3, and model proof to the SeLFiE interpreter.
S2. The interpreter transforms the syntax tree representing the proof goal into

a look-up table for faster processing.

Definitional Quantifiers 11

S3. The SeLFiE interpreter processes the outer part for the syntax tree repre-
senting the proof goal itself. Note that the domains of quantifiers over terms
and term occurrences are based on those terms and their occurrences within
the proof goal itself.
In model proof, only one variable, ys, is generalized in the arbitrary field.
Therefore, for model proof to satisfy this generalization heuristic we only
have to satisfy inner existential quantifiers when arb term is ys. Thus, we
instantiate each existentially quantified variable in Program 2 as follows:
• f term with rev2,
• f occ with the sole occurrence of rev2 in the proof goal,
• arb occ with the occurrence of ys on the left-hand side in the goal, and
• generalize nth with 2.

Then, is nth argument of returns True since ys on the left-hand side is the
second argument to rev2 in the goal.

S4. When the interpreter hits ∃D with f term being rev2, it extracts the two
syntax trees defining rev2 from the proof context. Since ∃D is an existential
quantifier, we only have to show that Program 3 returns True for one of the
two equations defining rev2. In the following, we focus on the second clause,
rev2 (x # xs) ys = rev2 xs (x # ys).

S5. The interpreter transforms each syntax tree representing a clause defining
rev2 into a look-up table for faster processing.

S6. The interpreter evaluates Program 3 with 2 as generalize nth and rev2 as
f term, since they are passed from Program 2. Note that the domains of
quantifiers over terms and term occurrences are now all terms and term oc-
currences in rev2 (x # xs) ys = rev2 xs (x # ys). To satisfy Program
3 we instantiate existentially quantified variables as follows:
• lhs occ with the left-hand side of the equation, rev2 (x # xs) ys,
• nth param on lhs with the occurrence of ys, which appears as the second

argument on the left-hand side,
• f occ on rhs with the sole occurrence of rev2 on the right-hand side, and
• nth param on rhs with the sole occurrence of x # ys, which is the second

argument to rev2 bound by f occ on rhs.
Since x # ys and ys are not the same term, the interpreter evaluates Pro-
gram 3 to True for the second clause defining rev2, which is tantamount to
say we generalize the second argument of rev2 because the second argument
of rev2 changes in a recursive call in a domain-agnostic style.

S7. Program 3 returns True to Program 2.
S8. With this returned value, the interpreter evaluates Program 2 to True.

This is how Program 3 encodes the provision to the generalization heuris-
tic discussed in Section 4.2. Note that the interaction between the two programs
involves natural numbers, terms, and boolean values only: more complex reason-
ing, such as quantification over natural numbers, terms, and term occurrences,
happens only within each program because each module has its own domains for
terms and term occurrences. Furthermore, it is not allowed to pass term occur-
rences from a syntactic analysis to a definitional analysis through definitional

12 Yutaka Nagashima

tool top 1 top 3 top 5 top 10

sem ind 38.2 59.3 64.5 72.7
smart induct 20.1 42.8 48.5 55.3

(a) Coincidence rates [%]

tool 0.2 0.5 1.0 2.0 5.0

sem ind 8.8 24.7 47.8 69.8 86.8
smart induct 0.0 3.5 16.9 38.3 70.2

(b) Return rates [%] within timeouts [s]

Table 1: Coincidence rates and return rates

quantifiers. Therefore, we discuss relative locations of certain term occurrences
across syntax trees, by passing natural numbers and terms from the syntax level
to the definition level, as is done in this example. This clear separation between
syntactic and definitional reasoning improves the readability of this heuristic.

In this particular example, we demonstrated two-level analysis of syntax trees
using two SeLFiE programs. However, SeLFiE’s definitional quantifiers can or-
chestrate reasoning on arbitrary number of levels.

6 Case Studies and Evaluations

6.1 Interactive Recommendation System

Using SeLFiE, we previously developed sem ind, an interactive recommendation
system for proof by induction in Isabelle/HOL [33]. Given an inductive prob-
lem, sem ind produces a number of induction candidates and applies 44 SeLFiE

heuristics to these candidates. Each heuristic is tagged with a certain point, rep-
resenting the weight of each heuristic. Based on the sum of these points, sem ind

ranks the candidates and presents the 10 most promising ones to its users.
Nagashima evaluated sem ind against 1,095 inductive proofs from the Archive

of Formal Proofs (AFP) [21] and compared sem ind against its predecessor,
smart induct [32], which is written in LiFtEr.

Table 1a summarizes how often sem ind’s recommendations coincide with the
choices of human engineers. For example, Table 1a shows 38.2% for “sem ind” at
“top 1”. This means when considering only the top one candidate recommended
by sem ind, sem ind’s recommendations coincide with the choices of human
engineers for 38.2% of proof goals in the dataset. This is a 90.0% improvement
compared to smart induct, which reported 20.1 % for “top 1”.

Table 1b, on the other hand, summarizes how long it takes for sem ind to
produce recommendations. For example, Table 1b shows 8.8% for “sem ind” at
“0.2”. This means sem ind managed to produce recommendations for 8.8% of
proof goals in the dataset within 0.2 seconds of timeout. Furthermore, Nagashima
also reported that the median value of the execution time of sem ind is 1.06
seconds, while that of smart induct is 2.79 seconds, which is a 2.63x speedup.

6.2 Automatic Proof Search using SeLFiE

We integrated sem ind into an automatic inductive prover written in PSL [35]
and measured how SeLFiE improved PSL’s automatic proof search. PSL is a

Definitional Quantifiers 13

Program 4 Automatic inductive prover without SeLFiE

Auto_Solve = Thens[Auto, Solved]

PSL_WO_SeLFiE =

Ors[Auto_Solve,

PThenOne[Dynamic (Induct), Auto_Solve]

PThenOne[Dynamic(Induct), Thens[Auto, RepeatN(Hammer), Solved]]]

Program 5 Automatic inductive prover with SeLFiE

PSL_W_SeLFiE =

Ors[Auto_Solve,

PThenOne[Semantic Induct, Auto_Solve]

PThenOne[Semantic Induct, Thens[Auto, RepeatN(Hammer), Solved]]]

domain-specific language to describe rough ideas about how to find a proof using
backtracking search over tactics in Isabelle/HOL. In the following, we focus on
PSL’s constructs used in our evaluation leaving out irrelevant details of PSL.

Program 4 shows an example automatic inductive prover written in PSL,
which we use as the baseline prover in this evaluation. The strategy is called
PSL WO SeLFiE, and it combines three sub-strategies using the deterministic com-
binator Ors: it first tries the first sub-strategy, Auto Solve, and proceeds to the
second sub-strategy only if the first sub-strategy fails, and so on. Thens used in
Auto Solve is the sequential combinator, which combines Auto and Solved se-
quentially, and Auto in PSL corresponds to the auto tactic in Isabelle, while the
following Solved checks if all sub-goals are proved by auto. Hammer represents
the invocation of Sledgehammer, which is wrapped in RepeatN in Program 4.
This means “repeat applying Sledgehammer to the remaining sub-goals n times
where n is the number of sub-goals before applying Sledgehammer”. PThenOne
is the sequential parallel combinator: PThenOne takes exactly two sub-strategies
and applies the second sub-strategy to the results of the first sub-strategy in
parallel until at least one of them succeeds.

Dynamic (Induct) creates variants of the induct tactics with different argu-
ments based on the given goal and combine such variants non-deterministically.
However, when the interpreter produces such variants of the induct tactics us-
ing Dynamic (Induct), it does not know which one would be the most suitable
induction. Therefore, the interpreter naively combines variables and arguments
appearing in the proof goal to produce candidate induct tactics. In PSL, it
is the subsequent sub-strategies that are to identify the right arguments for
the induct tactic: PThenOne [Dynamic (Induct), Auto Solve], for example,
keeps applying auto to sub-goals emerging after applying the induct tactic with
various sequences of arguments until it finds a sequence that results in sub-goals
that are all proved by auto.

The drawback of this approach is that PSL’s interpreter cannot identify the
appropriate arguments for the induct tactic if it cannot complete a proof search:

14 Yutaka Nagashima

timeouts Program 5 Program 4

0.3[s] 11.0% 1.2%
1.0[s] 25.6% 1.7%
3.0[s] 28.2% 21.9%
10.0[s] 34.9% 28.0%
30.0[s] 45.8% 38.3%

(a) Success rates

speedup [times] occurrence

x < 1.0 3 (2.4%)
1.0 ≤ x < 5.0 64 (50.8%)
5.0 ≤ x < 10.0 44 (34.9%)
10.0 ≤ x < 15.0 9 (7.1%)

15.0 ≤ x < 6 (4.8%)

(b) Speedup of execution time

Table 2: Success rates and speedup

for difficult inductive problems, the interpreter often fails to complete a proof
search within a realistic timeout because Dynamic (Induct) tends to produce
a large number of induction candidates and the necessary proof steps after ap-
plying the induct tactic tend to be complicated. What was lacking was the
mechanism to identify promising induction candidates without relying on a proof
search, so that PSL’s interpreter can spend limited computational resources for
a small number of promising candidates to complete a proof search. For this
reason, we integrated sem ind into PSL, and we counted how many goals are
proved within each timeout.

Program 5 shows the new automatic prover. Here, Semantic Induct repre-
sents sem ind integrated into PSL’s environment. We highlighted the differences
in Program 5 from Program 4 to clarify that we are using almost the same PSL
strategy for a fair comparison except for the introduction of Semantic Induct.

For our evaluation, we used 12 Isabelle theory files from 8 projects about
various topics in the AFP, which in total include 347 proofs by induction. These
projects are about the depth-first search [40], binomial heaps [25], a boolean
expression checker [37], multi-dimensional binary search trees [42], the priority
search tree [23], linear temporal logic [45], imperative programming language
Simpl [44], and program verification competition [24]. We conducted this eval-
uation on a MacBook Pro (15-inch, 2019) with 2.6 GHz Intel Core i7 6-core
memory 32 GB 2400 MHz DDR4, and the reported execution times are based
on elapsed real time.

Table 2a shows how many inductive problems were proved by each program
within each timeout. For example, the timeout of 0.3[s] for Program 5 has 11.0%.
This means Program 5 proved 11.0% inductive problems in the dataset within
0.3 seconds. For a fair comparison we included not only the time spent by tac-
tics for proof search but also the time spent by sem ind when measuring the
execution time of each proof search. As shown in Table 2a, PSL enhanced with
sem ind proved more inductive problems than PSL without sem ind for various
timeouts. For 30.0 seconds of timeout, PSL with sem ind proved 159 inductive
problems, while PSL without sem ind proved 133 problems only. 126 problems
were proved by both provers within this timeout. For each problem proved by
both programs within 30.0 seconds, we computed the speedup of execution time
spent to complete each proof search. For example, Program 5 spent 0.325 sec-

Definitional Quantifiers 15

onds and Program 4 spent 2.171 seconds to prove a lemma named nexts set

in DFS.thy. Therefore, the speedup of execution time for this lemma is (2.171 /
0.325) = 6.68.

Table 2b shows the distribution of speedup observed among such problems.
For example, the second row reads 1.0 ≤ x < 5.0 and 64.0 (50.8%), and this
means that Program 5 achieved between 1.0x to 5.0x speedup compared to
Program 4 for 64 inductive problems proved by both provers. As shown in this
table, we confirmed that Program 5 achieved speedups over Program 4 except
for 3 cases, which constitutes 2.4% of problems proved by both provers within
30.0 seconds of timeout. The median value for speedup is 4.48x.

7 Conclusion

We presented SeLFiE, a boolean-query language to encode induction heuristics.
The abstraction brought by definitional quantifiers allow SeLFiE to transcend
problem domains while analysing not only the syntactic structures of inductive
problems but also definitions of relevant constants in a modular style.

Our conservative extension to LiFtEr’s syntax allows us to take advantage
of LiFtEr’s domain-agnosticism, while adding the capability to reason on the
semantics of proof goals. To realise such extension, we implemented SeLFiE’s
interpreter from scratch: since LiFtEr’s original interpreter was not designed
with definitional reasoning in mind, it did not support even lambda abstrac-
tion or function application, and suffered from poor performance, incremental
improvement was not realistic.

Nagashima implemented sem ind in SeLFiE, and we integrated sem ind into
PSL and built an automatic inductive prover. Our experiment showed that com-
pared to the baseline prover our inductive prover based on SeLFiE achieves
1.4 · 103% improvement of success rate for 1.0 second of timeout as well as a
4.48x speedup as the median value.

The final goal of this project is to build a strong inductive prover. It remains
our future work to further strengthen the automatic prover introduced in Section
6, by incorporating two conjecturing mechanisms, top-down conjecturing [36]
and bottom-up conjecturing [17], into our system.

8 Related Work

A well-known approach for inductive theorem proving is the Boyer-Moore water-
fall model [26], which was invented for a first-order logic on Common Lisp [18].
In the original waterfall model, a prover tries to apply any of the six techniques,
including simplification, generalization and induction. If any of these techniques
works, the prover stores the resulting sub-goals in a pool and continues to apply
the techniques until it empties the pool.

ACL2 [27] is the latest incarnation of this line of work with industrial ap-
plications [20]. To decide how to apply induction, ACL2 estimates how good

16 Yutaka Nagashima

each induction scheme is by computing a score, called hitting ratio, based on a
fixed formula [4,28], and it proceeds with the induction scheme with the highest
hitting ratio. Heras et al. used ML4PG learning method to find patterns to gen-
eralize and transfer inductive proofs from one domain to another in ACL2 [14].
Instead of computing a hitting ratio, we provide SeLFiE as a language, so that
Isabelle experts can encode their expertise as assertions.

There are ongoing attempts to extend saturation-based superposition provers
with induction: Cruanes presented an extension of typed superposition that can
perform structural induction [8], while Reger et al. incorporated lightweight au-
tomated induction [43] to the Vampire prover [22] and Hajdú et al. extended it
to cover induction with generalization [15]. Contrary to their work, our approach
to proof by induction uses Isabelle’s default induct tactic, which we can use for
arbitrary data types.

For more expressive logics, Jiang et al. employed multiple waterfalls [16] in
HOL Light [13]. However, to decide induction variables, they naively picked the
first free variable with recursive type and left the selection of promising induc-
tion variables as future work. Passmore et al. developed the Imandra automated
reasoning system [41], which also uses the waterfall model for its typed higher-
order setting. For Isabelle/HOL, Dixon et al. developed IsaPlanner [11], a generic
framework to encode proof plans [5]. IsaPlanner can incorporate reasoning tech-
niques, such as rippling [7], for proof by induction. For generalization, however,
IsaPlanner naively generalizes all non-induction variables [10].

Machine learning tools for tactic-based theorem proving mainly focus on tac-
tic recommendations and premise selections, leaving the problem of arguments
selection for tactics as an open question when arguments are terms [12,34,1].
Instead of relying on machine learning algorithms, we developed a language,
in which one can explicitly encode heuristics. We plan to use SeLFiE as a fea-
ture extractor for machine learning algorithms: by applying SeLFiE heuristics
to inductive problems, we can convert each pair of an inductive problem and in-
duction arguments to an array of boolean values, which is amenable for machine
learning algorithms. The application of SeLFiE as a preprocessor for machine
learning algorithms remains as our future work.

Acknowledgement

We thank the anonymous reviewers for the useful feedback, both at Tests and
Proofs 2022 and other conferences. This work was supported by the following
grants:

– NII under NII-Internship Program 2019-2nd call,

– the European Regional Development Fund under the project AI & Reason-
ing. (reg.no.CZ.02.1.01/0.0/0.0/15 003/0000466)

Definitional Quantifiers 17

References

1. Blaauwbroek, L., Urban, J., Geuvers, H.: Tactic learning and proving for the coq
proof assistant. In: LPAR 2020: 23rd International Conference on Logic for Pro-
gramming, Artificial Intelligence and Reasoning, Alicante, Spain (2020)

2. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending sledgehammer with SMT
solvers. In: Automated Deduction - CADE-23 - 23rd International Conference on
Automated Deduction, Wroclaw, Poland, 2011. Proceedings (2011)

3. Böhme, S., Nipkow, T.: Sledgehammer: Judgement day. In: Automated Reasoning,
5th International Joint Conference, IJCAR 2010, Edinburgh, UK. (2010)

4. Boyer, R.S., Moore, J.S.: A computational logic handbook, Perspectives in com-
puting, vol. 23. Academic Press (1979)

5. Bundy, A.: The use of explicit plans to guide inductive proofs. In: Lusk, E.L., Over-
beek, R.A. (eds.) 9th International Conference on Automated Deduction, Argonne,
Illinois, USA, May 23-26, 1988, Proceedings (1988)

6. Bundy, A.: The automation of proof by mathematical induction. In: Robinson,
J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning (in 2 volumes), pp.
845–911. Elsevier and MIT Press (2001)

7. Bundy, A., Stevens, A., van Harmelen, F., Ireland, A., Smaill, A.: Rippling: A
heuristic for guiding inductive proofs. Artif. Intell. (1993)

8. Cruanes, S.: Superposition with structural induction. In: Dixon, C.,
Finger, M. (eds.) Frontiers of Combining Systems - 11th Interna-
tional Symposium, FroCoS 2017, Braśılia, Brazil, September 27-29,
2017, Proceedings. Lecture Notes in Computer Science, vol. 10483, pp.
172–188. Springer (2017). https://doi.org/10.1007/978-3-319-66167-4 10,
https://doi.org/10.1007/978-3-319-66167-4_10

9. Czajka, L., Kaliszyk, C.: Hammer for Coq: Automation for dependent type theory.
J. Autom. Reasoning (2018). https://doi.org/10.1007/s10817-018-9458-4

10. Dixon, L.: A proof planning framework for Isabelle. Ph.D. thesis, University of
Edinburgh, UK (2006), http://hdl.handle.net/1842/1250

11. Dixon, L., Fleuriot, J.D.: IsaPlanner: A prototype proof planner in Isabelle. In:
Automated Deduction - CADE-19, 19th International Conference on Automated
Deduction Miami Beach, FL, USA, July 28 - August 2, 2003, Proceedings (2003)

12. Gauthier, T., Kaliszyk, C., Urban, J.: TacticToe: Learning to reason with HOL4
tactics. In: LPAR-21, 21st International Conference on Logic for Programming,
Artificial Intelligence and Reasoning, Maun, Botswana, May 7-12, 2017 (2017)

13. Harrison, J.: HOL light: A tutorial introduction. In: Formal Methods in Computer-
Aided Design, First International Conference, FMCAD ’96, Palo Alto, California,
USA, November 6-8, 1996, Proceedings. pp. 265–269 (1996)

14. Heras, J., Komendantskaya, E., Johansson, M., Maclean, E.: Proof-pattern recog-
nition and lemma discovery in ACL2. In: Logic for Programming, Artificial Intel-
ligence, and Reasoning - 19th International Conference, LPAR-19, Stellenbosch,
South Africa, December 14-19, 2013. Proceedings (2013)

15. Hozzová, P., Kovács, L., Schoisswohl, J., Voronkov, A.: Induction with generaliza-
tion in superposition reasoning. EasyChair Preprint no. 2468 (EasyChair, 2020)

16. Jiang, Y., Papapanagiotou, P., Fleuriot, J.D.: Machine learning for inductive the-
orem proving. In: Artificial Intelligence and Symbolic Computation - 13th Inter-
national Conference, AISC 2018, Suzhou, China, September 16-19, 2018 (2018)

17. Johansson, M., Rosén, D., Smallbone, N., Claessen, K.: Hipster: Integrating theory
exploration in a proof assistant. In: Intelligent Computer Mathematics CICM 2014
(2014)

https://doi.org/10.1007/978-3-319-66167-4_10
https://doi.org/10.1007/978-3-319-66167-4_10
https://doi.org/10.1007/s10817-018-9458-4
http://hdl.handle.net/1842/1250

18 Yutaka Nagashima

18. Jr., G.L.S.: An overview of common Lisp. In: Proceedings of the 1982 ACM Sym-
posium on LISP and Functional Programming, LFP 1980, August 15-18, 1982,
Pittsburgh, PA, USA. (1982)

19. Kaliszyk, C., Urban, J.: Hol(y)hammer: Online ATP service for HOL light. Math-
ematics in Computer Science (2015)

20. Kaufmann, M., Moore, J.S.: An industrial strength theorem prover for a logic based
on Common Lisp. IEEE Trans. Software Eng. (1997)

21. Klein, G., Nipkow, T., Paulson, L., Thiemann, R.: The Archive of Formal Proofs
(2004), https://www.isa-afp.org/

22. Kovács, L., Voronkov, A.: First-order theorem proving and vampire. In: Computer
Aided Verification - 25th International Conference, CAV 2013, Saint Petersburg,
Russia, July 13-19, 2013. Proceedings (2013)

23. Lammich, P., Nipkow, T.: Priority search trees. Archive of Formal Proofs (2019)
24. Lammich, P., Wimmer, S.: Verifythis 2019 – polished isabelle solutions. Archive of

Formal Proofs (Oct 2019)
25. Meis, R., Nielsen, F., Lammich, P.: Binomial heaps and skew binomial heaps.

Archive of Formal Proofs (2010)
26. Moore, J.S.: Computational logic : structure sharing and proof of program prop-

erties. Ph.D. thesis, University of Edinburgh, UK (1973)
27. Moore, J.S.: Symbolic simulation: An ACL2 approach. In: Formal Methods in

Computer-Aided Design, Second International Conference, FMCAD ’98, Palo Alto,
California, USA, November 4-6, 1998, Proceedings (1998)

28. Moore, J.S., Wirth, C.: Automation of mathematical induction as part of the his-
tory of logic. CoRR abs/1309.6226 (2013), http://arxiv.org/abs/1309.6226

29. de Moura, L.M., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The lean
theorem prover (system description). In: Automated Deduction - CADE-25 - 25th
International Conference on Automated Deduction, Berlin, Germany (2015)

30. Nagashima, Y.: Data61/PSL (2017), https://github.com/data61/PSL/

releases/tag/v0.2.1-alpha

31. Nagashima, Y.: LiFtEr: Language to encode induction heuristics for Isabelle/HOL.
In: Programming Languages and Systems - 17th Asian Symposium, APLAS 2019,
Nusa Dua, Bali, Indonesia, December 1-4, 2019, Proceedings (2019)

32. Nagashima, Y.: Smart induction for Isabelle/HOL (tool paper). In: Proceedings
of the 20th Conference on Formal Methods in Computer-Aided Design – FMCAD
2020 (2020)

33. Nagashima, Y.: Faster smarter proof by induction in Isabelle/HOL. In: Zhou, Z.
(ed.) Proceedings of the Thirtieth International Joint Conference on Artificial In-
telligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021.
pp. 1981–1988. ijcai.org (2021). https://doi.org/10.24963/ijcai.2021/273, https:

//doi.org/10.24963/ijcai.2021/273

34. Nagashima, Y., He, Y.: PaMpeR: proof method recommendation system for Is-
abelle/HOL. In: Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, ASE 2018, Montpellier, France (2018)

35. Nagashima, Y., Kumar, R.: A proof strategy language and proof script generation
for Isabelle/HOL. In: de Moura, L. (ed.) Automated Deduction - CADE 26 - 26th
International Conference on Automated Deduction, Gothenburg, Sweden (2017)

36. Nagashima, Y., Parsert, J.: Goal-oriented conjecturing for Isabelle/HOL. In: Intel-
ligent Computer Mathematics - 11th International Conference, CICM 2018, Ha-
genberg, Austria, August 13-17, 2018, Proceedings. pp. 225–231 (2018), https:

//doi.org/10.1007/978-3-319-96812-4_19

https://www.isa-afp.org/
http://arxiv.org/abs/1309.6226
https://github.com/data61/PSL/releases/tag/v0.2.1-alpha
https://github.com/data61/PSL/releases/tag/v0.2.1-alpha
https://doi.org/10.24963/ijcai.2021/273
https://doi.org/10.24963/ijcai.2021/273
https://doi.org/10.24963/ijcai.2021/273
https://doi.org/10.1007/978-3-319-96812-4_19
https://doi.org/10.1007/978-3-319-96812-4_19

Definitional Quantifiers 19

37. Nipkow, T.: Boolean expression checkers. Archive of Formal Proofs (Jun 2014)
38. Nipkow, T., Klein, G.: Concrete Semantics - With Isabelle/HOL. Springer (2014)
39. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - a proof assistant for higher-

order logic, Lecture Notes in Computer Science, vol. 2283. Springer (2002)
40. Nishihara, T., Minamide, Y.: Depth first search. Archive of Formal Proofs (2004)
41. Passmore, G.O., Cruanes, S., Ignatovich, D., Aitken, D., Bray, M., Kagan, E., Kan-

ishev, K., Maclean, E., Mometto, N.: The imandra automated reasoning system
(system description). In: Automated Reasoning - 10th International Joint Confer-
ence, IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings, Part II (2020)

42. Rau, M.: Multidimensional binary search trees. Archive of Formal Proofs (2019)
43. Reger, G., Voronkov, A.: Induction in saturation-based proof search. In:

Fontaine, P. (ed.) Automated Deduction - CADE 27 - 27th International
Conference on Automated Deduction, Natal, Brazil, August 27-30, 2019,
Proceedings. Lecture Notes in Computer Science, vol. 11716, pp. 477–494.
Springer (2019). https://doi.org/10.1007/978-3-030-29436-6 28, https://doi.

org/10.1007/978-3-030-29436-6_28

44. Schirmer, N.: A sequential imperative programming language syntax, semantics,
hoare logics and verification environment. Archive of Formal Proofs (Feb 2008)

45. Sickert, S.: Linear temporal logic. Archive of Formal Proofs (Mar 2016)
46. Slind, K., Norrish, M.: A brief overview of HOL4. In: Theorem Proving in Higher

Order Logics, 21st International Conference, TPHOLs 2008, Montreal, Canada,
August 18-21, 2008. Proceedings (2008)

https://doi.org/10.1007/978-3-030-29436-6_28
https://doi.org/10.1007/978-3-030-29436-6_28
https://doi.org/10.1007/978-3-030-29436-6_28

	Definitional Quantifiers Realise Semantic Reasoning for Proof by Induction

