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ABSTRACT

We demonstrate how category theory provides specifications that can efficiently be implemented via
imperative algorithms and apply this to the field of graph rewriting. By examples, we show how
this paradigm of software development makes it easy to quickly write correct and performant code.
We provide a modern implementation of graph rewriting techniques at the level of abstraction of
finitely-presented C-sets and clarify the connections between C-sets and the typed graphs supported
in existing rewriting software. We emphasize that our open-source library is extensible: by taking
new categorical constructions (such as slice categories, structured cospans, and distributed graphs)
and relating their limits and colimits to those of their underlying categories, users inherit efficient
algorithms for pushout complements and (final) pullback complements. This allows one to perform
double-, single-, and sesqui-pushout rewriting over a broad class of data structures.

Keywords Double pushout rewriting · category theory · graph rewriting

1 Introduction and motivation

Term rewriting is a foundational technique in computer algebra systems, programming language theory, and symbolic
approaches to artificial intelligence. While classical term rewriting is concerned with tree-shaped terms in a logical
theory, the field of graph rewriting extends these techniques to more general shapes of terms, typically simple graphs,
digraphs, multigraphs, or typed graphs. Major areas of graph rewriting are graph languages (rewriting defines a graph
grammar), graph relations (rewriting is a relation between input and output graphs), and graph transition systems
(rewriting evolves a system in time) [15].

When considering the development of software for graph rewriting, it is important to distinguish between studying
rewriting systems as mathematical objects and building applications on top of rewriting as infrastructure. The former
topic can answer inquiries into confluence, termination, reachability, and whether certain invariants are preserved
by rewriting systems. In contrast, we will focus on answering questions that involve the application of concretely
specified rewrite systems to particular data.

Category theory is a powerful tool for developing rewriting software, as the numerous and heterogeneous applications
and techniques of rewriting are elegantly unified by categorical concepts. Furthermore, the semantics of categorical
treatments of graph rewriting are captured by universal properties of limits and colimits, which are easier to reason
about than operational characterizations of rewriting. This is an instance of a broader paradigm of computational
applied category theory, which begins by modeling the domain of interest with category theory, such as using monoidal
categories and string diagrams to model processes. One is then free (but not required) to implement the needed
categorical structures in a conventional programming language, where the lack of a restrictive type system facilitates
a fast software development cycle and enables algorithmic efficiency. For example, arrays can be used to represent
finite sets, and union-find data structures can compute equivalence classes.
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Computational category-theoretic rewriting

Our approach takes the domain of interest modeled by category theory to be the field of graph transformation. This
was first suggested by Minas and Schneider [21] and is distinguished from existing tools by working at a higher level
of abstraction and developing rewriting capabilities within a broader framework of categorical constructions. While
current software tools are connected to category theory through their theoretical grounding in adhesive categories [18],
they are specialized to graphs in their implementation.

Connection to formal methods An orthogonal technique of applying category theory to rewriting software develop-
ment encodes category theory into the type system of the program itself. This strategy allows type checking to provide
static guarantees about the correctness of rewriting constructions. At present, it is not feasible to execute provably-
correct programs on large problems, as they generally have poor performance [29]. Translation-based approaches offer
an alternative to proof assistants by encoding graph rewriting into first-order logic and computing answers with SMT
solvers, which likewise suffer from scalability concerns when used as an engine to compute rewrites at scale [15]. We
distinguish computational applied category theory from this paradigm by analogy to the distinction between computa-
tional linear algebra and formalizations of linear algebra, a distinction visualized in Figure 1. One area in which these
paradigms can interact is through making the testing of unverified software more robust: extracted programs from
formalized proofs can serve as a test oracle and a basis for generating test cases [30].
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Figure 1: Two broad strategies for computational category theory. Applied category theory is used to represent the program’s
subject matter in the upper path, while category theory is encoded in the program’s structure or type system in the lower path. This
is not a commutative diagram.

Structure of the paper We will first introduce C-sets and typed graphs, the latter of which has been the focus of
preexisting graph rewriting software. Our first contribution is to elucidate the subtle relationships between these two
mathematical constructs, and we argue on theoretical and performance grounds that C-sets are more directly applicable
to many problems where typed graphs are currently applied. Our next contribution draws from previous theoretical
work of Löwe, who developed theory for DPO and SPO of C-sets [20]. We present the first software implementation of
this rewriting on C-sets and extend it with algorithms for SqPO and homomorphism finding. Our last contribution also
draws from preexisting theoretical work of Minas and Scheider as mentioned above - we describe a modern realization
of computational applied category theory and show how this paradigm allowed for these rewriting techniques to be 1.)
efficient, 2.) programmed at a high level, closely matching the mathematical specification, and 3.) extensible to new
categories. We lastly outline extensions of rewriting beyond C-sets, which highlight the flexibility of our technique.

2 Important categories in computational graph transformation

2.1 Graphs and their homomorphisms

We take graphs to be finite, directed multigraphs. Thus, a graph G is specified by two finite sets, GE and GV , giving
its edges and vertices, and two functions Gsrc, Gtgt : GE → GV , defining the source and target vertex of each edge.

We can compactly represent sets and functions by working in the skeleton of FinSet, where a natural number n is
identified with the set [n] := {1, ..., n}. A function f : [n] → [m] can be compactly written as a list [x1, x2, ..., xn],
such that f sends the element i ∈ [n] to the element xi ∈ [m]. This leads to the edge list representation of graphs,
which are encoded as two natural numbers and two lists of natural numbers (Figure 2).
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Computational category-theoretic rewriting

1• 2• 3•
Figure 2: A graph G, defined by GV = [3], GE = [3], Gsrc = [1, 2, 2], and
Gtgt = [2, 3, 3].

Given two graphs G and H , a graph homomorphism G
h−→ H consists of a mapping of edges, GE

hE−−→ HE and a
mapping of vertices, GV

hV−−→ HV , that preserve the graph structure, i.e., the following diagrams commute:

GE GV GE GV

HE HV HE HV

hE hV

Gsrc

Hsrc

Gtgt

hV

Htgt

hE (1)

Regarding the source graph as a pattern, the homomorphism describes a pattern match in the target. A graph homo-
morphism can also be thought of as a typed graph, in which the vertices and edges of G are assigned types from H .
For a fixed typing graph X , typed graphs and type-preserving graph homomorphisms form a category, namely the
slice category Grph/X [10].

2.2 C-sets and their homomorphisms

Graphs are a special case of a class of structures called C-sets.1 Consider the category C freely generated by the graph

E
s

⇒
t
V . A C-set is a functor from the category C to Set, which by definition assigns to each object a set and to each

arrow a function from the domain set to the codomain set. For this choice of C, the category of C-sets is isomorphic to
the category of directed multigraphs. Importantly, we recover the definition of graph homomorphisms between graphs
G and H as a natural transformation of functors G and H .

The category C is called the indexing category or schema, and the functor category [C,Set] is referred to as C-Set or
the category of instances, models, or databases. Given a C-set X , the set that X sends a component c ∈ Ob C to is
denoted by Xc. Likewise, the finite function X sends a morphism f ∈ HomC(a, b) to is denoted by Xf . We often
restrict to [C,FinSet] for computations.

In addition to graphs, Set itself can be thought of as C-Setew, where the schema C is the terminal category 1. We
can change C in other ways to obtain new data structures, as illustrated in Figure 3. C-sets can also be extended with
a notion of attributes to incorporate non-combinatorial data [32, 24], such as symbolic labels or real-valued weights.
For simplicity of presentation, we focus on C-sets without attributes in our examples.

Indexing Schema: !2 Example instance Database representation

<latexit sha1_base64="UUCjMkrTdWBJj+s+ldaKuce1xKY="></latexit>

T E V

@1; src = @2; src
@1; tgt = @3; tgt
@2; tgt = @3; src
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Figure 3: The schema of two-dimensional semi-simplicial sets, ∆2, and an example semi-simplicial set, i.e. an object of ∆2-Set.
The equations enforce the connectivity of edges to be a triangle. Note that MacLane defines ∆ as our ∆op.

1C-sets are also called copresheaves on C or presheaves on Cop, and are what Löwe studied as graph structures or unary
algebras.
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2.3 Relationships between C-sets and typed graphs

One reason to prefer modeling certain domains using typed graphs or C-sets rather than graphs is that the domain of
interest has regularities that we wish to enforce by construction, rather than checking that these properties hold of
inputs at runtime and verifying that every rewrite rule preserves them. There are close connections but also important
differences between modeling with typed graphs or with C-sets.

Every C-set instance X can be functorially transformed into a typed graph. One first applies the category of elements
construction,

∫
X : C-Set→ Cat/C, to produce a functor into C. Then the underlying graph functor Cat→ Grph

can be applied to this morphism in Cat to produce a graph typed by C, i.e., a graph homomorphism into the underlying
graph of C. Figure 4a shows a concrete example. However, a graph typed by C is only a C-set under special conditions.
The class of C-typed graphs representable as C-set instances are those that satisfy the path equations of C and are,
moreover, discrete opfibrations over C. Discrete opfibrations are defined in full generality in Eq 2.2

Given a functor F : E → C : for all x
φ−→ y ∈ Hom C, and for all ex ∈ F−1(x),

there exists a unique ex
eφ−→ ey ∈ Hom E such that F (eφ) = φ (2)

src

tgt

∂3

∂2

∂2

∂1

∂2

∂3

src
tgt

∂2

a.) b.) c.)

tgt

t1:Tt2:T

e1:E

v1:V

∂1∂2∂2 ∂1 ∂3 ∂3

src

tgt

srcsrc
src

src

tgt

tgt
tgt

tgt

e2:Ee5:Ee3:Ee4:E

v3:Vv4:Vv2:V

e1:E

e2:Et1:T
t1:T

e1:E

e2:E

v1:V

v2:V

v1:V

Figure 4: a.) The semi-simplicial set of Figure 3, represented as a typed graph, i.e. a labelled graph with a homomorphism into
∆2. b.) Another valid typed graph which is not a C-set for three independent reasons: 1.) T1 has multiple edges assigned for ∂2,
2.) e1 has no vertices assigned for src, and 3.) the last equation of ∆2 is not satisfied. c.) A labelled graph which is not well-typed
with respect to ∆2, i.e. no labelled graph homomorphism exists into ∆2.

However, there is a sense in which every typed graph is a C-set: there exists a schemaX such thatX -Set is equivalent to
Grph/X . By the fundamental theorem of presheaf toposes [16], X is the category of elements of the graphX , viewed
as a C-set on the schema for graphs. Note this procedure of creating a schema to represent objects of a slice category
works beyond graphs, which we use to develop a framework of subtype hierarchies for C-sets, as demonstrated in
Figure 5.

Because every typed graph category is equivalent to a C-set category but not the converse, C-sets are a more general
class of structures. The C-set categories equivalent to typed graph categories are those whose instances represent sets
and relations, in contrast with the general expressive power of C-sets to represent sets and functions. Concretely for

some edge a
f−→ b in a type graph X , graphs typed over X can have zero, one, or many f edges for each vertex of type

a, while C-sets come with a restriction of there being exactly one such edge. While functions can represent relations
via spans, the converse is not true.

There are practical consequences for this in graph rewriting software, if one is using typed graph rewriting to model a
domain that truly has functional relationships. Because rewrite rules could take one out of the class of discrete opfi-
brations, as in Figure 4b, this becomes a property that one has to verify of inputs and check all rewrite rules preserve.
Typed graph rewriting software can allow declaring these constraints and enforce them, but this becomes an additional
engineering task outside of the underlying theory. In contrast, C-sets are discrete opfibrations by construction.

Path equations are another common means of modeling a domain that are not represented in the theory of typed graph
rewriting. This means, for example, that the equation ∂1; tgt = ∂2; src in a semi-simplicial set must be checked of
all runtime inputs as well as confirmed to be preserved by each rewrite rule. This property is not straightforward to
guarantee in the case of sesqui-pushout rewriting. As an upcoming example will demonstrate, it is not sufficient to

2When specialized to typed graphs, E F−→ C is a graph homomorphism and the graphs are regarded as their path categories.
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hv:T v:Sh:S

hh:T vv:T

<latexit sha1_base64="F6G64vbDQdxyipcXTL67N4dRaJ8=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi94q2A9oQ9lsp+3SzSbuboQS+ie8eFDEq3/Hm//GTZuDtj4YeLw3w8y8IBZcG9f9dgorq2vrG8XN0tb2zu5eef+gqaNEMWywSESqHVCNgktsGG4EtmOFNAwEtoLxTea3nlBpHskHM4nRD+lQ8gFn1FipfScNKspMr1xxq+4MZJl4OalAjnqv/NXtRywJURomqNYdz42Nn1JlOBM4LXUTjTFlYzrEjqWShqj9dHbvlJxYpU8GkbIlDZmpvydSGmo9CQPbGVIz0oteJv7ndRIzuPJTLuPEoGTzRYNEEBOR7HnS5wqZERNLKFPc3krYiGYB2IhKNgRv8eVl0jyrehdV7/68UrvO4yjCERzDKXhwCTW4hTo0gIGAZ3iFN+fReXHenY95a8HJZw7hD5zPHyPfkAo=</latexit>

Interact

<latexit sha1_base64="V0tjRrO++06q8MK2yguMYT5UKbA=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBVUlE1I1QdFN3FfqCNpTJdNIOnUzCzEQsob/ixoUibv0Rd/6NkzYLbT0wcDjnXu6Z48ecKe0431ZhbX1jc6u4XdrZ3ds/sA/LbRUlktAWiXgkuz5WlDNBW5ppTruxpDj0Oe34k7vM7zxSqVgkmnoaUy/EI8ECRrA20sAuN8f19k2fCY3uhaYSEz2wK07VmQOtEjcnFcjRGNhf/WFEkpAKTThWquc6sfZSLDUjnM5K/UTRGJMJHtGeoQKHVHnpPPsMnRpliIJImmdCzNXfGykOlZqGvpkMsR6rZS8T//N6iQ6uvZSJONFUkMWhIOFIRygrAg2ZpETzqSGYSGayIjLGWQGmrpIpwV3+8ippn1fdy6r7cFGp3eZ1FOEYTuAMXLiCGtShAS0g8ATP8Apv1sx6sd6tj8Vowcp3juAPrM8fUuyT/Q==</latexit>

ThHV =

Z
Interact

<latexit sha1_base64="uUxEhm8q/f8GRO5Ris71GgpVuwY=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Vj0oMeK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8HoZuq3nlBpHstHM07Qj+hA8pAzaqz0cNur9kplt+LOQJaJl5My5Kj3Sl/dfszSCKVhgmrd8dzE+BlVhjOBk2I31ZhQNqID7FgqaYTaz2anTsipVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14ZWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6RRuCt/jyMmlWK95Fxbs/L9eu8zgKcAwncAYeXEIN7qAODWAwgGd4hTdHOC/Ou/Mxb11x8pkj+APn8wfEd412</latexit>

G2

<latexit sha1_base64="pkkihtGl4jSgk5YEnmnG8Eb2Srs=">AAAB8XicbVA9SwNBEJ2LXzF+RS1tFoNgFe5SqGXQQssI5gOTI+xt5pIle3vH7p4QjvwLGwtFbP03dv4bN8kVmvhg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7GNzO//YRK81g+mEmCfkSHkoecUWOlx6wXhORWJaNpv1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7xlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvkZl0lqULLFojAVxMRk9j4ZcIXMiIkllClubyVsRBVlxoZUsiF4yy+vklat6l1UvftapX6dx1GEEziFc/DgEupwBw1oAgMJz/AKb452Xpx352PRWnDymWP4A+fzB1G5kK8=</latexit>

Grph

<latexit sha1_base64="FaCuyHwQ7x7Cs881/QIM1we5A1Y="></latexit>
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IHH H V OV V

HH OHH IV V V V
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t:V

i:E o:E

<latexit sha1_base64="XbaHzGkxC+WPXblY4OYwtAtWbco="></latexit>

E V
src

tgt

<latexit sha1_base64="BwQWAdoIEdjOtXSypfN668FEzhM=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9kVqR6LHvRYoV/QLiWbZrux2WRJskJZ+h+8eFDEq//Hm//GtN2Dtj4YeLw3w8y8IOFMG9f9dgpr6xubW8Xt0s7u3v5B+fCorWWqCG0RyaXqBlhTzgRtGWY47SaK4jjgtBOMb2d+54kqzaRomklC/RiPBAsZwcZK7WZ0p5JoUK64VXcOtEq8nFQgR2NQ/uoPJUljKgzhWOue5ybGz7AyjHA6LfVTTRNMxnhEe5YKHFPtZ/Nrp+jMKkMUSmVLGDRXf09kONZ6Ege2M8Ym0sveTPzP66UmvPYzJpLUUEEWi8KUIyPR7HU0ZIoSwyeWYKKYvRWRCCtMjA2oZEPwll9eJe2Lqlereg+XlfpNHkcRTuAUzsGDK6jDPTSgBQQe4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gBtNo8J</latexit>

ThGrph

<latexit sha1_base64="4WQ6VbjBQjV4E5gS4+gLykNtrkk=">AAACB3icbVDLSsNAFJ3UV62vqEtBBlvBVU26UBGEoou6rGAf0IYwmU7aoZNJmJkIJWTnxl9x40IRt/6CO//GaZqFth64cOace5l7jxcxKpVlfRuFpeWV1bXiemljc2t7x9zda8swFpi0cMhC0fWQJIxy0lJUMdKNBEGBx0jHG99M/c4DEZKG/F5NIuIEaMipTzFSWnLNw0rS93zYJErQFF5eZa+GiEbpacOtVVyzbFWtDHCR2DkpgxxN1/zqD0IcB4QrzJCUPduKlJMgoShmJC31Y0kihMdoSHqachQQ6STZHSk81soA+qHQxRXM1N8TCQqknASe7gyQGsl5byr+5/Vi5V84CeVRrAjHs4/8mEEVwmkocEAFwYpNNEFYUL0rxCMkEFY6upIOwZ4/eZG0a1X7rGrf1cr16zyOIjgAR+AE2OAc1MEtaIIWwOARPINX8GY8GS/Gu/Exay0Y+cw++APj8weGKJfO</latexit>

Petri := Grph/G2

<latexit sha1_base64="aF8rZOOdeOjeqOsaSeenueSWZY0=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSyCp5IUUS9C0YMeK/QL2hA22027dLMJuxuxhP4VLx4U8eof8ea/cdvmoK0PBh7vzTAzL0g4U9pxvq3C2vrG5lZxu7Szu7d/YB+W2ypOJaEtEvNYdgOsKGeCtjTTnHYTSXEUcNoJxrczv/NIpWKxaOpJQr0IDwULGcHaSL5dbo4aVEuGrlGfCY3u/JpvV5yqMwdaJW5OKpCj4dtf/UFM0ogKTThWquc6ifYyLDUjnE5L/VTRBJMxHtKeoQJHVHnZ/PYpOjXKAIWxNGX2z9XfExmOlJpEgemMsB6pZW8m/uf1Uh1eeRkTSaqpIItFYcqRjtEsCDRgkhLNJ4ZgIpm5FZERlphoE1fJhOAuv7xK2rWqe1F1H84r9Zs8jiIcwwmcgQuXUId7aEALCDzBM7zCmzW1Xqx362PRWrDymSP4A+vzBzVmk0E=</latexit>

ThPetri =

Z
G2

<latexit sha1_base64="XBGh0HVm+LIWtFVXdkX2aquPcrA="></latexit>

Human + Vector := Petri/Interact

IHV:HV I:VS:H

R:VV

I:V IVH:HV

hm:HV

<latexit sha1_base64="0TPegg0N5KpdzpOQHAIJKZxPXFE=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBi2VXRD0WvdRbpXZbaJeSTbNtbDZZkqxQlv4HLx4U8er/8ea/Mf04aOuDgcd7M8zMCxPOtHHdbye3srq2vpHfLGxt7+zuFfcPfC1TRWiDSC5VK8SaciZowzDDaStRFMchp81weDvxm09UaSbFgxklNIhxX7CIEWys5Ff9s/pdvVssuWV3CrRMvDkpwRy1bvGr05MkjakwhGOt256bmCDDyjDC6bjQSTVNMBniPm1bKnBMdZBNrx2jE6v0UCSVLWHQVP09keFY61Ec2s4Ym4Fe9Cbif147NdF1kDGRpIYKMlsUpRwZiSavox5TlBg+sgQTxeytiAywwsTYgAo2BG/x5WXin5e9y7J3f1Gq3MzjyMMRHMMpeHAFFahCDRpA4BGe4RXeHOm8OO/Ox6w158xnDuEPnM8fjSSOdg==</latexit>

HV � SIS

…
<latexit sha1_base64="q46TZq6Egx4Doiw6jeCy4lnQKvY=">AAADa3ichVJdb9MwFHUaPtbysW57Ax4sqk08tFWd0hWYJk3wAk8MsW5DTVU5zk1nNXGC7QAlyn/jb/AHeEPwzBNO2qF9tOJKlo7O8bnXPrpeEnKlO53vVsW+cfPW7bVq7c7de/fX6xubxypOJYMBi8NYnnpUQcgFDDTXIZwmEmjkhXDiTV8V+sknkIrH4kjPEhhFdCJ4wBnVhhpvWB9cDyZcZJpPvzI/r1V3sKvhiy5bZ3LiNZ1e74UEv9nv7U0kgGgS0t/zwhSaTpfk2fscu26tusJEnH8ug0qXAXn2Jsc7KyetMr2dj1rpc8jTc1+vO/c9d/LsyPzKpVLGn4eBjKN9p0WaWMf7pOWMlivdJUr3P0rZzQXhn0c5rjc67U5Z+DogC9BAizoc1/+4fszSCIRmIVVqSDqJHmVUas5CyGtuqiChbEonMDRQ0AjUKCtjyPG2YXwcxNIcoXHJXnRkNFJqFnnmZkT1mbqqFeQybZjq4Nko4yJJNQg2HxSkofkyLhYK+1wC0+HMAMokN2/F7IxKyrRZu0tTilxaxY5dJD+m3OxnERa5Gs11cOy0yW6bvHMaBy8Xsa2hh+gxeoII6qMD9BodogFi1jfrh/XL+l35aW/ZD+xH86sVa+HZQpfK3v4LeqEMLA==</latexit>

S

I O

T

S:V

Figure 5: Beginning with a theory of graphs, we derive a theory of whole-grain Petri nets (or bipartite graphs) by considering two
distinct kinds of vertices (states and transitions) and two kinds of edges (inputs and outputs). ThPetri is constructed the category
of elements of G2. Then, taking a slice in Petri over an instance, Interact, which asserts three kinds of transitions and two kinds
of states, we define a type system encoding certain domain knowledge about host-vector interactions, such as the impossibility of a
transition which converts a host into a vector. As an example of subtyping, we can interpret hosts as a type of state, implying they
are also a type of vertex. This process can be repeated, such as considering SIS disease dynamics for both hosts and vectors. Note
that for ease of visualization, C-set components at the apex of a span of morphisms (e.g. E, I , O) are represented as directed edges.

just check that one’s rewrite rule satisfies the path equalities: the rewriting itself must take path equalities into account
in order to compute the correct result.

Furthermore, there are performance improvements made possible by working with C-sets, rather than typed graphs.
Borrowing terminology from relational databases, we first note that data in a C-set is organized into distinct tables,
so queries over triangles of a semi-simplicial set do not have to consider vertices or edges, for example. Secondly,
the uniqueness of foreign keys allows them to be indexed, which is crucial to performance when performing queries
that require table joins. This mirrors the well-known performance differences between queries of data organized in
relational databases versus knowledge graphs [6]. We compare both representations within the same rewriting tool
in a single benchmark experiment, described in Figure 6. This preliminary benchmark evaluates the performance
of a single rewrite on semi-simplicial sets in a planar network of tessellated triangles. The rewrite locates a pair of
triangles sharing an edge (i.e. a quadrilateral with an internal diagonal edge) and replaces them with a quadrilateral
containing the opposite internal diagonal edge. We also chart the performance of finding all quadrilateral instances
(homomorphisms) in variously sized grids. The results in Figure 6 demonstrate a lower memory footprint as well as
improved rewrite and match searching for C-sets.

Figure 6: Semisimplicial set edge flip benchmark results. Time was measured on an AMD EPYC 75F3 Milan 3.0 GHz Core with
4GB of allocated RAM.
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3 Category-theoretic rewriting

3.0.1 Pushout complements

Given a pair of arrows A
f−→ B

g−→ C, one constructs a pushout complement by finding a pair of morphisms
A→ D → C such that the resulting square is a pushout. While any category of C-sets has pushouts, pushout comple-
ments are more subtle because they are not guaranteed to exist or be unique [4]. These are both desirable properties to
have when using the pushout complement in rewriting, so we will demand that identification and dangling conditions
(Eqs 3-4 [20]) hold, which guarantee its existence, and that the first morphism, f : A→ B, be monic, which forces it
to be unique. [19]

∀X ∈ Ob C,∀x1, x2 ∈ BX :

gX(x1) = gX(x2) =⇒ x1 = x2 ∨ {x1, x2} ⊆ fX(AX)
(3)

∀φ : X → Y ∈ Hom C,∀x ∈ CX :

φ(x) ∈ gY (BY − fY (AY )) =⇒ x ∈ gX(BX − fX(AX))
(4)

3.0.2 DPO, SPO, SqPO, PBPO+

The double-pushout (DPO) algorithm [11] formalizes a notion of rewriting a portion of a C-set, visualized in Figure
7. The morphism m is called the match morphism. The meaning of L is to provide a pattern that m will match to a
sub-C-set in G, the target of rewriting. R represents the C-set which will be substituted back in for the matched pattern
to yield the rewritten C-set, and I indicates what fragment of L is preserved in the rewrite and its relation to R. To
perform a rewrite, first, a pushout complement computes K, the original C-set with deletions applied. Second, the
final rewritten C-set is computed via pushout along r and i.

<latexit sha1_base64="t43iLloCG9MWbR4bgRP6XaRfhhM="></latexit>

L I R

G K H

l r

g

im

y y

Figure 7: Left: DPO rewriting. Here and in the following figures, the initial data is in black, intermediate computations in grey,
and the final result in green. Right: Application of a rewrite rule to flip the internal edge of a quadrilateral in a semi-simplicial set
with two adjacent quadrilaterals. Here and in the following figures, colors are used to represent homomorphism data.

Single-pushout (SPO) rewriting [20] generalizes DPO rewriting, as every DPO transformation can be expressed as a
SPO transformation. The additional expressivity allows us to delete in an unknown context, as demonstrated in Figure
8. The name comes from the construction being a single pushout in the category of partial C-set morphisms, C-Par.

A partial C-set morphism is a span L
l←−↩ I r−→ R where l is monic. Sesqui-pushout (SqPO) rewriting [9] is a more

recent technique which generalizes the previous two. It is defined in terms of the notions of partial map classifiers
and final pushout complements, and it further generalizes SPO by allowing both deletion and addition in an unknown
context, as demonstrated in Figure 9. Lastly, Pullback-pushout+ (PBPO+) rewriting [22] is the most recent of the four
paradigms we have implemented. As shown in Figure 10, each PBPO+ rule has its own type graph, L′, which allows
it to control rewriting of both the explicit matched pattern (described by L) as well as all elements in the input graph
G which interact with the boundary of the matched pattern. This means the notion of a match must be generalized
from a match morphism L → G to include an adherence morphism G → L′ which is an interpretation of G as typed
over L′.

4 Design and implementation of generic categorical rewriting

Within the paradigm of computational category theory, Catlab.jl is an open source framework for applied category
theory at the center of an ecosystem of software packages called AlgebraicJulia [24, 12]. We have recently added
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<latexit sha1_base64="LxAl9DWF3oXPIvKtKxe35iKLnWM="></latexit>

L R

G H

match

rulep

p

p

y

Figure 8: Left: SPO rewriting Right: An instance of deletion in an unknown context.

<latexit sha1_base64="MJ+ZOSTtXhHxjZmJeq5b+9/T6w4="></latexit>

L I R

G K H

l r

g

m

y

y

Figure 9: Left: SqPO rewriting Right: an instance of creation in an unknown context. Note that there are multiple possible
pushout complements because l is not monic, but performing DPO using any of these would leave the original graph unchanged.
Also note that enforcing the ∆2 equations (in Figure 3) when computing the partial object classifier affects the results: without
equations, there are four resulting ‘triangle’ objects, although two of these clearly do not form triangles.

<latexit sha1_base64="FgTv22JzRup/tHMt7oOdAUQNBys="></latexit>

L K R

G G0 H

L0 K 0

match

adherence

y

y

Figure 10: Left: PBPO+ rewriting Right: an instance of rewriting where we explicitly control how the boundary of our matched
triangular pattern is treated. The rule’s type graph L′ says that, besides the matched pattern, we consider three other types of
vertices: those that point at the black vertex (in green), those that are pointed at by the blue vertex (in pink) and the rest of the graph
(light blue). The self loops on those extra vertices allow entire subgraphs to be mapped onto them, rather than just vertices. In K′,
the rule indicates that we wish to duplicate the part of the graph that gets classified as pink (by the adherence map which assigns
types to G), while only the edges from the green part of the graph will get copied when we duplicate the triangle. L′ has no notion
of edges which are incident to the red vertex, so any input graph that has such an edge cannot be matched by this rule.

AlgebraicRewriting.jl to this ecosystem to support the categorical rewriting paradigms described above for C-sets on
finitely presented schemas C. This class of structures balances expressivity and efficiency of manipulation, given that
C-sets are representable in the concrete language of relational databases [32], modulo equations in C. In Catlab, each
C-set is automatically specialized to an efficient Julia data type; for example, when specialized to graphs, Catlab’s
implementation of C-sets, performs competitively against libraries optimized for graphs [24]. Catlab now occupies
a unique point in the space of rewriting software tools (Table 1). For performance in pattern matching (often the
typical bottleneck of rewriting), Catlab outperforms ReGraph, the nearest alternative in terms of expressive capabilities
(SqPO) and usability (Table 2).
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Software Typed
Graphs C-sets Rewrite

type
CT
Env

Last
update GUI Scripting

Env
Library
vs. App

AGG[34] Y N S N 2017 Y N Both

Groove[27] Y N S N 2021 Y N App

Kappa[14] N N N 2021 Y Y App

VeriGraph[1] Y N D Y 2017 N Y Lib

ReGraph[13] Y N Q N 2018 N Y Lib

AlgebraicRewriting Y Y D,S,Q,P Y 2022 N Y Lib

Table 1: High-level comparison with contemporary graph rewriting software packages. Rewrite type refers to whether DPO (D),
SPO (S), SqPO (Q), and PBPO+ (P) are explicitly supported. CT Env refers to whether the software was implemented within a
general environment of categorical abstractions beyond those immediately useful for graph rewriting. Last update refers to the year
of the last minor version release (i.e. X.Y.0).

Mesh size Catlab (s) ReGraph (s)

2 by 2 1.2× 10−4 5.3× 10−3

2 by 3 2.7× 10−4 8.0
2 by 4 4.7× 10−4 1313.3
2 by 5 6.7× 10−4 44979.8

Table 2: Catlab C-set homomorphism search compared to Re-
Graph typed graph homomorphism search. The task was to find
all quadrilateral patterns in meshes of increasing size. Tests were
conducted on a single AMD EPYC 75F3 Milan 3.0 GHz Core
with 4GB of RAM.

The development of Catlab has emphasized the separation of syntax and semantics when modeling a domain. This
facilitates writing generic code, as diverse applications can share syntactic features, e.g. representability through
string diagrams and hierarchical operad composition, with different semantic interpretations of that syntax for diverse
applications. One result of this is that library code becomes very reusable, such that new features can be built from
the composition of old parts with minimal additions, which reduces both developer time and the surface area for new
bugs.

This point is underscored by the developer experience of implementing the above rewriting algorithms: because limits
and colimits already existed for C-sets, PBPO+ required no serious code writing, and the implementation of DPO
only required pushout complements. Like limits and colimits, pushout complements are computed component-wise
for C-sets, meaning that only basic code related to pushout complements of finite sets was required. More work was
needed to implement SPO because no infrastructure for the category C-Par existed at the time. However, with a
specification of partial morphism pushouts in terms of pushouts and pullback complements of total morphisms [17,
Theorem 3.2], the only engineering required for this feature was an efficient pullback complement for C-sets. Lastly,
for SqPO, an algorithm for final pullback complements for C-sets was the only nontrivial component that needed to
be implemented, based on [8, Theorem 1] and [2, Theorem 2]. This required generalizing examples of partial map
classifiers from graphs to C-sets. Because the partial map classifier can be infinite for even a finitely presented C-set,
this type of rewriting is restricted to acyclic schemas, which nevertheless includes graphs, Petri nets, semi-simplicial
sets, and other useful examples.

Because AlgebraicJulia is a collection of libraries rather than a standalone application, users have a great deal of
freedom in defining their own abstractions and automation techniques, using the full power of the Julia programming
language. A great deal of convenience follows from having the scripting language and the implementation language
be the same: we can specify the pattern of a rewrite rule via a pushout, or we can programmatically generate repetitive
rewrite rules based on structural features of a particular graph. Providing libraries rather than standalone black-box
software makes integration into other projects (in the same programming language) trivial, and in virtue of being
open-source library, individuals can easily extend the functionality. By making these extensions publicly available,
all members of the AlgebraicJulia ecosystem can mutually benefit from each other’s efforts. As examples of this, the
following additional features that have been contributed to AlgebraicRewriting.jl all serve to extend its utility as a
general rewriting tool:
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4.1 Computation of homomorphisms and isomorphisms of C-sets

For rewriting algorithms to be of practical use, morphisms matching the left-hand-side of rules must somehow be
supplied. The specification of a C-set morphism requires a nontrivial amount of data that must satisfy the naturality
condition. Furthermore, in confluent rewriting systems, manually finding matches is an unreasonable request to make
of the end user, as the goal is to apply all rewrites possible until the term reaches a normal form. For this reason, DPO
rewriting of C-sets benefits from a generic algorithm to find homomorphisms, analogous to structural pattern matching
in the tree term rewriting case.

The problem of finding a C-set homomorphism X → Y , given a finitely presented category C and two finite C-sets
X and Y , is generically at least as hard as the graph homomorphism problem, which is NP-complete. On the other
hand, the C-set homomorphism problem can be framed as a constraint satisfaction problem (CSP), a classic problem
in computer science for which many algorithms are known [31, Chapter 6]. Since C-sets are a mathematical model
of relational databases [33], the connection between C-set homomorphisms and constraint satisfaction is a facet of the
better-known connection between databases and CSPs [35].

To make this connection precise, we introduce the slightly nonstandard notion of a typed CSP. Given a finite set
T of types, the slice category FinSet/T is the category of T -typed finite sets. A typed CSP then consists of T -
typed finite sets V and D, called the variables and the domain, and a finite set of constraints of form (x, R), where
x = (x1, . . . , xk) is a list of variables and R ⊆ D−1(V (x1)) × · · · × D−1(V (xk)) is a compatibly typed k-ary
relation. An assignment is a map φ : V → D in FinSet/T . The objective is to find a solution to the CSP, namely an
assignment φ such that (φ(x1), . . . , φ(xk)) ∈ R for every constraint (x, R).

The problem of finding a C-set morphism X → Y translates to a typed CSP by taking the elements of X and Y to be
the variables and the domain of the CSP, respectively. To be precise, let the types T be the objects of C. The variables
V : {(c, x) : c ∈ C, x ∈ X(c)} → Ob C are given by applying the objects functor Ob : Cat → Set to

∫
X → C,

the category of elements of X with its canonical projection. Similarly, the domain is D := Ob(
∫
Y → C). Finally,

for every generating morphism f : c→ c′ of C and every element x ∈ X(c), introduce a constraint ((x, x′), R) where
x′ := X(f)(x) and R := {(y, y′) ∈ Y (c) × Y (c′) : Y (f)(y) = y′} is the graph of Y (f). By construction, an
assignment φ : V → D is the data of a C-set transformation (not necessarily natural) and φ is a solution if and only if
the transformation is natural. Thus, the solutions of the typed CSP are exactly the C-set homomorphisms X → Y .

With this reduction, CSP algorithms are straightforwardly ported to algorithms for finding C-set morphisms, where the
types and special structure permits optimizations, one example being the use of the discrete opfibration condition to
accelerate the search. We only consider assignments that satisfy the typing relations. We have adapted backtracking
search [31, Section 6.3], a simple but fundamental CSP algorithm, to find C-set homomorphisms. By also maintaining
a partial inverse assignment, this algorithm is easily extended to finding C-set monomorphisms, an important constraint
when matching for rewriting. Since a monomorphism between finite C-sets X and Y is an isomorphism if and only if
X(c) and Y (c) have the same cardinality for all c ∈ C, this extension also yields an algorithm for isomorphism testing,
which is useful for checking the correctness of rewrites.

4.2 Diagrammatic syntax

Specifying DPO rewrite rules can be cumbersome as a significant amount of combinatorial data is contained in a span
of C-sets. To make our system more user-friendly, we have developed a symbolic domain-specific language (DSL)
to specify rewrite rules, based on the idea of assembling C-sets from the atomic ones known as representables. This
involves no loss of generality since every C-set can be expressed as a colimit of representable C-sets [28, Theorem
6.5.7]. For instance, in the category of graphs, the two representables are the graphs with one isolated vertex and with
one edge between two distinct vertices, and clearly every graph is a colimit of copies of these two graphs. An example
of specifying a rewrite rule in this manner, using a much more elaborate schema, is shown in Figure 11.

The mathematics behind our DSL uses the underappreciated fact that the diagrams in a given category are themselves
the objects of a category; as described in [26, 25, 23] and references therein. Given a category S, the diagram category
Diag(S) has, as objects, diagrams D : J → S in S, and as morphisms (J , D) → (J ′, D′), a functor R : J → J ′
along with a natural transformation ρ : D ⇒ D′ ◦R. Another diagram category Diagco(S) is defined similarly, except
that the natural transformation in a morphism (R, ρ) goes in the opposite direction: ρ : D′ ◦R⇒ D.

We now show that a span in Diagco(C) presents a span in C-Set, i.e., a DPO rewrite rule for C-sets, as colimits
of representables and morphisms between them. The category Diagco(C) has the advantage of referring only to the
schema C and so can be described syntactically given a finite presentation of C.

Proposition 1. By applying the Yoneda embedding and taking colimits, a span in the category Diagco(C) induces a
span of C-sets.
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Entity

Food Container

Egg YolkWhite Bowl Table

food_is_entity container_is_entity

food_in_on

bowl_is_containeregg_is_food yolk_white_is_food table_is_container

(a) Fragment of a schema that models recipes for cooking breakfast

[Entity]

(b) Cartoon visualization of egg cracking rule. Notably we require an abstract entity in the interface, mapping to both the egg and
yolk+white, to reflect that they are the same entity.

crack_egg_in_bowl = @migration SchCospan SchBreakfastKitchen begin
L => @join begin # left-hand side of rule

bowl::Bowl
egg::Egg

end
I => @join begin # intermediate state of rule

bowl::Bowl
egg_entity::Entity # entity underlying egg and yolk-white
old_container::Container # original container of food

end
R => @join begin # right-hand side of rule

bowl::Bowl
yolk_white::YolkWhite
food_in_on(yolk_white_is_food(yolk_white)) == bowl_is_container(bowl)
old_container::Container

end
l => begin # left map in rule

bowl => bowl
egg_entity => food_is_entity(egg_is_food(egg))
old_container => food_in_on(egg_is_food(egg))

end
r => begin # right map in rule

bowl => bowl
egg_entity => food_is_entity(yolk_white_is_food(yolk_white))
old_container => old_container

end
end

(c) DPO rewrite rule specified using diagrammatic syntax. This syntax allows us to avoid explicitly treating the underlying entity
of the container, for example.

Figure 11: Example of a DPO rewrite rule specified using the diagrammatic syntax, adapted from a planning system for the cooking
domain.
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Proof. It is enough to define a functor Diagco(C)→ C-Set, which we do as the following composite

Diagco(C) op−→ Diag(Cop)
Diag(y)−−−−−→ Diag(C-Set) colim−−−→ C-Set,

where op : Catco → Cat is the oppositization 2-functor and y : Cop → C-Set is the Yoneda embedding for C. We
are using the facts that the diagram construction extends to a (2-)functor Diag : Cat→ Cat in which morphisms act
by postcomposition [25, §2.1] and that taking colimits is functorial with respect to the category Diag(S) whenever S
is cocomplete [25, §5.1].

4.3 Typed graph rewriting with slice categories

Slice categories offer a form of constraining C-sets without altering the schema. Consider the example of rewriting
string diagrams encoded as hypergraph cospans [3]. These can be used to represent terms in a symmetric monoidal
theory, where it is important to restrict diagrams to only those which draw from a fixed set of boxes with particular
arities, given by a monoidal signature Σ, which induces the unique hypergraph HΣ which has all box types from Σ
and a single vertex. Working within the slice category Hyp/HΣ prevents us from performing rewrites which violate
the arities of the operations specified by Σ.

There are two ways to implement rewriting in C-Set/X for a particular C: the computation can be performed with the
objects L, I,R,G being C-set morphisms, or it can be performed in [

∫
X,Set]. Programming with generic categorical

abstraction greatly lowered the barrier to implementing both of these: for the former, what was needed was to relate
the pushout and pushout complement of C-Set/X to the corresponding computations in C-Set. The barrier to the latter
was to compute the category of elements and migrate data between the two representations, code which had already
been implemented. As the former strategy requires less data transformation, it is preferred.

4.4 Open system rewriting with structured cospans

The forms of rewriting discussed up to this point have concerned rewriting closed systems. Structured cospans are a
general model for open systems, which formalize the notion of gluing together systems which have designated inputs
and outputs. Open systems are modeled as cospans of form La → x ← Lb, where the apex x represents the system
itself and the feet La and Lb represent the inputs and outputs, typically discrete systems such as graphs without edges.
Here, L : A→ X is a functor that maps from the system categoryA to the system interface categoryX , and Lmust be
a left adjoint between categories with finite colimits.3 Larger systems are built up from smaller systems via pushouts
in X , which glue systems together along a shared interface: (La→ x← Lb→ y ← Lc) 7→ (La→ x+Lb y ← Lc).

When L, I , and R are each structured cospans, there is extra data to consider when rewriting, as shown in Figure
12. In ordinary DPO rewriting, if the R of one rewrite rule equals the L of another, a composite rewrite rule can be
constructed, which could be called vertical composition. In the case of structured cospans, horizontal composition
emerges from composing the L, I , and R of two structured cospan rules pairwise, visualized in Figure 13. These two
forms of composition together yield a double category of structured cospan rewrites, where horizontal arrows are in
correspondence with structured cospans and squares are in correspondence with all possible rewrites [7].

Lout Iout Rout

L I R

Lin Iin Rin

Gout
q Kout

p Hout

G q K p H

Gin
q Kin

p Hin

Figure 12: Applying a structured cospan rewrite rule. C-sets and morphisms in black are the initial data: the upper face represents
the open rewrite rule, the upper left edge represents the open pattern to be matched, and the left face represents the matching. Green
morphisms are computed by pushout complement in C-Set. The purple morphisms are computed by the rewriting pushouts and
red morphisms are computed by the structured cospan pushouts. Figure adapted from [7, Section 4.2].

While this compositional approach to building open systems can be an illuminating way to organize information about
a complex system, there can also be computational benefits. When searching for a match in a large C-set, the search

3The L of structured cospans should not be confused with the L of the rewrite rule L← I → R.
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S I R

S I R

E

I Q R

I Q R

b.)

L1,out=L2,inL1 L2

R1 R2R1,out=R2,in

L1,in

R1,in

L2,out

R2,out

S

S

E

I

Q

R

I

Q

R

a.)

Figure 13: a.) Example of horizontal composition of structured cospan rewrite rules. The L and R structured cospans are positioned
on the top and bottom, respectively. For clarity, I cospans are omitted. b.) The result of composition.

space grows as O(nk) where k is the size of the pattern L and n is the size of G. However, after decomposing G into
a composite of substructures and restricting matches to homomorphisms into a specific substructure, the search space
is limited by O(mk) where m < n is the size of the substructure. Not only does this accelerate the computation, but
it can be semantically meaningful to restrict matches to those which do not cross borders.

4.5 Distributed graph rewriting

Distributed graphs offer an alternative formalism that allows one to decompose a large graph into smaller ones while
maintaining consistency at the boundaries, and thus it is another strategy for parallelizing computations over graphs.
The content of a distributed graph can be succinctly expressed in the language of category theory as a diagram in
Grph. Because Catlab has sophisticated infrastructure in place for manipulating categories of diagrams, it merely takes
specializing the codomain of the Diagram datatype to Grph to represent distributed graphs and their morphisms. Note
that we can easily generalize to distributed semi-simplicial sets or other C-sets (Figure 14). Colimits in the category
of diagrams (in a cocomplete category) are defined in terms of left Kan extensions [26], and with our implementation
[5] it is possible to develop a rewriting tool for distributed graphs.

4.6 Graph processes

Given a concrete sequence of rewrites, perhaps representing a sequence of actions required to take one from an initial
state to some desired state, it is of practical importance to represent the steps taken in a maximally-parallel manner that
has only the necessary dependencies, such as one rewrite step creating an element that another rewrite step deletes.
Graph processes [10] are a construction which exposes the causal dependencies between rewrites as a partially-ordered
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F

Figure 14: Constructing the surface of a cube compositionally with a distributed graph. F sends the solid circles to the square face
graph and the dashed circles to the edge graph. Colors indicate which morphism from the edge to the face which controls how the
faces are being glued together. We construct the assembled cube as a C-set simply by taking the colimit of the diagram.

set. The construction of this partial order is expressed as a colimit of a certain bipartite diagram, as shown in Figure
15. Colimits of diagrams being readily computable in Catlab led to this extension requiring only a small amount of
programmer effort.

L1 I1 R1 L2 I2 R2 ...

G1 K1 G2 K2 G3 ...

ΣG

c1 m2m1

ι1

ι2

ι3

c2

y yyy

Figure 15: The graph processes construction from a sequence of rewrites with match morphisms mi and co-match morphisms ci
labeled. ΣG is constructed as the colimit of the red subdiagram, and its role is to identify the same elements across time, if we
interpret Gi as a temporal sequence. Therefore, given a notion of element production, deletion, and preservation, if i produces
some element that j preserves or deletes, there must be a causal dependency i < j.

4.7 Further extensions

Examples of further features, such as negative application conditions, parallel rewriting, rewriting with functions ap-
plied to attributes, matching variables on attributes, (e.g. one rule which can identify any triangle that has exactly two
edges with an equal length attribute and rewrite to make all three edges have that length) are found in AlgebraicRewrit-
ing documentation or tests.

5 Conclusions and Future Work

There are many desiderata for software development in academic and industrial settings alike, such as velocity of
development, robustness to future changes in design, and correctness. We demonstrated how designing software with
category-theoretic abstractions facilitates the achievement all three of these, using the mature field of graph rewriting
software as a case study.

While current graph transformation software in use is often very specialized to particular domains, such as chemistry,
we show that DPO, SPO, SqPO, and PBPO+ rewriting can be efficiently performed on C-sets, which are viewed as
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a subset of typed graphs (discrete opfibrations) with desirable theoretical and performance characteristics, and we
have presented the first practical implementation for this. This result allows generic rewrite operations to be used in a
variety of contexts, when it would otherwise be time-consuming and error-prone to develop custom rewrite algorithms
for such a multitude of data structures or to work with typed graphs and enforce the discrete opfibration condition
by other means. We also extended these implementations to the first practical implementations of homomorphism
search, structured cospan rewriting, and distributed graphs for arbitrary C-sets. Our internal benchmark showed that
C-set rewriting can leverage the discrete opfibration condition to outperform typed graphs in memory and speed, and
an external benchmark showed a significant speedup relative to comparable graph rewriting software.

Catlab and AlgebraicRewriting could be extended to a tool for graph transformation researchers to computationally
validate and explore new ideas. Researchers interested developing tools to be directly consumed by others could
produce a performant and easily interoperable instantiation of their work. Even those interested in rewriting systems
as mathematical objects can benefit from this process by gaining intuition and empirically testing conjectures about
their constructions. However, many useful concepts from graph rewriting have yet to be added, such as rule control
mechanisms and rule algebras, but the extensibility of Catlab allows researchers to do this on their own or with the
support of Catlab’s active user community.

To create tools for practicing scientists and engineers, our future work involves building practical scientific software
that applies rewriting in each its main areas, i.e. graph relations, languages, and transition systems: respectively, a
theorem prover for symmetric monoidal categories by performing e-graph equality saturation [36] with rewriting, a
tool for defining and exploring a language of open epidemiological models, and a general agent-based model simulator.
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