Skip to main content

Dynamic Network Embedding in Hyperbolic Space via Self-attention

  • Conference paper
  • First Online:
Web Engineering (ICWE 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13362))

Included in the following conference series:

  • 1375 Accesses

Abstract

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn node representations in complex graphs. Existing graph representation learning methods primarily target static graphs in Euclidean space, while many graphs in practical applications are dynamic and evolve constantly over time. Besides, most of these methods underestimate the inherent complex and hierarchical properties in real-world graphs, leading to sub-optimal embeddings. In this work, we propose a Dynamic Network in Hyperbolic space via Self-Attention, referred to as DynHAT, a novel neural architecture that computes node representations through joint two dimensions of hyperbolic structural graph and temporal attention graph. More specifically, DynHAT maps the structural graph into hyperbolic space to capture the hierarchical information, then temporal graph captures time-varying dynamic evolution over multiple time steps by flexibly weighting historical representations. Experimental results on three real-world datasets demonstrate the superiority of DynHAT for dynamic graph embedding, as it consistently outperforms competing methods in link prediction tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bacák, M.: Computing medians and means in hadamard spaces. SIAM J. Optim. 24(3), 1542–1566 (2014)

    Article  MathSciNet  Google Scholar 

  2. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond euclidean data. IEEE Sig. Process. Mag. 34(4), 18–42 (2017)

    Article  Google Scholar 

  3. Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. Adv. Neural. Inf. Process. Syst. 32, 4868–4879 (2019)

    Google Scholar 

  4. Clauset, A., Moore, C., Newman, M.E.: Hierarchical structure and the prediction of missing links in networks. Nature 453(7191), 98–101 (2008)

    Article  Google Scholar 

  5. Ganea, O.E., Bécigneul, G., Hofmann, T.: Hyperbolic neural networks. arXiv preprint arXiv:1805.09112 (2018)

  6. Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N.: Convolutional sequence to sequence learning. In: International Conference on Machine Learning, pp. 1243–1252. PMLR (2017)

    Google Scholar 

  7. Goyal, P., Chhetri, S.R., Canedo, A.: dyngraph2vec: capturing network dynamics using dynamic graph representation learning. Knowl. Based Syst. 187, 104816 (2020)

    Article  Google Scholar 

  8. Goyal, P., Kamra, N., He, X., Liu, Y.: DynGEM: deep embedding method for dynamic graphs. arXiv preprint arXiv:1805.11273 (2018)

  9. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)

    Google Scholar 

  10. Gulcehre, C., et al.: Hyperbolic attention networks. arXiv preprint arXiv:1805.09786 (2018)

  11. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 1025–1035 (2017)

    Google Scholar 

  12. Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM Trans. Interact. Intell. Syst. (TIIS) 5(4), 1–19 (2015)

    Google Scholar 

  13. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  14. Klimt, B., Yang, Y.: The enron corpus: a new dataset for email classification research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30115-8_22

    Chapter  Google Scholar 

  15. Liu, Q., Nickel, M., Kiela, D.: Hyperbolic graph neural networks. arXiv preprint arXiv:1910.12892 (2019)

  16. Panzarasa, P., Opsahl, T., Carley, K.M.: Patterns and dynamics of users’ behavior and interaction: network analysis of an online community. J. Am. Soc. Inform. Sci. Technol. 60(5), 911–932 (2009)

    Article  Google Scholar 

  17. Pareja, A., et al.: EvolveGCN: evolving graph convolutional networks for dynamic graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5363–5370 (2020)

    Google Scholar 

  18. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710 (2014)

    Google Scholar 

  19. Sala, F., De Sa, C., Gu, A., Ré, C.: Representation tradeoffs for hyperbolic embeddings. In: International Conference on Machine Learning, pp. 4460–4469. PMLR (2018)

    Google Scholar 

  20. Sankar, A., Wu, Y., Gou, L., Zhang, W., Yang, H.: DySAT: deep neural representation learning on dynamic graphs via self-attention networks. In: Proceedings of the 13th International Conference on Web Search and Data Mining, pp. 519–527 (2020)

    Google Scholar 

  21. Trivedi, R., Farajtabar, M., Biswal, P., Zha, H.: DyRep: learning representations over dynamic graphs. In: International Conference on Learning Representations (2019)

    Google Scholar 

  22. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  23. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  24. Wei, C., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and tree-like random graphs. In: International Symposium on Algorithms and Computation (2012)

    Google Scholar 

  25. Yang, M., Meng, Z., King, I.: FeatureNorm: L2 feature normalization for dynamic graph embedding. In: 2020 IEEE International Conference on Data Mining (ICDM), pp. 731–740. IEEE (2020)

    Google Scholar 

  26. Yang, M., Zhou, M., Kalander, M., Huang, Z., King, I.: Discrete-time temporal network embedding via implicit hierarchical learning in hyperbolic space. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1975–1985 (2021)

    Google Scholar 

  27. Zhang, Y., Wang, X., Shi, C., Jiang, X., Ye, Y.F.: Hyperbolic graph attention network. IEEE Trans. Big Data (2021)

    Google Scholar 

  28. Zhou, L., Yang, Y., Ren, X., Wu, F., Zhuang, Y.: Dynamic network embedding by modeling triadic closure process. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Mu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Duan, D., Zha, D., Yang, X., Mu, N., Shen, J. (2022). Dynamic Network Embedding in Hyperbolic Space via Self-attention. In: Di Noia, T., Ko, IY., Schedl, M., Ardito, C. (eds) Web Engineering. ICWE 2022. Lecture Notes in Computer Science, vol 13362. Springer, Cham. https://doi.org/10.1007/978-3-031-09917-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09917-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09916-8

  • Online ISBN: 978-3-031-09917-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics