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ABSTRACT

This paper considers synchronous discrete-time dynamical systems on graphs based on the threshold
model. It is well known that after a finite number of rounds these systems either reach a fixed point
or enter a 2-cycle. The problem of finding the fixed points for this type of dynamical system is in
general both NP-hard and #P-complete. In this paper we give a surprisingly simple graph-theoretic
characterization of fixed points and 2-cycles for the class of finite trees. Thus, the class of trees
is the first nontrivial graph class for which a complete characterization of fixed points exists. This
characterization enables us to provide bounds for the total number of fixed points and pure 2-cycles.
It also leads to an output-sensitive algorithm to efficiently generate these states.

1 Introduction

Synchronous discrete-time dynamical systems for information spreading received a lot of attention in recent years.
Often the following model is used: Let G be a graph with an initial configuration, where each node is either black or
white. In discrete-time rounds, all nodes simultaneously update their color based on a predefined local rule. The rule
is local in the sense that the color associated with a node in round t is determined by the colors of the neighboring
nodes in round t − 1. The main focus of the research so far has been on the stabilization time of this process [21]
and the dominance problem, e.g., how many nodes must initially be black so that eventually all nodes are black [17].
These questions have been considered for various classes of graphs. These discrete-time dynamical systems are often
based on the threshold model. In a simple version of this model a node becomes black if at least a fraction of α
of its neighbors are black and white otherwise, α ∈ (0, 1) is a parameter of the model. In more elaborate versions
edges have weights and the local rules are based on the weighted fraction of neighbors. The main property of these
dynamical systems is that assuming symmetric weights, the system has period 1 or 2 [10, 18]. This means that such a
system eventually reaches a stable configuration or it toggles between two configurations. Fogelman et al. proved that
the stabilization time is in O(n2) [7]. Frischknecht et al. showed that this bound is tight, up to some poly-logarithmic
factor [8].

In this paper we analyze a different aspect of discrete-time dynamical systems: The number and structure of fixed
points and 2-cycles. This research is motivated by applications of so called Boolean networks (BN) [12], i.e., discrete-
time dynamical systems, where each node (e.g., gene) takes either 0 (passive) or 1 (active) and the states of nodes
change synchronously according to regulation rules given as Boolean functions. An example for a regulation rule is
the majority rule, i.e., α = 0.5. Since the problem of finding the fixed points of a BN is in general both NP-hard
and #P-complete [3] (see Sec. 2), it is interesting to find graph classes, for which the number of fixed points can be
determined efficiently. We regard our work as a step in this direction. Interest in the set of fixed points of BNs was
also sparked by a result of Milano and Roli [14]. They use BNs to solve the satisfiability problem (SAT) by defining a
mapping between a SAT instance and a BN and prove that BN fixed points correspond to SAT solutions.
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This paper provides a characterization of the set of stable configurations (a.k.a. fixed points) and the set of states of
period 2 (a.k.a. 2-cycles) for a given finite tree based on its edge set. We do this for two versions of the threshold
model: minority and majority process. While the stabilization times for the majority and minority process can differ
considerably for a given graph (see Fig. 1), the sets of stable configurations of a tree turn out to be closely related for
both process types. Our main contributions are as follows:

1. We identify a subset Efix(T ) of the power set of the edge set of a tree T and show that the elements of
Efix(T ) correspond one-to-one with the fixed points of T . Efix(T ) is defined by a set of simple linear
inequalities over the node degrees. The fixed point corresponding to an element of Efix(T ) can be defined
in simple terms. Efix(T ) has the hereditary property, i.e., if X ∈ Efix(T ) then all subset of X are also
elements of Efix(T ). This property allows to define a simple output-sensitive algorithm AM to explicitly
generate all fixed points. This allows to prove upper bounds for the number of fixed points. We also show
that elements of Efix(T ) correspond to solutions of a system of linear diophantine inequalities.

2. We characterize the configurations of period 2, where each node changes its color in every round (a.k.a. pure
configurations). As above we identify a subset Epure(T ) of the power set of the edge set of T such that the
elements of Epure(T ) correspond one-to-one with the pure configurations of T . As above the definition of
Epure(T ) is based on simple linear inequalities and it has the hereditary property. The 2-cycle corresponding
to an element of Epure(T ) is also defined in simple terms. Again this allows to define a simple algorithm
enumerating all 2-cycles and to prove upper bounds for their number. Interestingly, Epure(T ) is a subset of
Efix(T ).

3. Finally we look at general configurations with period 2. We show that for each configuration c of this type
each tree decomposes into subtrees, such that c induces either a fixed point or a pure configuration on each
subtree. The subtrees allow to define a hyper structure of a tree, called the block tree. As in previous cases
we identify a subset Eblock(T ) of the power set of the edge set of a tree T and show that the elements of
Eblock(T ) correspond one-to-one with the block trees of T . Eblock(T ) is a subset of Efix(T ). Since a tree
can have several pure colorings, a block tree does not uniquely define a coloring. We define a subclass of
2-cycles called canonical colorings and prove that there is a direct correspondence between Eblock(T ) and
canonical colorings. The characterization ofEblock(T ) is not as simple as in the above cases, sinceEblock(T )
does not have the hereditary property.

All results are obtained for the minority and the majority model.

2 State of the Art

Most research on discrete-time dynamical systems on graphs consecrates oneself to bounds of the stabilization time.
Good overviews for the majority resp. the minority process can be found in [21] resp. [16]. Rouquier et al. study the
minority process in the asynchronous model, i.e., not all nodes update their color concurrently [19]. They show that
the stabilization time strongly depends on the topology and observe that the case of trees is non-trivial.

The analysis of fixed points of the majority or minority process received only some attention. Královič determined
the number of fixed points of a complete binary tree for the majority process [13]. Agur et al. did the same for ring
topologies [2]. In both cases the number of fixed points is an exponentially small fraction of all configurations.

A related concept are Boolean networks, which have been extensively used as mathematical models of genetic regu-
latory networks. The number of fixed points of such a network is a key feature of its dynamical behavior. Boolean
networks have been extensively used as models for the dynamics of gene regulatory networks. A gene is modeled by
binary values, 0 or 1, indicating two transcriptional states, either active or inactive, respectively. Each network node
operates by the same nonlinear majority rule, i.e., majority processes are a particular type of BN [20]. The set of fixed
points is an important feature of the dynamical behavior of such networks [4]. The number of fixed points is a measure
for the general memory storage capacity of a system. Many fixed points imply that a system can store a large amount
of information, or, in biological terms, has a large phenotypic repertoire [1]. However, the problem of finding the fixed
points of a Boolean network is in general both NP-hard and #P-complete [3]. There are only a few theoretical results
to efficiently determine this set [11]. Aracena determined the maximum number of fixed points in a particular class of
BN called regulatory Boolean networks [4].

Concepts related to fixed points of the minority resp. majority process have been analyzed. A partition (S, S̄) of the
nodes of a graph is called a global defensive 0-alliance if |NS(v)| ≥ |NS̄(v)| for each node v [6]. Thus, a fixed point
of the minority or majority process induces a 0-alliance, but the converse does not hold. The difference is that no
condition is placed on v. 0-alliances are also called monopolies [15].

2



Fixed Points and 2-Cycles of Synchronous Dynamic Coloring Processes on Trees A PREPRINT

Mishra and Rao show that, for trees, a minimum monopoly can be computed in linear time [15]. A related concept is
that of 2-community structure. Bazgan et al. prove that each tree has a connected 2-community structure and it can be
found in linear time [5].

3 Synchronous Discrete-Time Dynamical Systems

Let G(V,E) be a finite, undirected graph. A coloring c assigns to each node of G a value of {0, 1} with no further
constraints on c. Denote by C(G) the set of all colorings of G, i.e., |C(G)| = 2|V |. A transition processM describes
the transition of one coloring to another, i.e., it is a mapping M : C(G) −→ C(G). Given an initial coloring c, a
transition process produces a sequence of colorings c,M(c),M(M(c)), . . .. We consider two transition processes:
Minority and Majority process and denote the corresponding mappings byMIN andMAJ . They are local mappings
in the sense that the new color of a node is based on the current colors of its neighbors. To determineM(c) the local
mapping is executed concurrently by all nodes. The transition from c toM(c) is called a round. In the minority (resp.
majority) process each node adopts the minority (resp. majority) color among all neighbors. In case of a tie the color
remains unchanged. Formally, the minority process is defined for a node v as follows:

MIN (c)(v) =
{
c(v) if |N c(v)(v)| ≤ |N1−c(v)(v)|
1− c(v) if |N c(v)(v)| > |N1−c(v)(v)|

N i(v) denotes the set of v’s neighbors with color i (i = 0, 1). The definition of MAJ is similar, only the binary
operators ≤ and > are reversed. Sometimes a result holds for both processes. To simplify matters in these cases we
use the symbolM as a placeholder forMIN andMAJ . Fig. 1 depicts a sequence of colorings forMIN .

Figure 1: For the initial coloring on the leftMIN reaches after five rounds the coloring shown on the right. MAJ
reaches for the same initial coloring after one round a monochromatic coloring.

In this paper we are interested in colorings with specific properties. Let c ∈ C(G). IfM(c) = c then c is called a fixed
point. It is called a 2-cycle ifM(c) 6= c andM(M(c)) = c. A 2-cycle is called pure ifM(c)(v) 6= c(v) for each
node v of G. c is called monochromatic if all nodes have the same color, i.e., c(v) = c(w) for all v, w ∈ V . c is called
independent if the color of each node is different from the colors of all its neighbors. Clearly, a monochromatic (resp.
independent) coloring is a fixed point for the majority (resp. minority) process. An edge (v, w) is called monochromatic
for c if c(v) = c(w) otherwise it is called multi-chromatic.

For a mappingM denote by FM(G), C2
M(G), and PM(G), the set of all c ∈ C(G) that constitute a fixed point, a

2-cycle, or a pure coloring forM. If c belongs to one of these sets the complementary coloring andM(c) also belong
to this set. To cope with this fact we also define the sets FM(G)+, C2

M(G)+, and PM(G)+ as the subsets of those
colorings of the corresponding sets which assign to a globally distinguished node v∗ color 0. Hence, if c ∈ FM(G)
then either c or the complement of c is in FM(G)+.

3.1 Notation

Let T (V,E) be a finite, undirected tree with n = |V |. For F ⊆ E let CT (F ) be the set of connected components
of T \F . We define a tree TF with nodes CT (F ) and edges F . An edge of (u,w) ∈ F connects components
T1, T2 ∈ CT (F ) if and only if u ∈ T1 and w ∈ T2. For F ⊆ E and v ∈ V denote the number of edges in F incident
to v by Fv .

The nodes of a nontrivial tree T can be uniquely partitioned into two subsets, such that the nodes of each subset
form an independent set. In the following we denote these independent subsets by I0(T ) and I1(T ). To enforce
unambiguousness when dealing with these subsets we demand that v∗ is contained in I0(T ). A star graph is a tree
with n − 1 leaves. The maximal degree of a tree is denoted by ∆. We denote the nth Fibonacci number by Fn, i.e.,
F0 = 0, F1 = 1, and Fn = Fn−1 +Fn−2. For a set S we denote by P(S) the power set of S, i.e., the set of all subsets
of S.
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4 Fixed Points

In this section we provide a characterization of FM(T ) with respect to subsets of E. In particular; we identify a set
Efix(T ) ⊂ P(E) and define a bijection Bfix betweenEfix(T ) and FM(T )+. Efix(T ) 6= ∅ since ∅ ∈ Efix(T ). This
shows that every tree has at least one fixed point. The definition of Bfix is different forMIN andMAJ . These
results allow to characterize the fixed points of paths. In the second subsection we prove an upper bound for |FM(T )|
in terms of n and ∆. For the case of paths we give the exact numbers. In the last part we provide an output-sensitive
algorithm to enumerate all fixed points.

4.1 The Bijection Bfix

For c ∈ FMIN (T ) nodes adjacent to edges monochromatic for c have degree at least two, moreover at most one half
of the adjacent edges of each node are monochromatic for c. Surprisingly the inverse of this statement is also true and
forms the basis for defining the bijection Bfix: If F is a subset of the edges of T such that nodes adjacent to edges in
F have degree at least two and at most one half of the adjacent edges of each node are in F then F uniquely defines a
fixed point of FM(T ).
Lemma 1. Let T be a tree, c ∈ FM(T ), and F the set of monochromatic (resp. multicolored) edges (u,w) ∈ E
if M = MIN (resp. M = MAJ ). If (u,w) ∈ F then degT (u) ≥ 2 and degT (w) ≥ 2. Furthermore, Fv ≤
degT (v)/2 for each node v of T .

Proof. AssumeM =MIN , the other case is proved similarly. Then |N1−c(u)
T (u)| ≥ |N c(u)

T (u)| ≥ 1 for (u,w) ∈
F . Thus, degT (u) = |N c(u)

T (u)| + |N1−c(u)
T (u)| ≥ 2. Similarly degT (w) ≥ 2. Let v ∈ V . Then |N c(v)

T (v)| ≤
|N1−c(v)

T (v)| since c ∈ FM(T ), i.e., deg(v) ≥ 2|N c(v)
T (v)| = 2Fv .

The last lemma motivates the following definition of Efix(T ). Note that Efix(T ) satisfies the hereditary property

Definition 2. Let T be a tree. E2(T ) denotes the set of edges of T where each end node has degree at least two.
F ⊆ E2(T ) is called legal if Fv ≤ deg(v)/2 for each node v. Efix(T ) denotes the set of all legal subsets of a tree T .

Theorem 3. For any tree T there exists a bijection Bfix between Efix(T ) and FM(T )+.

Proof. First assume M = MIN . Let F ∈ Efix(T ). We define a coloring cF ∈ FMIN (T ). Let T ∗ ∈ CT (F )
with v∗ ∈ T ∗. Let cF (v∗) = 0 and extend cF to an independent coloring of T ∗, e.g., by using breadth-first search.
This uniquely defines cF on T ∗. We extend cF successively to a coloring with cF ∈ FMIN (T )+. While there
exists an already colored node u that has an uncolored neighbor do the following. Let T1 ∈ CT (F ) with u ∈ T1,
N1 = NT1(u), and N2 = NT (u) \ N1. All nodes in N1 have color 1 − cF (u) and Fu = |N2 |. No node of N2 has
yet been assigned a color. By assumption we have |N2 | ≤ degT (u)/2. Hence, |N2 | ≤ |N1 |. Set cF (w) = cF (u)
for all w ∈ N2. For each w ∈ N2 let Tw ∈ CT (F ) with w ∈ Tw. Extend cF to an independent coloring on each
Tw. Then |N cF (u)

T | ≤ |N1−cF (u)
T |. Clearly this uniquely defines cF and cF ∈ FMIN (T )+. Now we can define

Bfix(F ) = cF for each F ∈ Efix(T ). Let F1 6= F2 ∈ Efix(T ) and e = (u,w) ∈ F1 \ F2. Then cF1(w) = cF1(u)
and cF2(w) 6= cF2(u). Hence, cF1 6= cF2 . Thus, Bfix(F ) is injective.

Next, we prove that Bfix is surjective, i.e., for every c ∈ FMIN (T )+ there exists Fc ∈ Efix(T ) such that Bfix(Fc) =
c. For c ∈ FMIN (T )+ let Fc = {(u,w) ∈ E | c(u) = c(w)}. Then Fc ∈ Efix(T ) by Lemma 1. By the first part
of this proof we have BT (Fc) ∈ FMIN (T )+. Let v ∈ T ∗ and u ∈ NT∗(v). Then c(u) 6= c(v), otherwise u 6∈ T ∗.
Hence, BT (Fc) is for T ∗ independent. Since cFc

(v∗) = c(v∗) = 0 we have BT (Fc)(v) = c(v) for all v ∈ T ∗. Next
we repeat this argument for all T̂ ∈ CT (Fc). Thus, c and BT (Fc) define the same coloring of T , i.e., BT (Fc) = c.

Next assumeM =MAJ . Let F ∈ Efix(T ). We use the partition of the nodes of TF into two independent subsets
I0 and I1 to define a mapping CF : CT (F ) → {0, 1} by setting CF (T̂ ) = i if T̂ ∈ Ii for i = 0, 1. We define a
coloring cF of T as follows

cF (v) = CF (T̂ ) if v ∈ T̂ .
F uniquely defines cF among all colorings with cF (v∗) = 0, since v∗ ∈ T ∗ ∈ I0. First, we prove that cF ∈
FMAJ (T )+. For v ∈ V let T̂ ∈ CT (F ) with v ∈ T̂ . Then N(v) ∩ T̂ = N

cF (v)
T (v) and Fu = |N1−cF (v)

T (v)|. Since
F ∈ Efix(T ) we have |N cF (v)

T (v)| ≥ deg(v)/2. Thus, 2|N cF (v)
T (v)| ≥ |N cF (v)

T (v)| + |N1−cF (v)
T (v)| and hence,

|N cF (v)
T (v)| ≥ |N1−cF (v)

T (v)|. Thus, no node can change its color. i.e., cF ∈ FMAJ (T )+. Now we define

Bfix(F ) = cF for each F ∈ Efix(T ).

4
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As in the proof forM =MIN we can show that Bfix(F ) is injective.

Next, we prove that Bfix is surjective, i.e., for every c ∈ FMAJ (T )+ there exists Fc ∈ Efix(T ) such that Bfix(Fc) =
c. For c ∈ FMAJ (T )+ define Fc = {(u,w) ∈ E | c(u) 6= c(w)}. Let (u,w) ∈ Fc. Then Fc ∈ Efix(T ) by Lemma 1.
By the first part of this proof we have Bfix(Fc) ∈ FMAJ (T )+.

Let v ∈ T ∗ and u ∈ NT∗(v). Then c(u) = c(v), otherwise u 6∈ T ∗. Hence, Bfix(Fc) is for T ∗ ∈ CT (Fc)
monochromatic. Since cFc

(v∗) = c(v∗) = 0 we have Bfix(Fc)(v) = c(v) for all v ∈ T ∗. Now we repeat this
argument for all T̂ ∈ CT (Fc). Thus, c and Bfix(Fc) define the same coloring, i.e., Bfix(Fc) = c.

Theorem 3 implies the following two results.
Corollary 4. Let T be a tree. The minority process has an independent fixed point. It has a non-independent fixed
point if and only if T has at least two inner nodes. The majority process has a monochromatic fixed point. It has a
non-monochromatic fixed point if and only if T has at least two inner nodes.

Proof. Since ∅ ∈ Efix(T ) we have c∅ ∈ FMIN (T ) and c∅ is an independent coloring. By Theorem 3 T has a
non-independent fixed point if and only if Efix(T ) 6= ∅. This is equivalent to having at least two inner nodes. The
proof forMAJ is similar.

Corollary 5. A coloring of a path is a fixed point of the minority (resp. majority) process if and only if each node has
at least one neighbor with a different (resp. same) color.

Proof. Let Pn be a path and F ∈ Efix(Pn). If n ≤ 3 then Efix(T ) = ∅, i.e., FMIN (Pn) (resp. FMAJ (Pn)) consist
of the two independent (resp. monochromatic) colorings. Let n ≥ 4. Then F is a matching of Pn−2 since the end
edges of Pn cannot be in F . Since cF induces an independent (resp. monochromatic) coloring for every T̂ ∈ CT (F )
and |T̂ | ≥ 2 the proof is complete.

4.2 Counting Fixed Points

Theorem 3 allows to compute the number of fixed points in specific cases. If ∆ = n − 1 (resp. ∆ = n − 2) then
|FMIN (T )| = 2 (resp. |FMIN (T )| = 4). Furthermore, |FMIN (T )| ≤ 8 if ∆ = n− 3. To get more general results
we describe an algorithm AM to generate all fix points of a given tree T . We start with node v∗ and color it with 0.
Algorithm AM is recursive and extends a partial coloring by coloring all uncolored neighbors of an already colored
node. In this context a partial coloring is a coloring of a subset of the nodes of T with the following property: Let v
be an already colored node. Firstly, all nodes on the path from v∗ to v in T are also colored. Secondly, if a neighbor
of v other than the one closer to v∗ is colored, then all neighbors of v are colored.

The details of a recursive call for the minority process, i.e., AMIN are as follows. Given a partial coloring c, a single
invocation generates several extensions of c, all of them are again partial colorings covering more nodes. Let v be
an already colored node that has an uncolored neighbor. First, each uncolored neighbor of v that is a leaf gets the
complementary color of v. Then v has r = deg(v)− |N0(v)| − |N1(v)| uncolored neighbors. Let U be the set of the
uncolored neighbors of v, note none of them is a leaf. We color N̂0 (resp. N̂1) of these r neighbors with color 0 (resp.
1), i.e., r = N̂0 + N̂1. In order to produce a fixed point the following inequality must be satisfied:

|N c(v)(v)|+ N̂c(v) ≤ |N1−c(v)(v)|+ N̂1−c(v) = |N1−c(v)(v)|+ r − N̂c(v).

Hence,

N̂c(v) ≤
r + |N1−c(v)(v)| − |Nc(v)(v)|

2 . (1)

Let
r0 = min

(
b(r + |N1−c(v)(v)| − |Nc(v)(v)|)/2c, r

)
. (2)

For i = 0, . . . , r0 we extend c by coloring a subset S of U of size i with color c(v) and the remaining nodes U \S with
color c(v) − 1. This way we get

∑r0
i=0
(

r
i

)
extended partial colorings. AMIN is applied to each of these extensions

and terminates when all nodes are colored. Clearly, the resulting colorings are fixed points and all fixed points are
generated this way. AlgorithmAMAJ differs only in two places. Firstly, uncolored neighbors of v that are leaves gets
the same color as v. Secondly, in Eq. (1) operator ≥ must be replaced by ≤ and the assignment of colors to nodes in
U is reversed.

Next we prove an upper bound for |FM(T )|. According to Corollary 4 each tree has at least two fixed points. A star
graph is an extreme case, because it only has two fixed points. The other extreme are paths as shown in this section.
We start with a simple observation.

5
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Lemma 6. Let T be a tree with a path v0, v1, v2, v3 such that deg(v0) = 1 and deg(v1) = deg(v2) = 2. Let
T 0 = T \ v0 and T 1 = T 0 \ v1. Then |FM(T )| = |FM(T 0)|+ |FM(T 1)|.

Proof. We assumeM = MIN , the other case is proved similarly. Note that for each c ∈ FM(T ), the color of v0
is determined by that of v1, i.e., c(v0) = 1 − c(v1). We apply the above described algorithm AMIN to T 1 and T 0,
where vertices v2, v1 and v0 are visited last and in this order. We classify the fixed points c of T in two categories:
F= consists of those c with c(v2) = c(v1) and F 6= the remaining colorings. Colorings of F6= arise when AMIN is
applied to T 0, because v1 is a leaf in T 0 and therefore v1 and v2 do receive different colors for T 0. Thus, each fixed
point c ∈ F 6= of this category can be uniquely paired with a fixed point of T0, by setting c(v0) = 1− c(v1). Consider
an application of AMIN to T 1. Since v2 is a leaf in T 1, v2 and v3 receive different colors. Thus, these colorings are
uniquely extended to T by setting c(v1) = c(v2) and c(v0) = 1 − c(v1). Hence, fixed points of T 1 can be uniquely
paired with fixed points of F=. Since we have associated each fixed of T with a fixed point of either T 0 or T 1 we have
|FMIN (T )| = |FMIN (T 0)|+ |FMIN (T 1)|.

Before proving Theorem 8 we provide a technical result.

Lemma 7. Let T be a tree and v a leaf of T with neighbor w. Let nl (resp. ni) be the number of neighbors of w that
are leaves (resp. inner nodes). If nl > ni then there is a one-to-one correspondence between FM(T ) and FM(T \ v).

Proof. For c ∈ FM(T ) the children of w that are leaves are colored with c(w) ifM = MAJ and with 1 − c(w)
otherwise. Thus, if c1, c2 ∈ FM(T ) with c1(u) = c2(u) for all u 6= v then c1 = c2. Hence, c uniquely corresponds to
an element of FM(T \ v). Consider the coloring of w’s children by AM. Since nl > ni an arbitrary number of the
non-leaf neighbors of w can receive color c(w) (resp. 1 − c(w). If one of w’s leaf children is removed, w still has at
least as many leaf children as non-leaf children. Hence, AM produces the same fixed points.

A path of length 3 shows that the last lemma does not hold in case nl = ni.

Theorem 8. Let T be a tree and P a path. Then |FM(T )| ≤ 2Fn−d∆/2e and |FM(P )| = 2Fn−1.

Proof. We assumeM = MIN , the other case is proved similarly. The proof is by induction on n. If ∆ = 2 the
result holds by Theorem 8. If T is a star graph then |FMIN (T )| = 2, again the result is true. Let ∆ > 2 and T not
a star graph. Thus, n > 4. Let Ẽ be the set of edges (v, w) of T where v is a leaf and all neighbors of w but one are
leaves. Then |Ẽ | ≥ 2 since T is not a star graph. Thus, there exits (v, w) ∈ Ẽ such that there exists a node different
from w that has degree ∆. If deg(w) > 2 then there exists a neighbor u 6= v of w that is a leaf. Let Tu = T \ u. Then
|FM(T )| = |FM(Tu)| by Lemma 7. Thus, the result is true by induction since ∆(Tu) = ∆(T ).

Hence, we can assume that deg(w) = 2. Let u 6= v be the second neighbor ofw. Denote by Tv (resp. Tw) the tree T \v
(resp. T \ {v, w}). Assume that u is the only node in T with degree ∆. Repeating the above argument proves that T is
an extended star graph with center node u and that all neighbors of u have degree 1 or 2. Applying algorithm AMIN
shows that the largest number of fixed points is achieved if all ∆ neighbors of u have degree 2. Then n = 2∆ + 1,
r = ∆ and r0 = b∆/2c by Eq. (2). If ∆ ≡ 0(2) then as shown above

|FM(T )| = 2
∆/2∑
i=0

(
∆
i

)
= 2∆ +

(
∆

∆/2

)
≤ 2F3∆/2+1 = 2Fn−d∆/2e.

The case ∆ ≡ 1(2) is proved similarly. Therefore, we can assume that Tw contains a node with degree ∆. Thus, by
induction: 2Fn−1−d∆/2e ≥ |FM(Tv)| and 2Fn−2−d∆/2e ≥ |FM(Tw)|.

Denote by F= (resp. F6=) the set of fixed points c of T with c(u) = c(w) (resp. c(u) 6= c(w)). Note that c(v) =
1− c(w). If c ∈ F6= then c ∈ FM(Tv) and if c ∈ F= then c ∈ FM(Tw). Hence,

|FM(T )| = |F 6= |+ |F= | ≤ 2Fn−1−d∆/2e + 2Fn−2−d∆/2e = 2Fn−d∆/2e.

Fig. 2 shows that the bound of Theorem 8 is not sharp. Let Bh be a binary tree of depth h. The equation

|FM(Bh)| = |FM(Bh−1)|(|FM(Bh−1)|+ 2|FM(Bh−2)|2)

already contained in [13] directly follows from Theorem 3.

6
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Figure 2: Three trees with five nodes having 4, 2, and 6 fixed points forMIN .

4.3 Generating Fixed Points

The fixed points of a tree T can be generated by iterating over all subsets of E2(T ) and outputting the legal ones.
The algorithm exploits the fact that Efix(T ) has the hereditary property, i.e., if X ∈ E2(T ) is legal, all subset of
X are also legal. Algorithm 1 describes an output-sensitive algorithm running in time O(n + |FM(T )| × |E2(T )|).
Since |E2(T )| ≤ n the running time is in O(n|FM(T )|). If E2(T ) = {e1, . . . , el} then the algorithm successively
constructs the set of all legal subsets using the edges {e1, . . . , ei} for i = 0, . . . , l. The inner foreach-loop always
iterates over the list fixedPoints beginning at the first entry.

Algorithm 1: Algorithm to generate a list of all fixed points of a tree T (V,E)
input: A tree T = (V,E)
E2 := {(u,w) ∈ E | deg(u) ≥ 2 and deg(w) ≥ 2};
fixedPoints := ∅; fixedPoints.append(∅);
foreach e ∈ E2 do

count := fixedPoints.size();
foreach X ∈ fixedPoints do

if {e} ∪X is legal then
fixedPoints.append({e} ∪X);

count := count− 1;
if count == 0 then

break;

return fixedPoints;

Theorem 9. Algorithm 1 computes all |FM(T )| fixed points of a tree T in time O(n + |FM(T )| × |E2(T )|) using
O(|E2(T )| × |FM(T )|) memory.

Proof. By Theorem 3 each legal subset of E2(T ) uniquely corresponds to a fixed point of T . If a subset S of E2(T )
is not legal, then no superset of S is legal and if S is legal then all subsets of S are legal. Therefore, the algorithm
generates all legal subsets of E2(T ). Let l = |E2(T )|. Denote by Si the set of elements of the list fixedPoints
at the beginning of the ith outer foreach-loop and Sl+1 the elements of fixedPoints after the last execution. Then
|S1 | = 1 and |F(T )+ | = |Sl+1 |.
Next we prove that (4/5)|Si+1 | ≥ |Si | for i = 1, . . . , l. Let e = (u,w) ∈ E2(T ). For X ∈ Si denote the number
of edges in X that are incident with a node v by Xv . Let S̄ = Si and Ŝ = ∅. Let X ∈ S̄ with Xu + 1 >
deg(u)/2 and Xw + 1 > deg(w)/2. Let eu (resp. ew) be an edge of X that is incident with u (resp. w). Then we
remove X,X \ {eu, ew}, X \ {eu}, and X \ {ew} from S̄ and insert X,X \ {eu, ew}, X \ {eu}, X \ {ew}, and
X \ {eu, ew} ∪ {e} into Ŝ. We repeat this process until there is no X in S̄ with the above property. Next, let X ∈ S̄
with Xu + 1 > deg(u)/2 and Xw + 1 ≤ deg(w)/2. Let eu be an edge of X that is incident with u. Then we remove
X , and X \ {eu} from S̄ and insert X,X \ {eu}, X \ {eu} ∪ {e} into Ŝ. We repeat this process until there is no X in
S̄ with the above property. Finally, for the remaining X ∈ S̄ we insert X,X ∪ {e} into Ŝ. Assume, that Si contains
n1, n2 resp. n3 elements according to the above classification, then

|Si | = 4n1 + 2n2 + n3 and |Ŝ | = 5n1 + 3n2 + 2n3.

7
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Since Si+1 = Ŝ we have (4/5)|Si+1 | ≥ |Si |. The overall number of executions of the inner foreach-loop is∑l
i=1|Si |. Thus,

l∑
i=1
|Si | ≤ (4/5)

l+1∑
i=2
|Si | = (4/5)

l∑
i=1
|Si |+ (4/5)(|Sl+1 | − 1).

Hence,
l∑

i=1
|Si | ≤ 4(|Sl+1 | − 1) < 4|F(T )+ |.

In time O(n) we provide the degrees of all nodes in an array. Also the test whether X ∪ e is legal and append the entry
to the list can be performed in time O(|X |).

The bound (4/5)|Si+1 | ≥ |Si | for all i can be used to prove the lower bound of ((5/4)l with l = |E2(T )| for
|FM(T )|. We conjecture that a more detailed analysis of the relation between |Si+1 | and |Si | leads to a better bound.

Finally, we sketch an alternative approach for computing all fixed points. The elements of Efix(T ) correspond to
the solutions of a system of linear diophantine inequalities Ax ≤ b. Here, A is a binary |E2(T )| × n matrix, where
ai,j = 1 if node i is incident with edge j of E2(T ) and bi = bdegT (i)/2c. Thus, by Theorem 3 the set of fixed points
corresponds to the solutions of Ax ≤ b. Unfortunately there isn’t much work available for solving systems of linear
diophantine inequalities [9].

5 General 2-Cycles

In this section we analyze the structure of C2
M(T ). First we collect general results about colorings from C2

MIN (T ).
In the second subsection we consider the set c ∈ PM(T ) of all pure colorings. We first prove properties of c and use
these to define the set Epure(T ) and define a bijection Bpure between Epure(T ) and PM(T )+. Since Epure(T ) 6= ∅
this shows that every tree has pure coloring. These results immediately lead to a simple characterization pure coloring
of paths. In the third subsection we derive from Bpure an upper bound for |PM(T )| in terms of n. Finally we consider
the general case of 2-cycles. We prove that T decomposes into subtrees, such that c is either a fixed point or a pure
coloring on each of these subtrees. These subtrees provide the basis to define a hyper structure of a tree, called the
block tree. After analyzing properties of block trees we define a setEblock(T ) of subsets of the edge set of a tree T and
show in Theorem 29 that the elements of Eblock(T ) correspond one-to-one with the block trees of T . Since Eblock(T )
does not have the hereditary property, we cannot use the approach of Algorithm 1 to enumerate all block trees.

5.1 General Results

Let c ∈ C2
M(T ). We separate the nodes of T in two groups. A node u is called a fixed node for c ifM(c)(u) = c(u);

it is called a toggle node for c ifM(c)(u) 6= c(u). Note that in any caseM(M(c))(u) = c(u). Denote by N i
f (u)

(resp. N i
t (u)) the number of neighbors of u with color i that are fixed (resp. toggle) nodes for c.

First, we provide a simple characterization of fixed and toggle nodes forMIN andMAJ .

Lemma 10. Let T be a tree and c ∈ C2
MIN (T ). A node u of T is a fixed node of c if and only if

|N1−c(u)
t (u)−N c(u)

t (u)| ≤ N1−c(u)
f (u)−N c(u)

f (u)

and a toggle node of c if and only if

|N c(u)
f (u)−N1−c(u)

f (u)| < N
c(u)
t (u)−N1−c(u)

t (u).

Proof. Let u be a fixed node of c, i.e.,MIN (c)(u) = c(u). ThenN c(u)
t (u)+N c(u)

f (u) ≤ N1−c(u)
t (u)+N1−c(u)

f (u).

Since M(M(c))(u) = c(u) we also have N
1−c(u)
t (u) + N

c(u)
f (u) ≤ N

c(u)
t (u) + N

1−c(u)
f (u). This yields

−(N1−c(u)
f (u) − N

c(u)
f (u)) ≤ N

1−c(u)
t (u) − N

c(u)
t (u) ≤ N

1−c(u)
f (u) − N

c(u)
f (u) which proves that the condi-

tion is necessary.

Next assume |N1−c(u)
t (u)−N c(u)

t (u)| ≤ N
1−c(u)
f (u)−N c(u)

f (u). Then N c(u)
t (u)−N1−c(u)

t (u) ≤ N
1−c(u)
f (u)−

N
c(u)
f (u) and N c(u)(u) ≤ N1−c(u)(u). Hence,M(c)(u) = c(u). The assumption also implies that N1−c(u)

t (u) −

8
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N
c(u)
t (u) ≤ N

1−c(u)
f (u) − N

c(u)
f (u) resp. N

c(u)
f (u) + N

1−c(u)
t (u) ≤ N

1−c(u)
f (u) + N

c(u)
t (u). This yields

M(M(c))(u) = c(u). Hence, the condition is sufficient. The result for toggle nodes is proved similarly.

The proof of the following lemma is similar to the proof of Lemma 10.

Lemma 11. Let T be a tree and c ∈ C2
MAJ (T ). A node u of T is a fixed node of c if and only if

|N1−c(u)
t (u)−N c(u)

t (u)| ≤ N c(u)
f (u)−N1−c(u)

f (u)

and a toggle node of c if and only if

|N c(u)
f (u)−N1−c(u)

f (u)| < N
1−c(u)
t (u)−N c(u)

t (u).

5.2 Pure 2-Cycles

If c ∈ PM(T ) then each node of T is a toggle node. In Theorem 16 we give a characterization PM(T ), it allows to
generate all pure 2-cycles and compute |PM(T )|.
Lemma 12. Let T be a tree, c ∈ CM(T ). Then c ∈ PMIN (T ) (resp. c ∈ PMAJ (T )) if and only if N c(u)(u) >
N1−c(u)(u) (resp. N c(u)(u) < N1−c(u)(u)) for each node u.

Proof. We present the proof for M = MIN . If N c(u)(u) > N1−c(u)(u) for all nodes u then all nodes
are toggle nodes. Hence, NMIN (c)(u)(u) = N1−c(u)(u). Thus, N1−MIN (c)(u)(u) > NMIN (c)(u)(u), i.e.,
MIN (MIN (c)) = c, thus c ∈ C2

MIN (T ). Since no nodes are fixed nodes we have c ∈ PMIN (T ). The op-
posite statement follows from Lemma 10.

As in Sec. 4.1 we use properties of monochromatic edges to characterize pure 2-cycles. Corollary 14 is similar to
Lemma 1 and is used to define the set Epure(T ).

Lemma 13. Let T be a tree, c ∈ PM(T ), and e = (u,w) ∈ E with c(u) 6= c(w) ifM =MIN and c(u) = c(w) if
M =MAJ . Let Tu (resp. Tw) be the subtree of T \ e that contains u (resp. w). Then u and w have degree at least
3, Tu and Tw contain at least 3 nodes, and c induces a pure 2-cycle on both subtrees.

Proof. We state the proof forM =MIN . Since c is pure we have N c(u)
T (u) > N

1−c(u)
T (u) and since c(u) 6= c(w)

we also have N1−c(u)
T (u) ≥ 1. Hence, deg(u) = N

c(u)
T (u) + N

1−c(u)
T (u) ≥ 3. Similarly deg(w) ≥ 3. Let v ∈ Tu.

If v 6= u then all neighbors of v in T are in Tu and thus |N c(u)
Tu

(u)| > |N1−c(u)
Tu

(u)|. Next consider the case v = u.
Since c is pure, there exists in N(u) at least one more node with color c(u) than with color c(w). Thus, u has at
least two neighbors in Tu, hence Tu contains at least three nodes. Since |N c(u)

Tu
(u)| = |N c(u)

T (u)| > |N1−c(u)
T (u)| =

|N1−c(u)
Tu

(u)| + 1 we have |N c(u)
Tu
| > |N1−c(u)

Tu
(u)|. Hence, Lemma 12 implies that c induces a pure 2-cycle for

MIN on Tu. The same is true for Tw.

Corollary 14. Let T be a tree. If c ∈ PMIN (T ), Fc = {(u,w) ∈ E | c(u) 6= c(w)}, and T̂ ∈ CT (Fc) then
|T̂ | ≥ 3 and c induces a monochromatic coloring on T̂ . If c ∈ PMAJ (T ), Fc = {(u,w) ∈ E | c(u) = c(w)}, and
T̂ ∈ CT (Fc) then |T̂ | ≥ 3 and c induces an independent coloring on T̂ . Furthermore, (Fc)v < degT (v)/2 for v ∈ V .

Proof. AssumeM = MIN . If T̂ ∈ CT (Fc) then c(u) = c(w) for all u,w ∈ T̂ . Thus, by Lemma 13, c induces a
monochromatic coloring on T̂ . Similarly, c(u) 6= c(w) for all u,w ∈ T̂ forM =MAJ . Again Lemma 13, c induces
an independent coloring on T̂ . |N c(v)(v)| > |N1−c(v)(v)| = (Fc)v since c is pure. Hence, degT (v) > 2(Fc)v .

Corollary 14 motivates the following definition of Epure(T ). Note that Epure(T ) satisfies the hereditary property and
Epure(T ) = Efix(T ) if all degrees of T are odd.

Definition 15. Let T be a tree. E3(T ) denotes the set of all edges of T where each end node has degree at least three.
F ⊆ E3(T ) is called legal if Fv < deg(v)/2 for each node v. Epure(T ) denotes the set of all legal subsets of E3(T ).

Theorem 16. For any tree T there exists a bijection Bpure between Epure(T ) and PM(T )+.

9
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Proof. Let F ∈ Epure(T ). We uniquely partition the nodes of TF into two independent subsets I0 and I1 with
v∗ ∈ I0. AssumeM =MIN . Define a mapping CF : CT (F )→ {0, 1} by setting CF (T̂ ) = i if T̂ ∈ Ii. Based on
CF we define a coloring cF of T as follows cF (v) = CF (T̂ ) if v ∈ T̂ . Note that cF (v∗) = 0. F uniquely defines cF ,
since for each node v there is a unique T̂ ∈ CT (F ) that contains v. First, we prove that cF ∈ PMIN (T )+. For v ∈ V
let T̂ ∈ CT (F ) with v ∈ T̂ . Then N(v) ∩ T̂ = N

cF (v)
T (v). Since F ∈ Epure(T ) we have |N cF (v)

T (v)| > deg(v)/2.
Thus, 2|N cF (v)

T (v)| > |N cF (v)
T (v)|+ |N1−cF (v)

T (v)| and hence, |N cF (v)
T (v)| > |N1−cF (v)

T (v)| for all v. Hence, cF ∈
PMIN (T )+ by Lemma 12. Now we can define Bpure(F ) = cF for each F ∈ Epure(T ). Let F1 6= F2 ∈ Epure(T )
and e = (u,w) ∈ F1 \ F2. Then cF1(w) 6= cF1(u) and cF2(w) = cF2(u). Hence, cF1 6= cF2 , i.e., Bpure(F ) is
injective.

Next, we prove that Bpure is surjective, i.e., for every c ∈ PMIN (T )+ there exists Fc ∈ Epure(T ) with Bpure(Fc) =
c. For c ∈ PMIN (T )+ define Fc = {(u,w) ∈ E | c(u) 6= c(w)}. By Lemma 13 we have Fc ∈ E3(T ). Let
v ∈ V . Since c is a pure 2-cycle we have |N c(v)

T (v)| > |N1−c(v)
T (v)|, i.e., deg(v) > 2|N1−c(v)

T (v)|. Since,
(Fc)v = |N1−c(v)

T (v)| we have deg(v)/2 > (Fc)v . This yields Fc ∈ Epure(T ). By the first part of this proof we have
Bpure(Fc) ∈ PMIN (T )+. By Corollary 14 Bpure(Fc) is for each tree T̂ ∈ CT (Fc) a monochromatic coloring with
Bpure(Fc)(v) = c(v) for all v ∈ T̂ . Hence, c and Bpure(Fc) define the same coloring of T , i.e., Bpure(Fc) = c.

The proof for the case M = MAJ is similar. The main differences are that we define cF such that it induces an
independent coloring on each T̂ ∈ CT (F ) and in the second part we define Fc = {(u,w) ∈ E | c(u) = c(w)}.

Corollary 17. Every tree T has a pure coloring for the minority and the majority process. T has a non-monochromatic
(resp. non-independent) pure coloring for the minority (resp. majority) process if and only if there exist an edge
(u,w) ∈ T such that deg(u) ≥ 3 and deg(w) ≥ 3.

Proof. We provide the proof for M = MIN . The result follows from Theorem 16. Since ∅ ∈ Epure(T ) we
have c∅ ∈ FM(T )+. c∅ is a monochromatic coloring. T has a non-monochromatic pure coloring if and only if
Epure(T ) 6= ∅. This is equivalent to having an edge with the stated properties.

Corollary 18. Let P be a path and c ∈ C(P ). Then c ∈ PMIN (P ) (resp. c ∈ PMAJ (P )) if and only if c(v) = c(w)
(resp. c(v) 6= c(w)) for each edge (v, w) of P .

Proof. Clearly Epure = ∅. Hence, PM(P )+ = {c∅} by Theorem 16. Hence, c is monochromatic (resp. independent)
forM =MIN (resp.M =MAJ ).

Since Epure(T ) ⊆ Efix(T ) we have PMAJ (T ) ⊆ FMIN (T ) and PMIN (T ) ⊆ FMAJ (T ). Fig. 3 shows that there
are trees T where PMAJ (T ) ⊂ FMIN (T ) and PMIN (T ) ⊂ FMAJ (T ).

Figure 3: The left coloring is in FMAJ (T ) \ PMIN (T ), the right one is in FMIN (T ) \ PMAJ (T ).

5.3 Counting Pure 2-Cycles

Theorem 16 allows to determine the pure 2-cycles of a tree T , and thus, |PM(T )|. Since Epure(T ) ⊆ Efix(T ) we
have |PM(T )| ≤ |FM(T )| and |PM(T )| ≤ 2Fn−d∆/2e by Theorem 8. To generate all pure 2-cycles Algorithm 1 can
be adopted, note that Epure(T ) has the hereditary property. The difference is that it uses E3(T ) and the corresponding
notion of legal. The algorithm works in time O(n + |PM(T )||E3(T )|). Next we provide a better upper bound for
|PM(T )|. Let eT = |E3(T )|.
Lemma 19. Let T be a tree, then eT ≤ (n− 4)/2.

Proof. The proof is by induction on n. If n < 6 then eT = 0 and for n = 6 we have eT ≤ 1. So let n > 6. Let v
be a node with deg(v) = 2. Let T ′ be the tree that is constructed from T by removing node v and connecting the two
neighbors of v by an edge. Then eT = eT ′ . By induction eT ′ ≤ (n − 5)/2 < (n − 4)/2. Hence we can assume that
deg(v) 6= 2 for all nodes v of T . Let v be a node with deg(v) ≥ 4. Then by induction, no neighbor of a v is a leaf.

10
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Hence, each neighbor of v has degree at least 3. Let w be a neighbor of v and (v, w) an edge. Let T1 be the connected
component of T \ e that contains v and T2 the other component with the additionally edge e. Let Ti have ni nodes.
Then n1 + n2 = n+ 1 and eT = 1 + eT1 + eT2 . By induction eTi ≤ (ni − 4)/2. Thus,

eT ≤ 1 + (n1 − 4)/2 + (n2 − 4)/2 = (n1 + n2 − 6)/2 = (n− 5)/2 < (n− 4)/2.

It remains the case each node has either degree 1 or 3. Let l be the number of leaves of T , then there are n − l nodes
of degree 3. Then eT = n− l− 1 (remove all leaves, then eT edges remain). We have l + 3(eT + 1) = 2(n− 1) and
l+ eT + 1 = n. Thus n− 1− eT + 3(eT + 1) = 2(n− 1). This yields 2eT = n− 4 which completes the proof.

The last lemma implies |PM(T )| ≤ 21+(n−4)/2. This bound is purely based on the bound for |E3(T )|. By utilizing
the constraints imposed by Epure(T ) better bounds may be derived. The tree Hn with n ≡ 0(2) that consists of a
path of length (n+ 2)/2 and a single node attached to each inner node of the path (see Fig. 4) shows that the bound of
Lemma 19 is sharp, but there is large gap between |E3(Hn)| and |Epure(Hn)|.

Figure 4: The graph H10, the three edges belonging to E3(H10) are depicted by solid lines. In general we have
|E3(Hn)| = 2(n−4)/2 and |Epure(Hn)| = Fn/2.

5.4 Block Trees of 2-Cycles

In this section we consider general 2-cycles, i.e., those that have both fixed and toggle nodes. We characterize the
coarse grain structure of C2

M(T ), called the block tree of T .

Definition 20. Let T be a tree and c ∈ C2
M(T ). Let Vf (resp. Vt) be the set of fixed (resp. toggle) nodes of c and T f

(resp. T t) the subgraph of T induced by Vf (resp. Vt).

The next result shows that a 2-cycle c induces a structure on T that allows to define a hyper-tree Bc(T ).

Lemma 21. Let T be a tree, c ∈ C2
M(T ), and T ′ a connected component of T f (resp. T t). Then c induces a fixed

point (resp. a pure 2-cycle) on T ′.

Proof. We present the proof forMIN . Let T ′ be a connected component of T f and u a node of T ′. With respect to
T we have |N1−c(u)

t (u)−N (u)
t (u)| ≤ N

1−c(u)
f (u)−N c(u)

f (u) by Lemma 10. Restricting c to T ′ gives N c(u)
T ′ (u) =

N
c(u)
f (u) and N1−c(u)

T ′ (u) = N
1−c(u)
f (u). This yields N1−c(u)

T ′ (u) ≥ N
c(u)
T ′ (u). This proves that u is a fixed node of

T ′ for c. Hence, c is a fixed point for T ′. The result about components of T t is proved similarly. The result forMAJ
is based on Lemma 11.

Lemma 21 provides the base to define the block tree of a coloring c ∈ C2
M(T ).

Definition 22. Let T be a tree, c ∈ C2
M(T ), and T1, . . . , Ts the connected components of T f and T t. The block tree

Bc(T ) of T for c is a tree with nodes {T1, . . . , Ts}, nodes Ti and Tj are connected if there exists (u,w) ∈ E with
u ∈ Ti and w ∈ Tj . A node Ti is called a fixed block (resp. toggle block) of Bc(T ) if Ti is a connected component of
T f (resp. T t).

Obviously Bc(T ) is a tree. Bc(T ) is uniquely defined, but different 2-cycles can induce the same block tree (see
Fig. 5). Each edge e of Bc(T ) connects a fixed block with a toggle block, e uniquely corresponds to an edge of T .
For convenience we denote this edge also by e. If Ti is a toggle block then obviously |Ti | ≥ 2, since all neighboring
blocks are fixed blocks. Fixed blocks can consist of a single node only (see Fig. 6).

The goal of this section is to present a characterization of the set of all block trees for a given tree T similar to
Theorem 16, i.e., the trees TB for which there exists c ∈ C2

M(T ) such that TB = Bc(T ). The following theorem
summarizes properties of 2-cycles.
Theorem 23. Let T be a tree, c ∈ C2

M(T ), and e = (u,w) an edge of Bc(T ). Then

1. If degT (u) = 2 then u is a fixed node.

11
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2. min(degT (u), degT (w)) ≥ 2 and max(degT (u), degT (w)) ≥ 3.

3. If T0 is a node of Bc(T ), v ∈ T0, degT0(v) = 1 and degT (v) ≡ 0(2) then v is a fixed node and T0 is a fixed
block.

4. If T0 = {v} is a node of Bc(T ) then v is a fixed node, T0 is a fixed block, and degT (v) is even.

Proof. AssumeM =MIN , the proof forMAJ is similar and uses Lemma 11. Assume that u is toggle node. Then
|N c(u)(u)| > |N1−c(u) |. Thus, if |N1−c(u) | > 0 then degT (u) ≥ 3. Therefore, |N1−c(u) | = 0 and |N c(u)(u)| = 2.
Since u is toggle node, both neighbors must change their color, i.e., both are toggle nodes. This yields that w is a
toggle node. Contradiction, since e(u,w) is an edge of Bc(T ).

WLOG we assume that u is a fixed node while w toggles its color. Assume that min(deg(u), deg(w)) = 1. If
deg(u) = 1 then u cannot be a fixed node because w toggles its color. Similarly, w cannot have degree 1. Hence,
min(deg(u), deg(w)) ≥ 2. Assume that deg(u) = deg(w) = 2. Then by the first part, both nodes are fixed nodes.
Contradiction. Assume that v is a toggle node. Then N c(v)

t = 1 and N1−c(v)
t = 0. Hence, by Lemma 10 we have

N
1−c(v)
f = N

c(v)
f thus, degT (v) = 1 + 2N c(v)

f ≡ 1(2). Contradiction. Let T0 = {v}. If v is a toggle node then all
neighbors are fixed nodes. Hence, v is also a fixed node. Contradiction. Lemma 10 yields that degT (v) is even.

Figure 5: Two colorings leading to the same block tree. For the minority process both colorings define the same block
tree. The left block node is a toggle node while the right is a fixed point.

Figure 6: A block tree consisting of two toggle blocks and one fixed block with a single node.

The last theorem list properties of Bc(T ) for c ∈ C2
M(T ). As before we take these properties to identify a set of edges

Fc such that TFc = Bc(T ). The following two definitions provide a formal framework for this purpose.

Definition 24. Let T be a tree. E 2.5(T ) denotes the set of edges of T , where one end node has degree at least two and
the other has degree at least 3. For F ⊆ E 2.5(T ) a component T̂ ∈ CT (F ) is called fixed if |T̂ | = 1 or if there exists
v ∈ T̂ such that degT (v) ≡ 0(2) and degT̂ (v) = 1. Fix(T, F ) denotes the set of all fixed components of CT (F ).

Definition 25. Let T be a tree. F ⊆ E 2.5(T ) is called legal if all components of Fix(T, F ) are fully contained in
I0(TF ) and if T0 ∈ CT (F ) with T0 = {v} then degT (v) ≡ 0(2). Eblock(T ) denotes the set of all legal subsets of
E 2.5(T ).

The next result reveals the significance of Eblock(T ) for block trees.

Lemma 26. Let T be a tree, c ∈ C2
M(T ), and Fc the edges of Bc(T ). Then Fc ∈ Eblock(T ).

Proof. Note that TFc
= Bc(T ). By Theorem 23.2 we have Fc ⊆ E 2.5(T ). By construction of Bc(T ) and Theo-

rem 23.4 and 23.3 we have Fix(T, Fc) ⊆ I0(TFc). Theorem 23.4 completes the proof.

Definition 27. Let T be a tree. A coloring c ∈ C2
MIN (T ) is called canonical if c induces a monochromatic (resp.

independent) coloring on each connected component of T t (resp. T f ). A coloring c ∈ C2
MAJ (T ) is called canonical

if c induces an independent (resp. monochromatic) coloring on each connected component of T t (resp. T f ).

The next result lays the groundwork for our characterization of block trees.

12
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Lemma 28. Let T be a tree and F ∈ Eblock(T ). There exits c ∈ C2
M(T ) with Bc(T ) = TF such that c is canonical

and I0 (resp. I1) is the set of fixed (resp. toggle) nodes of c.

Proof. AssumeM = MIN ,M = MAJ is similar and uses Lemma 11. The proof is by induction on |F |. The
case |F | = 0 is obvious, c is the monochromatic coloring. Let |F | > 0. Let L ∈ TF be a leaf and e = (u,w) ∈ F
such that w ∈ L. Then |L| ≥ 2 if L ∈ I0(TF ) and |L| ≥ 3 if L ∈ I1(TF ). Remember that I0(TF ) contains the fixed
components of TF . By the definition of Eblock(T ) we have to consider four cases.

Case 1: L ∈ I0(TF ) and |L| > 2. We construct a tree T̃ as follows: Remove from T all nodes of L except w and
add a new neighbor v to w. Then |T̃ | < |T |. Then degT (u) > 2 otherwise L would not be in I0(TF ). Hence,
F ⊆ E2.5(T̃ ). Denote the leaf of CT̃ (F ) consisting of v and w by L̃. Thus, L̃ ∈ Fix(T̃ , F ) and Fix(T̃ , F ) =
Fix(T, F ) ∪ L̃ \ L ⊆ I0(TF ). Let T0 = {v} ∈ CT̃ (F ). Then, T0 ∈ CT (F ). Hence, degT (v) ≡ 0(2) by assumption.
Since T0 ∈ I0(TF ) we also have degT̃ (v) ≡ 0(2). This shows that T̃ and F satisfy the theorem’s assumption. Hence,
by induction there exists a canonical coloring c̃ ∈ C2(T̃ ) with Bc̃(T̃ ) = TF satisfying all properties. We can extend c̃
to a coloring c ∈ C2(T ) by setting c(x) = c̃(x) for all nodes x ∈ T \ L, c(w) = c̃(w), and color the remaining nodes
of L in the canonical way for a fixed point.

Case 2: L ∈ I0(TF ) and |L| = 2. Let F̃ = F \ e. Let v ∈ L be a neighbor of w and set T̃ = T \ v. Let Tu ∈ CT (F )
with u ∈ Tu. Then Tu ∈ I1(TF ) and thus, |Tu | > 1, degTu(u) ≥ 1 and degT (u) ≥ 3. Let T̃u ∈ CT̃ (F̃ ) with u ∈ T̃u.
Then w ∈ T̃u, T̃u ∈ I1(TF ) and Tu ⊂ T̃u. Clearly, F̃ ⊆ E2.5(T̃ ). Let T0 = {v0} ∈ CT̃ (F̃ ) with |T0 | = 1. Then
T0 ∈ CT (F ), thus degT (v0) ≡ 0(2). Hence, degT̃ (v0) ≡ 0(2). Let T̂ ∈ CT̃ (F̃ ) and v0 ∈ T̂ with degT̂ (v0) = 1,
degT̃ (v0) ≡ 0(2). Assume T̂ = T̃u. Then v0 6= w since degT̃ (w) = 1 6≡ 0(2). Thus, T̂ = T̃u if v0 ∈ T̂ with
degT̂ (v0) = 1 for some v0 6= w. Hence, T̂ ∈ Fix(T̃ , F̃ ) = Fix(T, F ) ⊆ I0(TF ) = I0(T̃F̃ ).

Therefore, T̃ and F̃ satisfy the theorem’s assumption. By induction there exists a canonical coloring c̃ ∈ C2(T̃ ) with
Bc̃(T̃ ) = TF̃ satisfying all properties. Since T̃u ∈ I1(T ) all nodes of T̃u have the same color, thus N1−c̃(u)

t (u) = 0
and c̃(u) = c̃(w). By Lemma 10 we have |N c̃(u)

f (u)−N1−c̃(u)
f (u)| < N

c̃(u)
t (u). We change c̃ to a coloring c of T as

follows. First, we set c(x) = c̃(x) for all x 6∈ {w, v}. We apply Lemma 10 to prove that u is still a toggle node for c.

If N c̃(u)
f (u) > N

1−c̃(u)
f (u) we set c(w) = 1− c̃(w) and c(v) = c̃(w). If N c̃(u)

f (u) < N
1−c̃(u)
f (u) we set c(w) = c̃(w)

and c(v) = 1 − c̃(w). At last consider the case N c̃(u)
f (u) = N

1−c̃(u)
f (u). If N c̃(u)

t (u) = 2 then N c(u)
t (u) = 1, i.e.,

degTu
(u) = 1. Also degT̃ (u) = 2N c̃(u)

f (u) + 2, i.e, degT (u) ≡ 0(2). Hence, Tu ∈ I0(TF ). Contradiction and thus

N
c̃(u)
t (u) > 2. Set c(w) = 1 − c̃(w) and c(v) = c̃(w). Then N c(u)

t (u) > 1 and thus, |N c(u)
f − N1−c(u)

f | = 1 <

N
c(u)
t (u). Therefore, c has the desired properties.

Case 3: L ∈ I1(T ) and |L| > 3.
Construct a tree T̃ as follows: Remove from T all nodes of L except w and add two new neighbors v1, v2 to w. Then
|T̃ | < |T |. Note that degT (w) ≥ 3 otherwise L ∈ I0(TF ). Hence, F ⊆ E2.5(T̃ ). Denote the leaf of IT̃ (F ) consisting
of v1, v2 and w by L̃. Then L̃ ∈ I1(T ) and hence, Fix(T̃ , F ) = Fix(T, F ) ⊆ I0(TF ). Let T0 = {v} ∈ CT̃ (F ).
Then, T0 ∈ CT (F ). Hence, degT (v) ≡ 0(2) by assumption. Then also degT̃ (v) ≡ 0(2). This shows that T̃ and
F satisfy the assumption of the theorem. Hence, by induction there exists a canonical coloring c̃ ∈ C2(T̃ ) with
Bc̃(T̃ ) = TF . We extend c̃ to a coloring c ∈ C2(T ) by setting c(x) = c̃(w) for all x ∈ L and c(x) = c̃(x) for all other
nodes x. Clearly c satisfies the required conditions.

Case 4: L ∈ I1(T ) and |L| = 3.
Let F̃ = F \ e. Since L ∈ I1(T ) we have degL(w) = 2. Let v1, v2 be the neighbors of w in L and set T̃ = T \ v1.
Let Tu ∈ CT (F ) with u ∈ Tu. Then Tu ∈ I0(TF ). Let T̃u ∈ CT̃ (F̃ ) with u ∈ T̃u. Then T̃u ∈ I0(TF ) and Tu ⊆ T̃u.

Clearly, F̃ ⊆ E2.5(T̃ ). Let T0 = {v0} ∈ CT̃ (F̃ ) with |T0 | = 1. Then T0 ∈ CT (F ), thus degT (v0) ≡ 0(2). Hence,
degT̃ (v0) ≡ 0(2).

Let T̂ ∈ CT̃ (F̃ ) and v0 ∈ T̂ with degT̂ (v0) = 1 and degT̂ (v0) ≡ 0(2). If T̂ = T̃u then T̂ ∈ I0(TF ). Otherwise
T̂ ∈ CT (F ) and thus, T̂ ∈ I0(TF ). Therefore, T̃ , F̃ satisfy the assumption of the theorem. By induction there exists a
canonical coloring c̃ ∈ C2(T̃ ) with Bc̃(T̃ ) = TF̃ . Since T̃u ∈ I0(T̃F̃ ) neighboring nodes of T̃u have different colors.
Since T̃u ∈ I0(TF ) neighboring nodes of T̃u have different colors, thus N c(u)

f (u) = 0 and N1−c(u)
f (u) > 0. By

13
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Lemma 10 we have |N1−c(u)
t (u)−N c(u)

t (u)| < N
1−c(u)
f (u). We change c̃ to a coloring c of T as follows. First, we

set c(x) = c̃(x) for all x 6∈ {w, v1, v2}. If N1−c(u)
t (u) > N

c(u)
t (u) we set c(w) = c̃(u). If N1−c(u)

t (u) < N
c(u)
t (u)

we set c(w) = 1−c̃(u). In both cases we set c(v1) = c(v2) = c(w). At last consider the caseN c(u)
t (u) = N

1−c(u)
t (u).

Since N1−c(u)
f (u) > 0 we can take any of the two approaches. Clearly c has the desired properties.

Theorem 29. For a tree T there exists a bijection Bblock between Eblock(T ) and the set of block trees of T of the
minority and the majority process.

Proof. The existence of Bblock follows from Lemma 26 and 28.

The following result is an immediate implication of the last theorem.

Corollary 30. Let T be a tree where all nodes have odd degree. Then

Eblock(T ) = {F ⊆ E3(T ) | CT (F ) does not contain a component of size 1}.

If P is a path then C2
M(P ) = PM(P ).

5.5 Counting Block Trees

The concept of Algorithm 1 can not be used to generate all elements ofEblock(T ) becauseEblock(T ) does not have the
hereditary property (see Fig. 7). Since Eblock(T ) ⊆ Efix(T ) each upper bound for |FM(T )| is also an upper bound
for |C2

M(T )|. A naive way to generate all block trees of a tree is to iterate over the set Efix(T ) and test, whether an
element is legal according to Def. 25.

Figure 7: The left two drawings show a coloring from C2
M(T ) which corresponds to the set F ∈ Eblock(T ) which

consists of three bold edges. The two fixed blocks are highlighted. In the right most drawing the tree TF ′ for the set
F ′ ⊂ F of the two marked edges is shown. F ′ is not legal, because two neighboring components are fixed by Def. 24.

6 Conclusion and Open Problems

In this paper we provided characterizations of several categories of colorings of trees for the minority and majority
process in terms of subsets of the tree edges. This means that the class of trees is the first nontrivial graph class for
which a complete characterization of fixed points for the minority/majority process exists. This includes an algorithm
to enumerate all fixed points and upper bounds for the number of fixed points.

There are several open questions that are worth pursuing. Firstly, is it possible to characterize fixed points and pure
colorings for other graph classes? Clearly, the results for trees do not hold for general graphs, e.g. for cycles. But, it
might be possible to use the same approach, i.e., find suitable subsets of the edge set similar to Efix.

Furthermore, the current work for trees can be improved. It would be interesting to find better general upper bounds
for |FM(T )| and |PM(T )| for trees. Also, we believe that the run-time of Algorithm 1 can be improved. Moreover,
an algorithm to enumerate all block trees is an open problem. Finally, a full characterization of all 2-cycles with the
help of a subset of the power set of the tree edges is still missing.

Another line of research is to consider random trees and compute the expected number of fixed points and pure
colorings. Using our results, it suffices to compute the expected sizes of |Efix(T )| and |Epure(T )| for these trees.
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