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Local planar domination revisited
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Abstract. We show how to compute a 20-approximation of a minimum dominating set in a planar
graph in a constant number of rounds in the LOCAL model of distributed computing. This improves
on the previously best known approximation factor of 52, which was achieved by an elegant and
simple algorithm of Lenzen et al. Our algorithm combines ideas from the algorithm of Lenzen et al.
with recent work of Czygrinow et al. and Kublenz et al. to reduce to the case of bounded degree
graphs, where we can simulate a distributed version of the classical greedy algorithm.
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1 Introduction

A dominating set in an undirected and simple graph G is a set D Ď V pGq such that every vertex v P V pGq
either belongs to D or has a neighbor in D. The dominating set problem is a classical NP-complete
problem [9] with many applications in theory and practice, see e.g. [7,15]. In this paper we study the
distributed time complexity of finding dominating sets in planar graphs in the classical LOCAL model of
distributed computing. In this model, a distributed system is modeled by an undirected (planar) graph G.
Every vertex represents a computational entity and the vertices communicate through the edges of G. The
vertices are equipped with unique identifiers and initially, every vertex is only aware of its own identity.
A computation then proceeds in synchronous rounds. In every round, every vertex sends messages to its
neighbors, receives messages from its neighbors and performs an arbitrary computation. The complexity
of a LOCAL algorithm is the number of rounds until all vertices return their answer, in our case, whether
they belong to a dominating set or not.

The problem of approximating dominating sets in the LOCAL model has received considerable atten-
tion in the literature. Since in general graphs it is not possible to compute a constant factor approximation
in a constant number of rounds [11], much effort has been invested to improve the ratio between approxi-
mation factor and number of rounds on special graph classes. A very successful line of structural analysis
of graph properties that can lead to improved algorithms was started by the influential paper of Lenzen
et al. [12], who in particular proved that on planar graphs a 130-approximation of a minimum dominat-
ing set can be computed in a constant number of rounds. A careful analysis of Wawrzyniak [18] later
showed that the algorithm computes in fact a 52-approximation. In terms of lower bounds, Hilke et al. [8]
showed that there is no deterministic local algorithm (constant-time distributed graph algorithm) that
finds a p7´ ǫq-approximation of a minimum dominating set on planar graphs, for any positive constant ǫ.
Better approximation ratios are known for some special cases, e.g. 32 if the planar graph is triangle-free
[1, Theorem 2.1], 18 if the planar graph has girth five [2] and 5 if the graph is outerplanar (and this
bound is tight) [4, Theorem 1].

In this work we tighten the gap between the best-known lower bound of 7 and the best-known
upper bound of 52 on planar graphs by providing a new approximation algorithm computing a 20-
approximation.

Our algorithm proceeds in three phases. The first phase is a preprocessing phase that was similarly
employed in the algorithm of Lenzen et al. [12]. In a key lemma, Lenzen et al. proved that there are
only few vertices whose open neighborhood cannot be dominated by at most six vertices. We improve
this lemma and show that there are only slightly more vertices whose open neighborhood cannot be
dominated by three other vertices. All these vertices are selected into an initial partial dominating set
and as a consequence the open neighborhoods of all remaining vertices can be dominated be at most
three vertices.

By defining the notion of pseudo-covers, Czygrinow et al. [5] provided a tool to carry out a fine grained
analysis of the vertices that can potentially dominate the remaining neighborhoods. Using ideas of [10]
and [16] we provide an even finer analysis for planar graphs on which we base the second phase of our
distributed algorithm and compute a second partial dominating set.

http://arxiv.org/abs/2111.14506v1
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We prove that after the second phase we are left with a graph where every vertex has at most 30
non-dominated neighbors. In particular, every vertex from a minimum dominating set D can dominate
at most 30 non-dominated vertices, hence, we could at this point pick all non-dominated vertices to add
at most 31|D| vertices (each vertex dominates its neighbors and itself). We could also apply a general
algorithm of Lenzen and Wattenhofer that computes in a graph of arboricity a and maximum degree ∆ a
16a log∆-approximation in 6 rlog∆ ` 1s rounds [13]. Planar graphs have arboricity 3 and log 30 « 4.907,
hence, in our situation 16a log∆ « 235 and this would not yield an improvement. Of course, Lenzen
and Wattenhofer optimized not only towards minimizing the approximation factor, which they could
have easily improved, but also towards minimizing the number of rounds with respect to ∆. This is well-
motivated as in general graphs the maximum degree can be large, however, in our algorithm we always
arrive at this fixed constant degree so we can now proceed in a constant number of rounds.

We proceed in a greedy manner in 30 rounds as follows. Call the number of non-dominated neighbors
of a vertex v the residual degree of v. In the first round, if a non-dominated vertex has a neighbor of
residual degree 30, it elects one such neighbor into the dominating set (or if it has residual degree 30 itself,
it may choose itself). The neighbors of the chosen elements are marked as dominated and the residual
degrees are updated. Note that all non-dominated neighbors of a vertex of residual degree 30 in this
round choose a dominator, hence, the residual degrees of all vertices of residual degree 30 are decreased
to 0, hence, after this round there are no vertices of residual degree 30 left. In the second round, if a
non-dominated vertex has a neighbor of residual degree 29, it elects one such vertex into the dominating
set, and so on, until after 30 rounds in the final round every vertex chooses a dominator. Unlike in the
general case, where nodes cannot learn the current maximum residual degree in a constant number of
rounds, by establishing an upper bound on the maximum residual degree and proceeding in exactly this
number of rounds, we ensure that we iteratively exactly choose the vertices of maximum residual degree.
It remains to analyze the performance of this algorithm.

A simple density argument shows that there cannot be too many vertices of degree i ě 6 in a planar
graph. At a first glance it seems that the algorithm would perform worst when in every of the 30 rounds
it would pick as many vertices as possible, as the constructed dominating set would grow as much as
possible. However, this is not the case, as picking many high degree vertices at the same time makes
the largest progress towards dominating the whole graph. It turns out that there is a delicate balance
between the vertices that we pick in round i and the remaining non-dominated vertices that leads to the
worst case. We formulate these conditions as a linear program and solve the linear program. In total, this
leads to the claimed 20-approximation (Theorem 1).

We then analyze our algorithm on more restricted graphs classes, and prove that it computes approx-
imations of factors: 14 for triangle-free planar graphs, 13 for bipartite planar graphs, 7 for planar graphs
of girth 5, and 12 for outerplanar graphs (Theorems 2 to 5). This improves the currently best known ap-
proximation ratios of 32 and 18 for triangle-free planar graphs and planar graphs of girth 5, respectively,
while our algorithm fails short of achieving the optimal approximation ratio of 5 on outerplanar graphs.

2 Preliminaries

In this paper we study the distributed time complexity of finding dominating sets in planar graphs in
the classical LOCAL model of distributed computing. We assume familiarity with this model and refer
to the survey [17] for extensive background on distributed computing and the LOCAL model.

We use standard notation from graph theory and refer to the textbook [6] for extensive background.
All graphs in this paper are undirected and simple. We write V pGq for the vertex set of a graph G

and EpGq for its edge set. The girth of a graph G is the length of a shortest cycle in G. A graph is called
triangle-free if it does not contain a triangle, that is, a cycle of length three as a subgraph. Equivalently,
a triangle-free graph is a graph of girth at least four.

A graph is bipartite if its vertex set can be partitioned into two parts such that all its edges are
incident with two vertices from different parts. More generally, the chromatic number χpGq of a graph G

is the minimum number k such that the vertices of G can be partitioned into k parts such that all edges
are incident with two vertices from different parts. Hence, the bipartite graphs are exactly the graphs
with chromatic number two. A set A is independent if all two distinct vertices u, v P A are non-adjacent.
Every graph G contains an independent set of size at least r|V pGq|{χpGqs.
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A graph is planar if it can be embedded in the plane, that is, it can be drawn on the plane in such a
way that its edges intersect only at their endpoints. By the famous theorem of Wagner, planar graphs can
be characterized as those graphs that exclude the complete graph K5 on five vertices and the complete
bipartite K3,3 with parts of size three as a minor. A graph H is a minor of a graph G, written H ĺ G,
if there is a set tGv : v P V pHqu of pairwise vertex disjoint and connected subgraphs Gv Ď G such that
if tu, vu P EpHq, then there is an edge between a vertex of Gu and a vertex of Gv. We call V pGvq the
branch set of v and say that it is contracted to the vertex v. We call H a 1-shallow minor, written H ĺ1 G,
if H ĺ G and there is a minor model tGv : v P V pHqu witnessing this, such that all branch sets Gv have
radius at most 1, that is, in each Gv there exists w adjacent to all other vertices of Gv. In other words,
H ĺ1 G if H is obtained from G by deleting some vertices and edges and then contracting a set of
pairwise disjoint stars. We refer to [14] for an in-depth study of the theory of sparsity based on shallow
minors.

A graph is outerplanar if it has an embedding in the plane such that all vertices belong to the
unbounded face of the embedding. Equivalently, a graph is outerplanar if it does not contain the complete
graph K4 on four vertices and the complete bipartite graph K2,3 with parts of size 2 and 3, respectively,
as a minor. If J ĺ H and H ĺ G, then J ĺ G, hence a minor of a planar graph is again planar and a
minor of an outerplanar graph is again outerplanar.

By Euler’s formula, planar graphs are sparse: every planar n-vertex graph (n ě 3) has at most 3n´ 6
edges (and a graph with at most two vertices has at most one edge). The ratio |EpGq|{|V pGq| is called
the edge density of G. In particular, every planar graph G has edge density strictly smaller than three.

Lemma 1. Let G be a planar graph. Then the edge density of G is strictly smaller than 3 and χpGq ď 4.
Furthermore,

1. if G is bipartite, then the edge density of G is strictly smaller than 2 and χpGq ď 2,

2. if G is triangle-free or outerplanar, then the edge density of G is strictly smaller than 2 and χpGq ď 3.

For a graph G and v P V pGq we write Npvq “ tu : tu, vu P EpGqu for the open neighborhood of v
and N rvs “ Npvq Y tvu for the closed neighborhood of v. For a set A Ď V pGq let N rAs “

Ť

vPA N rvs.
A dominating set in a graph G is a set D Ď V pGq such that N rDs “ V pGq. We write γpGq for the size of
a minimum dominating set of G. For W Ď V pGq we say that a set Z Ď V pGq dominates W if W Ď N rZs.

In the following we mark important definitions and assumptions about our input graph in gray boxes
and steps of the algorithm in red boxes.

We fix a planar graph G and a minimum dominating set D of G with γ :“ |D| “ γpGq.

3 Preprocessing

As outlined in the introduction, our algorithm works in three phases. In phase i for 1 ď i ď 3 we select a
partial dominating set Di and estimate its size in comparison to D. In the end we will return D1YD2YD3.
We will call vertices have been selected into a set Di green, vertices that are dominated by a green vertex
but are not green themselves are called yellow and all vertices that still need to be dominated are called
red. In the beginning, all vertices are marked red.

The first phase of our algorithm is similar to the first phase of the algorithm of Lenzen et al. [12].
It is a preprocessing step that leaves us with only vertices whose neighborhoods can be dominated by a
few other vertices. Lenzen et al. proved that there exist less than 3γ many vertices v such that the open
neighborhood Npvq of v cannot be dominated by 6 vertices of V pGqztvu [12, Lemma 6.3]. The lemma
can be generalized to more general graphs, see [3]). We prove the following lemma, which is stronger in
the sense that the number of vertices required to dominate the open neighborhoods is smaller than 6, at
the cost of having slightly more vertices with that property.

We define D1 as the set of all vertices whose neighborhood cannot be dominated by 3 other vertices.

D1 :“ tv P V pGq : for all sets A Ď V pGqztvu with Npvq Ď N rAs we have |A| ą 3u.

We prove a very general lemma that can be applied also for more general graph classes, even though
we will apply it only for planar graphs. Hence, in the following lemma, G can be an arbitrary graph, while
in the following lemmas G will again be the planar graph that we fixed in the beginning.
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Lemma 2. Let G be a graph, let D be a minimum dominating set of G of size γ and let ∇ be an integer
strictly larger than the edge density of a densest bipartite 1-shallow minor of G. Let D̂ be the set of
vertices v P V pGq whose neighborhood cannot be dominated by p2∇ ´ 1q vertices of D other than v, that
is,

D̂ :“ tv P V pGq : for all sets A Ď Dztvu with Npvq Ď N rAs we have |A| ą p2∇ ´ 1qu.

Then |D̂zD| ă χpGq ¨ γ.

Recall that minors of planar graphs are again planar, hence, the maximum edge density of a bipartite
1-shallow minor of a planar graph is smaller than 2 and hence we can choose ∇ “ 2 for the case of planar
graphs and we note the following corollary.

Corollary 3. Let D̂ be the set of vertices v whose neighborhood cannot be dominated by 3 vertices of D
other than v, that is,

D̂ :“ tv P V pGq : for all sets A Ď Dztvu with Npvq Ď N rAs we have |A| ą 3u.

Then |D̂zD| ă 4γ.

Proof (of Lemma 2). Assume D “ tb1, . . . , bγu. Assume that there are χpGq¨γ vertices a1, . . . , aχpGqγ R D

satisfying the above condition. As the chromatic number is monotone over subgraphs, the subgraph
induced by the ais is also χpGq-chromatic, so we find an independent subset of the ais of size γ. We can
hence assume that a1, . . . , aγ are not connected by an edge. We proceed towards a contradiction.

We construct a bipartite 1-shallow minor H of G with the following 2γ branch sets. For every i ď γ

we have a branch set Ai “ taiu and a branch set Bi “ N rbiszpta1, . . . , aγu Y
Ť

jăi N rbjs Y tbi`1, . . . , bγuq.
Note that the Bi are vertex disjoint and hence we define proper branch sets. Intuitively, for each vertex
v P Npaiq we mark the smallest bj that dominates v as its dominator. We then contract the vertices that
mark bj as a dominator together with bj into a single vertex. Note that because the ai are independent,
the vertices ai themselves are not associated to a dominator as no aj lies in Npaiq for i ‰ j. Denote by
a1
1
, . . . , a1

γ , b
1
1
, . . . , b1

γ the associated vertices of H . Denote by A the set of the a1
is and by B the set of

the b1
js. We delete all edges between vertices of B. The vertices of A are independent by construction.

Hence, H is a bipartite 1-shallow minor of G. By the assumption that Npaiq cannot be dominated by
2∇ ´ 1 elements of D, we associate at least 2∇ different dominators with the vertices of Npaiq. Note
that this would not necessarily be true if A was not an independent set, as all aj P Npaiq would not be
associated a dominator.

Since tb1, . . . , bγu is a dominating set of G and by assumption on Npaiq, we have that in H , every a1
i

has at least 2∇ neighbors in B. Hence, |EpHq| ě 2∇|V pAq| “ 2∇γ. As |V pHq| “ 2γ we conclude
|EpHq| ě ∇|V pHq|. This however is a contradiction, as ∇ is strictly larger than the edge density of a
densest bipartite 1-shallow minor of G.

Let us fix the set D̂ for our graph G.

D̂ :“ tv P V pGq : for all sets A Ď Dztvu with Npvq Ď N rAs we have |A| ą 3u.

Note that D̂ cannot be computed by a local algorithm as we do not know the set D. It will only serve
as an auxiliary set in our analysis.

The first phase of the algorithm is to compute the set D1, which can be done in 2 rounds of com-
munication. Obviously, if the open neighborhood of a vertex v cannot be dominated by 3 vertices from
V pGqztvu, then in particular it cannot be dominated by 3 vertices from Dztvu. Hence D1 Ď D̂ and we
can bound the size of D1 by that of D̂.

Lemma 4. We have D1 Ď D̂, |D̂zD| ă 4γ, and |D̂| ă 5γ.

Proof. Lemma 4 follows the observation above together with Corollary 3.

From Lemma 4 we can conclude that |D1| ă 5γ. However, it is intuitively clear that every vertex that
we pick from the minimum dominating set D is optimal progress towards dominating the whole graph.
We will later show that this intuition is indeed true for our algorithm, that is, our algorithm performs
worst when D1 X D “ H, which will later in fact allow us to estimate |D1| ă 4γ.



Local planar domination revisited 5

We mark the vertices of D1 that we add to the dominating set in the first phase of the algorithm as
green, the neighbors of D1 as yellow and leave all other vertices red. Denote the set of red vertices by R,
that is, R “ V pGqzN rD1s. For v P V pGq let NRpvq :“ Npvq X R and δRpvq :“ |NRpvq| be the residual
degree of v, that is, the number of neighbors of v that still need to be dominated.

By definition of D1, the neighborhood of every non-green vertex can be dominated by at most 3 other
vertices. This holds true as well for the subset NRpvq of neighbors that still need to be dominated. Let
us fix such a small dominating set for the red neighborhood of every non-green vertex.

For every v P V pGqzD1, we fix Av Ď V pGqztvu such that:

NRpvq Ď N rAvs and |Av| ď 3.

There are potentially many such sets Av – we fix one such set arbitrarily. Let us stress that even
though we could compute the sets Av in a local algorithm (making decisions based on vertex ids), we
only use these sets for our further argumentation and do not need to compute them.

4 Analyzing the local dominators

The second phase of our algorithm is inspired by results of Czygrinow et al. [5] and the greedy domination
algorithm for biclique-free graphs of [16]. Czygrinow et al. [5] defined the notion of pseudo-covers, which
provide a tool to carry out a fine grained analysis of vertices that can potentially belong to the sets Av

used to dominate the red neighborhood NRpvq of a vertex v. This tool can in fact be applied to much more
general graphs than planar graphs, namely, to all graphs that exclude some complete bipartite graph Kt,t.
A refined analysis for classes of bounded expansion was provided by Kublenz et al. [10]. We provide an
even finer analysis for planar graphs on which we base a second phase of our distributed algorithm.

We first describe what our algorithm computes, and then provide bounds on the number of selected
vertices. Intuitively, we select every pair of vertices with sufficiently many neighbors in common.

– For v P V pGq let Bv :“ tz P V pGqztvu : |NRpvq X NRpzq| ě 10u.

– Let W be the set of vertices v P V pGq such that Bv ‰ H.

– Let D2 :“
Ť

vPW

ptvu Y Bvq.

Once D1 has been computed in the previous phase, 2 more rounds of communication are enough to
compute the sets Bv and D2. Before we update the residual degrees, let us analyze the sets Bv and D2.
First note that the definition is symmetric: since NRpvq X NRpzq “ NRpzq X NRpvq we have for all
v, z P V pGq if z P Bv, then v P Bz. In particular, if v P D1 or z P D1, then NRpvq X NRpzq “ H, which
immediately implies the following lemma.

Lemma 5. We have W X D1 “ H and for every v P V pGq we have Bv X D1 “ H.

Now we prove that for every v P W , the set Bv cannot be too big, and has nice properties.

Lemma 6. For all vertices v P W we have

– Bv Ď Av (hence |Bv| ď 3), and

– if v R D̂, then Bv Ď D.

Proof. Assume Av “ tv1, v2, v3u (a set of possibly not distinct vertices) and assume there exists z P
V pGqztv, v1, v2, v3u with |NRpvqXNRpzq| ě 10. As v1, v2, v3 dominateNRpvq, and hence alsoNRpvq X NRpzq,
there must be some vi, 1 ď i ď 3, with |NRpvq X NRpzq X N rvis| ě r10{3s ě 4. Therefore, |NRpvq X NRpzq X Npviq| ě 3,
which shows that K3,3 is a subgraph of G, contradicting the assumption that G is planar.

If furthermore v R D̂, by definition of D̂, we can find w1, w2, w3 from D that dominate Npvq, and in
particular NRpvq. If z P V pGqztv, w1, w2, w3u with |NRpvq XNRpzq| ě 10 we can argue as above to obtain
a contradiction.

Let us now analyze the size of D2. For this we refine the set D2 and define
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1. D1

2
:“

Ť

vPWXDptvu Y Bvq,

2. D2

2
:“

Ť

vPWXpD̂zDqptvu Y Bvq, and

3. D3
2
:“

Ť

vPW zpDYD̂qptvu Y Bvq.

Obviously D2 “ D1

2
Y D2

2
Y D3

2
. We now bound the size of the refined sets D1

2
, D2

2
and D3

2
.

Lemma 7. |D1

2
zD| ď 3γ.

Proof. We have

|D1

2zD| “ |
ď

vPWXD

ptvu Y BvqzD| ď |
ď

vPWXD

Bv| ď
ÿ

vPWXD

|Bv|.

By Lemma 6 we have |Bv| ď 3 for all v P W and as we sum over v P W X D we conclude that the last
term has order at most 3γ.

Lemma 8. D2

2
Ď D̂ and therefore |D2

2
zD| ă 4γ.

Proof. Let v P D̂zD and let z P Bv. By symmetry, v P Bz and according to Lemma 6, if z R D̂, then
v P D. Since this is not the case, we conclude that z P D̂. Hence Bv Ď D̂ and, more generally, D2

2
Ď D̂.

Finally, according to Lemma 4 we have |D̂zD| ă 4γ.

Finally, the set D3
2, which appears largest at first glance, was actually already counted, as shown in

the next lemma.

Lemma 9. D3
2 Ď D1

2.

Proof. If v R D̂, then Bv Ď D by Lemma 6. Hence v P Bz for some z P D, and v P D1

2.

Again, it is intuitively clear that the situation when the sets Di
2 are large does not lead to the worst

case for the overall algorithm. For example, when D1

2
is large we have added many vertices of the optimum

dominating set D. For a formal analysis, we analyze the number of vertices of D that have been selected
so far.

Let ǫ P r0, 1s be such that |pD1 Y D2q X D| “ ǫγ.

Lemma 10. We have |D1 Y D2| ă 4γ ` 4ǫγ.

Proof. By Lemma 9 we have D3

2
Ď D1

2
, hence, D1 Y D2 “ D1 Y D1

2
Y D2

2
. By Lemma 4 we have D1 Ď D̂

and by Lemma 8 we also have D2

2
Ď D̂, hence D1 Y D2

2
Ď D̂. Again by Lemma 4, |D̂zD| ă 4γ and

therefore |pD1 Y D2

2qzD| ă 4γ.

We have W X D Ď D1
2 X D, hence with Lemma 6 we conclude that

ˇ

ˇD1

2zD
ˇ

ˇ ď
ˇ

ˇ

ˇ

ď

vPDXD1

2

Bv

ˇ

ˇ

ˇ

ď
ÿ

vPDXD1

2

|Bv| ď 3ǫγ,

hence pD1 Y D2qzD ă 4γ ` 3ǫγ. Finally, D1 Y D2 “ pD1 Y D2qzD Y ppD1 Y D2q X Dq and with the
definition of ǫ we conclude |D1 Y D2| ă 4γ ` 4ǫγ.

The analysis of the next and final step of the algorithm will actually show that the worst case is
obtained when ǫ “ 0.

We now update the residual degrees, that is, we update R as V pGqzN rD1 Y D2s and for every vertex
the number δRpvq “ Npvq X R accordingly.
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5 Greedy domination in planar graphs of maximum residual degree

We will show next that after the first two phases of the algorithm we are in the very nice situation where
all residual degrees are small. This will allow us to proceed in a greedy manner.

Lemma 11. For all v P V pGq we have δRpvq ď 30.

Proof. First, every vertex of D1 Y D2 has residual degree 0. Assume that there is a vertex v of residual
degree at least 31. As v is not in D1, its 31 non-dominated neighbors are dominated by a set Av of at
most 3 vertices. Hence there is a vertex z (not in D1 nor D2) with |NRpvq XNRrzs| ě r31{3s “ 11, hence,
|NRpvq X NRpzq| ě 10. This contradicts that v is not in D2.

In the light of Lemma 11, we could now simply choose D3 as the set of elements not in N rD1 Y D2s.
We would get a constant factor approximation, but not a very good one. Instead, we now start to simulate
the classical greedy algorithm, which in each round selects a vertex of maximum residual degree. Here, we
let all non-dominated vertices that have a neighbor of maximum residual degree choose such a neighbor
as its dominator (or if they have maximum residual degree themselves, they may choose themselves). In
general this is not possible for a LOCAL algorithm, however, as we established a bound on the maximum
degree we can proceed as follows. We let i “ 30. Every red vertex that has at least one neighbor of residual
degree 30 arbitrarily picks one of them and elects it to the dominating set. Then every vertex recomputes
its residual degree and i is set to 29. We continue until i reaches 0 when all vertices are dominated. More
formally, we define several sets as follows.

For 30 ě i ě 0, for every v P R in parallel:

if there is some u with δRpuq “ i and (tu, vu P EpGq or u “ v), then
domipvq :“ tuu (pick one such u arbitrarily),
domipvq :“ H otherwise.

– Ri :“ R What currently remains to be dominated

– ∆i :“
Ť

vPR

domipvq What we pick in this step

– R :“ RzN r∆is Update red vertices

Finally, D3 :“
Ť

1ďiď30

∆i.

Let us first prove that the algorithm in fact computes a dominating set.

Lemma 12. When the algorithm has finished the iteration with parameter i ě 1, then all vertices have
residual degree at most i ´ 1.

In particular, after finishing the iteration with parameter 1, there is no vertex with residual degree 1
left and in the final round all non-dominated vertices choose themselves into the dominating set. Hence,
the algorithm computes a dominating set of G.

Proof. By induction, before the iteration with parameter i, all vertices have residual at most i. Assume v
has residual degree i before the iteration with parameter i. In that iteration, all non-dominated neighbors
of v choose a dominator (possibly v, then the statement is trivial), hence, are removed from R. It follows
that the residual degree of v after the iteration is 0. Hence, after this iteration and before the iteration
with parameter i ´ 1, we are left with vertices of residual degree at most i ´ 1.

We now analyze the sizes of the sets ∆i and Ri. The first lemma follows from the fact that every
vertex chooses at most one dominator.

Lemma 13. For every i ď 30,
ř

jďi

|∆j | ď |Ri|.

Proof. The vertices of Ri are those that remain to be dominated in the last i rounds of the algorithm.
As every vertex that remains to be dominated chooses at most one dominator in one of the rounds j ď i,
the statement follows.
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As the vertices of D that still dominate non-dominated vertices also have bounded residual degree,
we can conclude that not too many vertices remain to be dominated.

Lemma 14. For every i ď 30, |Ri| ď pi ` 1qp1 ´ ǫqγ.

Proof. First note that for every i, DzpD1 Y D2 Y
Ť

jąi ∆jq is a dominating set for Ri; additionally each
vertex in this set has residual degree at most i. And finally, this set is a subset of DzpD1 Y D2q. Hence
by the definition of ǫ, we get that |DzpD1 Y D2 Y

Ť

jąi ∆jq| ď p1 ´ ǫqγ. As every vertex dominates its
residual neighbors and itself, we conclude |Ri| ď pi ` 1qp1 ´ ǫqγ.

The next lemma shows that we cannot pick too many vertices of high residual degree. This follows
from the fact that planar graphs have bounded edge density.

Lemma 15. For every 7 ď i ď 30, |∆i| ď 3|Ri|
i´6

.

Proof. Let 7 ď i ď 30 be an integer. We bound the size of ∆i by a counting argument, using that G (as
well as each of its subgraphs) is planar, and can therefore not have to many edges.

Let J :“ Gr∆is be the subgraph of G induced by the vertices of ∆i, which all have residual degree i.
Let K :“ Gr∆i Y pN r∆is X Riqs be the subgraph of G induced by the vertices of ∆i together with the
red neighbors that these vertices dominate.

As J is planar, |EpJq| ă 3|V pJq| “ 3|∆i|. As every vertex of J has residual degree exactly i, we get
|EpKq| ě i∆i ´ |EpJq| ą pi ´ 3q|∆i| (we have to subtract |EpJq| to not count twice the edges of K
that are between two vertices of J). We also have that |V pKq| ď |V pJq| ` |Ri|. We finally apply Euler’s

formula again to K and get that |EK | ă 3|VK | hence pi ´ 3q|∆i| ă 3|∆i| ` 3|Ri|. Therefore |∆i| ă 3|Ri|
i´6

.

Finally, we can give a lower bound on how many elements are newly dominated by the chosen elements
of high residual degree.

Lemma 16. For every 1 ď i ď 29, |Ri| ď |Ri`1| ´ pi´5q|∆i`1|
3

.

Proof. Similarly to the proof of Lemma 15 (by replacing i by i ` 1), we define J :“ Gr∆i`1s and K :“
Gr∆i`1 Y pN r∆i`1s X Ri`1qs.

We then replace the bound |V pKq| ď |V pJq| ` |Ri`1| by |V pKq| ď |V pJq| ` |N r∆i`1s X Ri`1|.

We then get:

|EK | ď 3|VK |,

pi ` 1q|∆i`1| ´ 3|∆i`1| ď 3p|∆i`1| ` |N r∆i`1s X Ri`1|q, and

|N r∆i`1s X Ri`1| ě
pi ` 1 ´ 6q|∆i`1|

3
.

Now, as Ri “ Ri`1zN r∆i`1s, we have |Ri| ď |Ri`1| ´ |N r∆i`1s X Ri`1| ď |Ri`1| ´
pi`1´6q|∆i`1|

3
.

We now formulate (and present in Appendix A) a linear program to maximize |D3| under these
constraints. As a result we conclude the following lemma.

Lemma 17. |D3| ď 15.9p1 ´ ǫqγ.

6 Summarizing the planar case

We already noted that the definition of D3 implies that D1 YD2 Y D3 is a dominating set of G. We now
conclude the analysis of the size of this computed set. First, by Lemma 10 we have |D1 YD2| ă 4γ ` 4ǫγ.
Then, by Lemma 17 we have |D3| ď 15.9p1´ ǫqγ. Therefore |D1 YD2 YD3| ă 19.9γ´11.9ǫγ. As ǫ P r0, 1s,
this is maximized when ǫ “ 0. Hence |D1 Y D2 Y D3| ă 19.9γ.

Theorem 1. There exists a distributed LOCAL algorithm that, for every planar graph G, computes in
a constant number of rounds a dominating set of size at most 20γpGq.
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7 Restricted classes of planar graphs

In this section we further restrict the input graphs, requiring e.g. planarity together with a lower bound on
the girth. Our algorithm works exactly as before, however, using different parameters. From the different
edge densities and chromatic numbers of the restricted graphs we will then derive different constants and
as a result a better approximation factor. Throughout this section we use the same notation as in the
first part of the paper and state in the adapted lemmas with the same numbers as in the first part the
adapted sizes of the respective sets.

As in the general case in the first phase we begin by computing the set D1 and analyzing it in terms
of the auxiliary set D̂.

Adapted Corollary 3.

1. If G is bipartite, then |D̂zD| ă 2γ.

2. If G is triangle-free, outerplanar, or has girth 5, then |D̂zD| ă 3γ.

Proof. This is immediate from Lemma 1 and Lemma 2.

The inclusion D1 Ď D̂ continues to hold and the bound on the sizes as stated in the next lemma is
again a direct consequence of the corollary.

Adapted Lemma 4. We have D1 Ď D̂, and

1. if G is bipartite, then |D̂zD| ă 2γ and |D̂| ă 3γ.

2. if G is triangle-free, outerplanar, or has girth 5, then |D̂zD| ă 3γ and |D̂| ă 4γ.

In case of triangle-free planar graphs (in particular in the case of bipartite planar graphs) we proceed
with the second phase exactly as in the second phase of the general algorithm (Section 4), however, the
parameter 10 is replaced by the parameter 7. In case of planar graphs of girth at least five or outerplanar
graphs, we simply set D2 “ H.

If G is triangle-free:

– For v P V pGq let Bv :“ tz P V pGqztvu : |NRpvq X NRpzq| ě 7u.

– Let W be the set of vertices v P V pGq such that Bv ‰ H.

– Let D2 :“
Ť

vPW

ptvu Y Bvq.

If G has girth at least 5 or G is outerplanar, let D2 “ H.

Lemma 5 is based only on the definition of Bv and W and does not use particular properties of planar
graphs, hence, it also holds in the restricted case and we recall it for convenience.

Lemma 5. We have W X D1 “ H and for every v P V pGq we have Bv X D1 “ H.

The next lemma uses the triangle-free property.

Adapted Lemma 6. If G is triangle-free, then for all vertices v P W we have

– Bv Ď Av (hence |Bv| ď 3), and

– if v R D̂, then Bv Ď D.

Proof. Assume Av “ tv1, v2, v3u and assume there is z P V pGqztv, v1, v2, v3u with |NRpvq X NRpzq| ě 7.
As the vertices v1, v2, v3 dominateNRpvq, and henceNRpvqXNRpzq, there must be some vi, 1 ď i ď 3, with
|NRpvq X NRpzq X N rvis| ě r7{3s ě 3. Then on of the following holds: either |NRpvq X NRpzq X Npviq| ě 3,
or |NRpvq X NRpzq X Npviq| “ 2. The first case shows that K3,3 is a subgraph of G contradicting the
assumption that G is planar. The second case implies that vi P NRpvq. In this situation, by picking
w P NRpvq X NRpzq X Npviq, we get that pv, vi, wq is a triangle, hence we also reach a contradiction.

If furthermore v R D̂, by definition of D̂, we can find w1, w2, w3 from D that dominate Npvq, and in
particular NRpvq. If z P V pGqztv, w1, w2, w3u with |NRpvq X NRpzq| ě 7 we can argue as above to obtain
a contradiction.
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For our analysis we again split D2 into three sets D1

2, D
2

2 and D3

2 . The next lemmas hold also for the
restricted cases. We repeat them for convenience.

Adapted Lemma 7 If G is triangle-free, then |D1

2
zD| ď 3γ.

Adapted Lemma 8 If G is triangle-free, then D2

2
Ď D̂ and therefore |D2

2
zD| ă 3γ.

Adapted Lemma 9 If G is triangle-free, then D3
2 Ď D1

2.

Again, for a fine analysis, we analyze the number of vertices of D that have been selected so far and
let ǫ P r0, 1s be such that |pD1 Y D2q X D| “ ǫγ.

Adapted Lemma 10

1. If G is bipartite, then |D1 Y D2| ă 2γ ` 4ǫγ.

2. If G is triangle-free, then |D1 Y D2| ă 3γ ` 4ǫγ.

3. If G has girth at least 5 or is outerplanar, then |D1 Y D2| ă 3γ ` ǫγ.

Proof. If G is outerplanar or G has girth at least 5, then D2 “ H. By Adapted Lemma 4 we have D1 Ď D̂

and |D̂zD| ă 3γ, hence pD1 Y D2qzD ă 3γ.
If G is triangle-free, by Adapted Lemma 9 we have D3

2
Ď D1

2
, hence, D1 Y D2 “ D1 Y D1

2
Y D2

2
. By

Adapted Lemma 4 we have D1 Ď D̂ and by Adapted Lemma 8 we also have D2

2
Ď D̂, hence D1YD2

2
Ď D̂.

Again by Adapted Lemma 4, if G is bipartite, then |D̂zD| ă 2γ, therefore |pD1 Y D2
2qzD| ă 2γ, and if G

is triangle-free, then |D̂zD| ă 3γ, therefore |pD1 Y D2

2
qzD| ă 3γ. We have W X D Ď D1

2
X D, hence with

Adapted Lemma 6 we conclude that

ˇ

ˇD1

2zD
ˇ

ˇ ď
ˇ

ˇ

ˇ

ď

vPDXD1

2

Bv

ˇ

ˇ

ˇ

ď
ÿ

vPDXD1

2

|Bv| ď 3ǫγ,

hence pD1 Y D2qzD ă 2γ ` 3ǫγ if G is bipartite and pD1 Y D2qzD ă 3γ ` 3ǫγ if G is triangle-free.
Finally, D1 Y D2 “ pD1 Y D2qzD Y pD1 Y D2q X D and with the definition of ǫ we conclude

1. |D1 Y D2| ă 2γ ` 4ǫγ if G is bipartite,

2. |D1 Y D2| ă 3γ ` 4ǫγ if G is triangle-free,

3. |D1 Y D2| ă 3γ ` ǫγ if G has girth at least 5 or is outerplanar.

Again, we now update the residual degrees, that is, we update R as V pGqzN rD1 Y D2s and for every
vertex the number δRpvq “ Npvq X R accordingly and proceed with the third phase.

Adapted Lemma 11.

1. If G is triangle-free, then for all v P V pGq we have δRpvq ď 18.

2. If G has girth at least 5, then for all v P V pGq we have δRpvq ď 3.

3. If G is outerplanar, then for all v P V pGq we have δRpvq ď 9.

Proof. Every vertex of D1 Y D2 has residual degree 0, hence, we need to consider only vertices that are
not in D1 or D2.

First assume that the graph is triangle-free and assume that there is a vertex v of residual degree
at least 19. As v is not in D1, its 19 non-dominated neighbors are dominated by a set Av of at most 3
vertices. Hence, there is vertex z (not in D1 nor D2) dominating at least r19{3s “ 7 of them. Here, z
cannot be one of these 7 vertices, otherwise it would be connected to v and there would be a triangle in
the graph. Therefore we have |NRpvq X NRpzq| ě 7, contradicting that v is not in D2.

Now assume that G has girth at least 5 and assume that there is a vertex v of residual degree at
least 4. As v is not in D1, its 4 non-dominated neighbors are dominated by a set Av of at most 3 vertices.
Hence, there is vertex z (not in D1 nor D2) dominating at least r4{3s “ 2 of them. Here, z cannot be
one of these 2 vertices, otherwise it would be connected to v and there would be a triangle in the graph.
However, z can also not be any other vertex, as otherwise we find a cycle of length 4, contradicting that G
has girth at least 5.

Finally, assume that G is outerplanar and assume that there is a vertex v of residual degree at least 10.
As v is not in D1, its 10 non-dominated neighbors are dominated by a set Av of at most 3 vertices. Hence,
there is vertex z (not in D1 nor D2) dominating at least r10{3s “ 4 of them. Therefore |Npvq XNpzq| ě 3,
and we find a K2,3 as a subgraph, contradicting that G is outerplanar.
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We proceed to compute a dominating set of the remaining vertices as before for the respective number
of rounds.

Adapted Lemma 13 If G is triangle-free or outerplanar, for every 1 ď i,
ř

jďi

|∆j | ď |Ri|.

Adapted Lemma 14 If G is triangle-free or outerplanar, for every 1 ď i, |Ri| ď pi ` 1qp1 ´ ǫqγ.

Adapted Lemma 15 If G is triangle-free or outerplanar, for every 5 ď i, |∆i| ď 2|Ri|
i´4

.

Adapted Lemma 16 If G is triangle-free or outerplanar, for every 1 ď i, |Ri| ď |Ri`1| ´ pi´3q|∆i`1|
2

.

The proofs of Adapted Lemma 13 to 16 are copies of the ones for Lemmas 13 to 16, with the execption
that the edge density of 3 for planar graphs if now replaced by 2 for triangle-free and outerplanar. Similarly
to Lemma 17 we formulate (and present in Appendix A) a linear program to maximize |D3| under these
constraints, yielding the following lemma.

Adapted Lemma 17.

1. If G is triangle-free, then |D3| ď 10.5p1 ´ ǫqγ.

2. If G has girth at least 5, then |D3| ď 4p1 ´ ǫqγ.

3. If G is outerplanar, then |D3| ď 8.6p1 ´ ǫqγ.

Theorem 2. There exists a distributed LOCAL algorithm that, for every triangle free planar graph G,
computes in a constant number of rounds a dominating set of size at most 14γpGq.

Proof. By Adapted Lemma 10 we have |D1 Y D2| ă 3γ ` 4ǫγ. Then, by Adapted Lemma 17 we have
|D3| ď 10.5p1 ´ ǫqγ. Therefore |D1 Y D2 Y D3| ă 13.5γ ´ 6.5ǫγ. As ǫ P r0, 1s, this is maximized when
ǫ “ 0. Hence |D1 Y D2 Y D3| ă 13.5γ.

Theorem 3. There exists a distributed LOCAL algorithm that, for every bipartite planar graph G, com-
putes in a constant number of rounds a dominating set of size at most 13γpGq.

Proof. By Adapted Lemma 10 we have |D1 Y D2| ă 2γ ` 4ǫγ. Then, by Adapted Lemma 17 we have
|D3| ď 10.5p1 ´ ǫqγ. Therefore |D1 Y D2 Y D3| ă 12.5γ ´ 6.5ǫγ. As ǫ P r0, 1s, this is maximized when
ǫ “ 0. Hence |D1 Y D2 Y D3| ă 12.5γ.

Theorem 4. There exists a distributed LOCAL algorithm that, for every planar graph G of girth at
least 5, computes in a constant number of rounds a dominating set of size at most 7γpGq.

Proof. By Adapted Lemma 10 we have |D1 Y D2| ă 3γ ` ǫγ. Then, by Adapted Lemma 17 we have
|D3| ď 4p1´ ǫqγ. Therefore |D1 YD2 YD3| ă 7γ´3ǫγ. As ǫ P r0, 1s, this is maximized when ǫ “ 0. Hence
|D1 Y D2 Y D3| ă 7γ.

Theorem 5. There exists a distributed LOCAL algorithm that, for every outerplanar graph G, computes
in a constant number of rounds a dominating set of size at most 12γpGq.

Proof. By Adapted Lemma 10 we have |D1 Y D2| ă 3γ ` ǫγ. Then, by Adapted Lemma 17 we have
|D3| ď 8.6p1´ ǫqγ. Therefore |D1 YD2 YD3| ă 11.6γ ´ 7.6ǫγ. As ǫ P r0, 1s, this is maximized when ǫ “ 0.
Hence |D1 Y D2 Y D3| ă 11.6γ.

8 Conclusion

We provided a new LOCAL algorithm that computes a 20-approximation of a minimum dominating set
in a planar graph in a constant number of rounds. Started with different parameters, the algorithm works
also for several restricted cases of planar graphs. We showed that it computes a 14-approximation for
triangle-free planar graphs, a 13-approximation for bipartite planar graphs, a 7-approximation for planar
graphs of girth 5 and a 12-approximation for outerplanar graphs. In all cases except for the outerplanar
case, where an optimal bound of 5 was already known, our algorithm improves on the previously best
known approximation factors. This improvement is most significant in the case of general planar graphs,
where the previously best known factor was 52. While we could tighten the gap between the best known
lower bound of 7 and upper bound of 52, there is still some room for improvement. We believe that the
optimum approximation rate is much closer to 7 than to 20.
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14. Nešetřil, J., De Mendez, P.O.: Sparsity: graphs, structures, and algorithms, vol. 28. Springer Science & Busi-
ness Media (2012)

15. Sasireka, A., Kishore, A.N.: Applications of dominating set of a graph in computer networks. Int. J. Eng. Sci.
Res. Technol 3(1), 170–173 (2014)

16. Siebertz, S.: Greedy domination on biclique-free graphs. Information Processing Letters 145, 64–67 (2019)

17. Suomela, J.: Survey of local algorithms. ACM Computing Surveys (CSUR) 45(2), 1–40 (2013)

18. Wawrzyniak, W.: A strengthened analysis of a local algorithm for the minimum dominating set problem in
planar graphs. Information Processing Letters 114(3), 94–98 (2014)



Local planar domination revisited 13

A The linear program

In this final section we present our formulation of the constraints as a linear program as well as the
resulting bounds on how many vertices of the specific residual degrees can be found in the worst case. We
formulate the constraints of Lemmas 13 to 16 in a straight forward way and remove the p1 ´ ǫqγ factor,
which is then added to the result. This reasoning is correct thanks to the fact that all constraints are
linear equations; we formally prove it below.

Define ri :“
|Ri|

p1´ǫqγ and di :“
|∆i|

p1´ǫqγ . Then the constraints of Lemmas 13 to 16 imply respectively:

– For every 0 ď i ď 30: ri ě
ř

jďi

dj .

– For every 0 ď i ď 30: ri ď i ` 1.

– For every 7 ď i ď 30: di ď 3ri
i´6

.

– For every 0 ď i ď 29: ri ď ri`1 ´
pi´5qdi`1

3
.

We then run the linear program with these variables; finally we provide the bound for D3 using:

|D3| “
ÿ

iď30

|∆i| “
ÿ

iď30

dip1 ´ ǫqγ “ p1 ´ ǫqγ
ÿ

iď30

di.

Before showing the code and the results, we briefly explain what we expect as a result for these linear
programs.

A.1 Interpretation of the results

In all four cases, our sets of equations yield similar looking results. The step 3 can roughly be decomposed
into two.

First, for several values of i, we have very small dris. We exactly have dris such that given rris “ i` 1
we get rri ´ 1s “ i. Intuitively, picking less element in dris is not the worst case as rri ´ 1s cannot be
bigger than i by Lemma 14. So it is “free” to take at least that many vertices. It is also not the worst case
if more elements are picked, because then rris would shrink drastically, making the forthcoming drjsjăi

much smaller.
Second, there is a turning point. It occurs a little bit above the average degree of planar graphs; so the

number of vertices of degree 9 for example is not so small. This is when Lemma 13 become predominant:
“Overall, we do not take more dominators that there are vertices to dominate.” So in one round every
vertex gets picked and the algorithm stops. This turning point is i “ 9 for planar graphs.

We did not manage to formally prove this statement, but it was confirmed for these cases by the linear
programs.
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A.2 The linear program for planar graphs

//the ranges i can have

range I = 1..30;

range I2 = 1..29;

range I3 = 7..30;

//decision variables as arrays

dvar float+ d[I];

dvar float+ r[I];

//maximize the sum of A_i

maximize sum(i in I) (d[i]);

// our equations

subject to

{

// By lemma 13

forall(i in I) r[i] >= sum(x in 1..i)d[x];

// By lemma 14

forall(i in I) r[i] <= i+1;

// By lemma 15

forall(i in I3) d[i] <= (3 * r[i]) / ( i-6 );

// By Lemma 16

forall(i in I2) r[i] <= r[i+1] - ((( i-5 ) * d[i+1]) / 3);

}
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Fig. 1. The degree distribution in general planar graphs
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A.3 The linear program for triangle-free planar graphs

//Tri-Free

//the ranges i can have

range I = 1..18;

range I2 = 1..17;

range I3 = 5..18;

//decision variables as arrays

dvar float+ d[I];

dvar float+ r[I];

//maximize the sum of A_i

maximize sum(i in I) (d[i]);

// our equations

subject to

{

// By Adapted lemma 13

forall(i in I) r[i] >= sum(x in 1..i)d[x];

// By Adapted lemma 14

forall(i in I) r[i] <= i+1;

// By Adapted lemma 15

forall(i in I3) d[i] <= (2 * r[i]) / ( i-4 );

// By Adapted lemma 16

forall(i in I2) r[i] <= r[i+1] - ((( i-3 ) * d[i+1]) / 2);

}
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Fig. 2. The degree distribution in triangle-free planar graphs
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A.4 The linear program for outerplanar graphs

//outerplanar

//the ranges i can have

range I = 1..9;

range I2 = 1..8;

range I3 = 5..9;

//decision variables as arrays

dvar float+ d[I];

dvar float+ r[I];

//maximize the sum of A_i

maximize sum(i in I) (d[i]);

// our equations

subject to

{

// By Adapted lemma 13

forall(i in I) r[i] <= i+1;

// By Adapted lemma 14

forall(i in I2) r[i] <= r[i+1] - ((( i-3 ) * d[i+1]) / 2);

// By Adapted lemma 15

forall(i in I3) d[i] <= (2 * r[i]) / ( i-4 );

// By Adapted lemma 16

forall(i in I) r[i] >= sum(x in 1..i)d[x];

}
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Fig. 3. The degree distribution in outerplanar graphs
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A.5 The linear program for planar graphs of girth 5

In this case, the Adapted Lemma 13 to 16 can be slightly improved, as the edge density of planar graphs
of girth 5 is at most 5{3. This is however not so useful. As shown below, the linear constraints do not
yield something better than simply picking all 4γ non dominated vertices.

//girth5

//the ranges i can have

range I = 1..3;

range I2 = 1..2;

range I3 = 4..3;

//decision variables as arrays

dvar float+ d[I];

dvar float+ r[I];

//maximize the sum of A_i

maximize sum(i in I) (d[i]);

// our equations

subject to

{

forall(i in I) r[i] >= sum(x in 1..i)d[x];

forall(i in I) r[i] <= i+1;

forall(i in I3) d[i] <= ((5 * r[i]) / ( 3 * i -10 ));

forall(i in I2) r[i] <= r[i+1] - ((( 3*i-7 ) /5 )* d[i+1]);

}
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Fig. 4. The degree distribution in planar graphs of girth 5.
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