
Development of monitoring systems for anomaly
detection using ASTD specifications

El Jabri Chaymae1 (), Frappier Marc1, Ecarot Thibaud1, and Tardif
Pierre-Martin2

1 Computer Science Department at Université de Sherbrooke, GRIF, Québec, Canada
{chaymae.el.jabri,marc.frappier,thibaud.ecarot}@usherbooke.ca
2 Management School at Université de Sherbrooke, Québec, Canada

pierre-martin.tardif@usherbrooke.ca

Abstract. Anomaly-based intrusion detection systems are essential de-
fenses against cybersecurity threats because they can identify anomalies
in current activities. However, these systems have difficulties providing
entity processing independence through a programming language. In ad-
dition, a degradation of the detection process is caused by the complexity
of scheduling the training and detection processes, which are required to
keep the anomaly detection system continuously updated. This paper
shows how to use the algebraic state-transition diagram (ASTD) lan-
guage to develop flexible anomaly detection systems. This paper pro-
vides a model for detecting point anomalies using the unsupervised non-
parametric technique Kernel Density Estimation to estimate the proba-
bility density of event occurrence. The proposed model caters for both
the training and the detection phase continuously. The ASTD language
streamlines the modeling of detection systems thanks to its process alge-
braic operators that provide a solution to overcome these challenges. By
delegating the combination of anomaly-based detection processes to the
ASTD language, the effort and complexity are reduced during detection
models development. Finally, using a qualitative evaluation, this study
demonstrates that the algebraic operators in the ASTD specification lan-
guage overcome these challenges.

Keywords: Intrusion Detection System · Anomaly detection · Specifi-
cation language · Formalization · Algebra operators.

1 Introduction

Critical systems and sensitive infrastructure are increasingly subject to an in-
tensification of cyberattacks, the complexity of which increases throughout mul-
tiple offensives. To adequately counter the risks that are not always identified
and known, these systems must have a defense with the main characteristic of
quickly and effectively detecting a threat or abnormal behavior. These threats,
which are often composed of a variety of combined tactics and techniques that
adversaries may employ to achieve their objectives, are increasingly challenging
to detect due to their inherent heterogeneity and complexity [26].

ar
X

iv
:2

20
7.

11
13

4v
1

 [
cs

.F
L

]
 2

2
Ju

l 2
02

2

2 C. El Jabri et al.

Detecting these threats is challenging because of detecting heterogeneous
attacks with various variants, the need to quickly obtain a representative and
up-to-date dataset for the training phase, and the management of internal pro-
cesses and alarm handling of an intrusion detection system (IDS). Indeed, IDSs
must detect a wide range of attacks whose nature can vary within a given system
substrate [8,19]. In addition, the management of the processes running within
the detection systems is of great complexity, mainly due to the number of en-
tities present in the ever-growing infrastructures, whose topology is constantly
changing and which are deployed on a large scale [22]. It is also about get-
ting representative datasets of these changes faster and processing a massive
amount of generated alerts to reduce the number of false positives, or irrelevant
alerts [10,25]. These various challenges have highlighted the difficulty of adapt-
ing IDSs to changes. These difficulties impact IDS based on dynamic signatures
and anomaly detection.

To answer these difficulties of adaptation, particular works of [2,30] have
examined several approaches, such as the combination of different learning tech-
niques or the use of a better classification using labeling before the training
phase. However, specific challenges persist with these works, particularly the
lack of flexibility due to the process scheduling during the training and detec-
tion phases executed in parallel [12] and the entity profiles independence to be
monitored [13]. More specifically, process scheduling is a persistent issue dur-
ing IDS’ development. Indeed, programming languages do not have predefined
formal operations ensuring the interaction between the multiple processes, com-
plicating continuous improvement and reducing reusability. The next challenge
is the unique treatment of the entities of a system to be monitored. Indeed, the
processing is unique for all the characteristics of the entities. It is impossible to
differentiate the entities because the training and detection model parameters
are specified a priori. A final issue is the interruption of detection when renewing
training data because the feedback loop is not continuous or automated.

In order to answer appropriately to these functional issues, it was hypothe-
sized that the use of the algebraic state transition diagrams (ASTDs) formaliza-
tion language [4] would make it possible to meet effectively to these challenges.
ASTD is an executable, modular and graphical notation that allows for the com-
position of hierarchical state machines using process algebra operators such as
flow, sequence, quantified interleaving, and parallel synchronization [27]. Indeed,
using algebra operators specific to the IDS’ development coming from this lan-
guage should improve the reliability and flexibility of these systems. The research
work presented in this article aims to formalize the development of intrusion de-
tection systems and to achieve three objectives:

– Separate the coordination of the processes from the actions constituting the
model;

– Provide independent processing of each entity that constitutes the system
to be monitored;

– Ensure continuous processing of events between the training and detection
phase.

Development of monitoring systems using ASTD spec 3

This paper is structured as follows. Section 2 first explores the existing
anomaly detection tools by selecting those that allow continuous event flow man-
agement and those that offer heterogeneous processing of the system substrate
profiles. Then, in Section 3 a new methodology for detecting point anomalies
is presented based on the graphical specification of the detection model. The
methodology is illustrated through a case study in the Microsoft365 environ-
ment. The different actions that make up the model and the execution steps of
this new specification will be described. Finally, in Section 4 a qualitative evalua-
tion is proposed to show that using ASTD meets formalization, reusability, and
modularity objectives that next-generation IDSs need to counter increasingly
complex attacks and motley.

2 Related work

In the literature, some tools offer the possibility of detecting anomalies in a data
set, each using a different methodology. There are those specific to anomaly
detection, others more related to the processing and analysis of event logs, and
others that present advanced functionalities in the statistical processing of data.

Several industrial approaches exist to perform anomaly detection by signa-
ture or behavior. The first approach is carried out with the Snort tool. Snort [20]
provides a low-level signature language to express and detect multi-stage Ad-
vanced Persistent Threats (APT) attacks. However, Snort is a stateless language
that offers minimal event correlation capabilities. This limitation has the effect of
triggering more redundant true positives and false positives. Suricata [1] is based
on the same inference mechanism as Snort, so it is very complex to make com-
binations to detect complex attacks. Zeek [18] was proposed to overcome some
limitations of Snort by providing an event-driven scripting language to precisely
specify and identify APT. The writing of Zeek scripts is essentially programming
using functions and global variables. However, Zeek being a scripting language,
is less abstract than approaches based on process algebra composition operators.
Zeek functions are monolithic; that is, there is a single function for each event,
and this function must address all cases of occurrence of this event, making it
complex to deal with state-dependent reactions for this event.

BeepBeep 3 [5] is mainly a data stream query engine. It provides processors
and functions that define recurrent operations on event logs. BeepBeep 3 aims
to present reusable, tested, and general toolkits that reduce the development
effort of continuous event processing and express this processing in a more read-
able way and with a higher level of abstraction. BeepBeep 3 does not present
predefined processors for anomaly detection, although such extensions exist [21].
BeepBeep forms more complex computations on the data by composing (or pip-
ing) processors between them, which is achieved by letting the output of one
processor be the input of another. It does not present a large selection of rela-
tionships that can be established between different processors. The specification
of anomaly detection is more representative and simpler by ASTDs than with

4 C. El Jabri et al.

BeepBeep 3. This argument means that modularity is not present with BeepBeep
compared to methods based on process algebra.

Palisade [9] is an anomaly detection framework. It is motivated by the need
to remotely detect anomalies and combine a set of detectors with improving the
detection system’s accuracy. Palisade ensures that the different detectors can
operate in parallel on the same data set thanks to its architecture composed of
nodes that communicate via Redis, a distributed data streaming architecture.
Palisade does not handle anomaly detection in interleaved events as it is intended
for embedded systems. The detection is performed on the entity’s data to which
the framework is connected. Palisade does not present a graphical representation
or an additional level of abstraction to develop an intrusion detection system.
However, it is necessary to browse its source code to extend or reuse systems
based on Palisade, making it less flexible than ASTD.

Project-R is one of the oldest tools for statistical data processing and sta-
tistical calculations. It is a GNU project developed by the R programming lan-
guage [7]. It has advanced features like time series analysis, clustering, classifica-
tion, etc. Thus it can be used in anomaly detection according to machine learning
techniques [3,24], especially at the stage of establishing the model describing the
system’s normal behavior. R does not offer the possibility of combining sta-
tistical processing, which causes a considerable loss of time during execution.
PqR [15] improves R, whose main objective is the acceleration of calculations.
PqR structure calculations as tasks by adding the possibility of parallelizing,
pipelining, and merging tasks when certain conditions are met. The modularity
and reusability of an IDS made with R depends on the developer.

The management of Interleaved Event Inputs in [17] raises the need to sepa-
rate interleaved events produced by different users or for other purposes during
intrusion detection. It allows distinguishing between data elements representing
different behaviors and locating where the intrusion is. Research works in [14,23]
indicate that the detection of anomalies in data streams and environments that
dynamically change properties requires the updating of training data to preserve
the accuracy of the detection system.

The ASTD specification language, through its compiler cASTD [16], allows
continuous data stream processing and combines the processes constituting the
detection system through algebraic operators. In the following, a case study will
be presented that demonstrates how to process coordination, entity processing
independence, and automation of training data update can be provided by the
ASTD specification of the detection system.

3 Case Study

The case study detects unexpected events in end-user activity data streams from
various Microsoft online services such as Exchange, Azure AD, and SharePoint.
They are collected in real-time using a Microsoft365 API. Unexpected events
occur at times of the day when the user is not usually active. Data streams are

Development of monitoring systems using ASTD spec 5

made up of events representing activities performed by various users. Among the
attributes associated with an activity are:

– ID : uniquely identifies each event
– CreationTime: determines the date and time in Coordinated Universal Time

(UTC) that the user performed the activity. It has the following format
YYYY-mm-ddTHH:MM:ssZ.

– UserId : the user who performed the action

The events are interleaved: they contain events from different users not recog-
nized (identified) a priori (i.e., the IDS does not have access to a database of
existing/registered users; it discovers them on the fly). Events are not always
received in the chronological order of their realization, and some events are re-
ceived very late.

Anomaly detection proceeds according to the following steps:

– We establish a model describing a user’s activity during the day. This model
estimates the probability density of a user’s activity during the 1440 minutes
of the day using the non-parametric technique kernel density estimation
(KDE).

– A minimum threshold is set that defines the lowest probability density to
classify an event as expected.

– The new events are compared with the learned reference model. If the event
has occurred for a minute for which the probability density is below the
threshold, the event is considered to be an anomaly.

KDE has been used in unexpected event detection in an application estab-
lished in collaboration with the company Sherweb [11]. The experiments per-
formed demonstrated that the model meets its statistical function by modeling
the active hours of a user even when ignoring the exact values of the model
parameters. In addition, it turns out that the reported events are abnormal
in terms of user behavior and not necessarily performed by an attacker. The
model’s threshold is chosen considering that a significant threshold value will
classify more events as abnormal, which requires more investigation by the com-
pany security analyst.

The update of the training data is done by implementing a sliding window.
The events are grouped by week by assigning them a week number calculated
from the DateCreation attribute, which we call henceforth a period. A period
is defined as YYYYWW, where YYYY denotes the year and WW denotes the
week’s number. Two types of periods are needed: UsedPeriods and Accumu-
latedPeriods. UsedPeriods are used to calculate the current KDE model, and
AccumulatedPeriods are the periods received after the computation of the cur-
rent KDE, and that will be used to compute the next KDE. To update the
training data two conditions must be satisfied:

– The accumulation of at least n period
– Obtaining at least k events in the accumulated periods

6 C. El Jabri et al.

These conditions were put in place to ensure that the sample of data used for
training was representative and that the profile learned by KDE was reliable.

Figure 1 represents the data renewal process.

Modélisation d'un KDE général

x Le temps est divisé en période de durée égale
o Ex: période d'une semaine

x Calcul d'un premier KDE après accumulation d'un nombre K d'évènements, et à la fin de
la période contenant le kième évènements

x Mise à jour du KDE à intervalle régulier
o La première période du KDE est remplacée par de nouvelles périodes lorsque, à

partir de la 2e période, on a accumulé au moins K évènements

Principe général de la gestion des événements :

Chaque évènement, qui s’est produit le jour d, le mois m et l’année a, est associé à une période

P = a * 100 + numweek (a, m, d)

K dénote le nombre d’évènements qu’on souhaite avoir avant de déclencher le calcul du KDE

Usedperiods = [p1 … pi]

Accumulatedperiods = [pi+1 … pn]

Newperiods = [p2 … pn]

Period 1 : p1

Period i : pi

Period i+1 : pi+1

Period n : pn
Us

ed
pe

rio
ds

Ac

cu
m

ul
at

ed
pe

rio
ds

Ne
w

pe
rio

ds

We will accumulate the events for
AccumulatedPeriods until the
number of events of Newperiods is
⩾ K and the number of
Newperiods is ⩾ n.

In this case, we reset usedperiods
by Newperiods, and we set
Accumulatedperiods to empty.

 We will accumulate the events
until we reach K and we have
more than n periods, at this
moment we trigger the
computation of the KDE

Fig. 1. Methodology for updating training data.

Having accumulated at least n periods in UsedPeriods and obtained k events
associated with these periods, we launch the computation of the KDE, then we
remove the first period from UsedPeriods and we add the periods of Accumulat-
edPeriods to UsedPeriods. Finally, we empty the list AccumulatedPeriods, and
we continuously repeat this process.

In what follows, we present the graphical specification of the detection system
by highlighting the process algebra operators used and their functionalities. Then
we define the different actions governing the specification of the detection system
and the methodology for updating the training data.

3.1 Graphical specification of the IDS

ASTD specifications are created using the eASTD editor. The specification is
built using state-transition machines, which are combined using process algebra
operators, called ASTD types. Thus, an ASTD of a given type contains an op-
erator, attributes (i.e., state variables), and an executable code (action) which
is executed every time the ASTD is executed. Each ASTD type has a specific
graphical representation.

Development of monitoring systems using ASTD spec 7

Figure 2 provides the graphical representation of the ASTD specification
of our model. Its top-level operator is a quantified interleave, denoted by 9
in the top-left tab; it is a unary opertor, thus it applies to its sub-ASTD
Detect Anomalous Event T imes. It declares a quantified variable userid of type
int. ASTD was initially intended for information system (IS) modeling. The
quantified interleave operator, taken from the CSP [6] language, gave ASTD an
advantageous property not present in other modeling languages such as UML,
which consists in the possibility of representing multiple instances of the same
entity in an explicit and concise way [4]. In our context, the quantified interleave
operator allows one to treat each user independently by associating an instance
of its sub-ASTD Detect Anomalous Event T imes to each user. Thus, each user
has its own copy of this sub-ASTD, and it can store the specific information re-
lated to a user. It is important to note that the quantification variable userid has
an unbounded domain which allows the ASTD to treat all the users without the
need to recognize them before.

ASTD Detect Anomalous Event T imes is of type flow, denoted by ⫛; it
is a binary operator similar to AND-state in Statecharts. The flow operator
was added to the ASTD language in [29], because often the same event is part
of several attacks, and flow allows this event to be executed on each attack
specification that can execute it. It allows for executing the same input event on
both the training and detection processes.

ASTD Detect Anomalous Event Times has the following attributes:

– EventsByWeek : map⟨int, vector⟨double⟩⟩ ; it contains the period as a key,
and a list of event minutes.

– n : int ; the minimum number of periods to accumulate to launch the cal-
culation of the KDE

– k : int ; defines the number of events that a user should have in n periods,
in order to compute the KDE and build his profile.

– threshold : double; defines the lowest probability to classify an event as
expected

– UsedPeriods : vector⟨int⟩ ; it contains the indices of the periods in Events-
ByWeek which will provide the calculation of the KDE after having accu-
mulated a minimum of K events for these periods.

– AccumulatedPeriods : vector⟨int⟩ ; it is used to renew the data used for the
calculation KDE.

– startKDE : bool ; is used to launch the KDE calculation when it is true.
– UserKDE : vector⟨double⟩ ; it contains the current KDE calculated.
– Alerts : vector⟨string⟩ ; it contains the ID of the suspicious events.

Detect Anomalous Event Times contains two sub-ASTDs: Computation and
Alerting, which in turn have access to the previous attributes. The event e is
executed by each sub-ASTD which can execute it.

The ASTD Computation is of type Automaton. It has as an action KDE Com-
putation which takes as parameters the following variables and attributes: userId,
EventsByWeek, userkde, UsedPeriods, AccumulatedPeriods, startkde; it is re-
sponsible for the KDE computation after checking the value of startKDE. ASTD

8 C. El Jabri et al.

Flow :

 Un opérateur binaire (contient deux sous-ASTDs), permet d’exécuter un évènement
sur chaque sous-ASTD chaque fois que possible

La spécification complète:

||| userId : int

Computation

Alerting

Aut Aut

Spec_KDE_Per_User

||| userId : int

Alerting, aut Computation,aut,{Computation_KDE}

 Detect_Anomalous_Event_Times

Fig. 2. ASTD graphical specification.

Computation is a state machine that contains a single state with a loop transi-
tion labeled with event e and it has an action addEvent(userId, CreationTime,
EventsByWeek, UsedPeriods, AccumulatedPeriods, startkde, k, n), which adds
the events received to the map EventsByWeek and manages the periods. The
execution of actions occurs in a bottom-up way, which means that transition
actions are executed first, followed by ASTD actions. Thus, action addEvent
is executed before action KDE Computation. ASTD Computation manages the
attribute EventsByWeek and the computation of the KDE profile when it is
possible.

The ASTD Alerting is also a state machine. It contains only one state with
a loop transition also labeled with e, and it has an action alert(userkde, userId,
CreationDate, ID, alerts, threshold), which is in charge of checking if the prob-
ability of occurrence of the received event is lower than the threshold. In that
case, the event is reported by adding its ID to the vector of alerts. The transi-
tion is guarded with condition g3 = userkde. size()!=0, which ensures that the
userkde is not empty.

3.2 Action Definitions

First of all we define the three main actions (addEvent,Computation KDE,alert),
then we introduce some methods responsible for partial calculations.

Action addEvent (see Algorithm 1) updates the training data structure
(EventsByWeek) and triggers the KDE computation. For each event received,
we calculate the minute of the day and the period in which it occurred from
the CreationDate by the Compute minute and Compute period methods, respec-
tively. The minute obtained is then added to the EventsByWeek map according

Development of monitoring systems using ASTD spec 9

Algorithm 1 addEvent

Input:userId, CreationDate, EventsByWeek, UsedPeriods, AccumulatedPeriods,
startKDE, n, k

Output: EventsByWeek, UsedPeriods, AccumulatedPeriods, startKDE updated

1: period← Compute period(CreationDate)
2: value← Compute minute(CreationDate)
3: EventsByWeek[period].append(value)
4: if UsedPeriods.size()! = 0 then
5: last used period← UsedPeriods[UsedPeriods.size() − 1]

6: if calculNbrEvents(EventsByWeek,UsedPeriods) ≤ k or UsedPeriods.size() ≤

n or diffnext(last used period, period) > 0 then
7: if period not in UsedPeriods then
8: insert(UsedPeriods, period)

9: else if period not in UsedPeriods then
10: if AccumulatedPeriods.size() == 0 then
11: startKDE ← true
12: if period not in AccumulatedPeriods then
13: insert(AccumulatedPeriods, period)

14: NewPeriods← UsedPeriods[2 ∶] +AccumulatedPeriods
15: if calculNbrEvents(EventsByWeek,NewPeriods) ≥

k and calculNbrEvents(EventsByWeek,AccumulatedPeriods) ≥

2 and UsedPeriods.size() ≥ n then
16: EventsByWeek.erase(UsedPeriods[1])
17: UsedPeriods← NewPeriods
18: AccumulatedPeriods← []

19: NewPeriods← []

to its period. The condition of line 6 allows to build the list UsedPeriods and to
ensure the continuity of the order between UsedPeriods and AccumulatedPeriods
by verifying that the inserted period is less than the last period of UsedPeriods.
If this condition (in line 6) is not satisfied, it means that the computation of the
KDE from the data associated with UsedPeriods is possible. To ensure that we
have received enough or all events from the last UsedPeriods period, we check-in
line 10 that we have not yet received an event from a brand new period that
does not exist in UsedPeriods. The condition in line 12 ensures that the Accu-
mulatedPeriods list is built until the conditions for updating the training data
are satisfied.

Then we create the NewPeriods list by taking the UsedPeriods list deprived
of its first period and the periods of AccumulatedPeriods. The condition in line
15 checks if NewPeriods can be the new UsedPeriods that will be used for the
computation of the new profile and that there are at least two events associated
with the AccumulatedPeriods; this is to ensure that the first period of Used-
Periods is not deleted before being included in the KDE calculation because
the first event of the AccumulatedPeriods is responsible for starting the KDE
computation.

10 C. El Jabri et al.

Algorithm 2 Computation KDE

Input: EventsByWeek, UsedPeriods, AccumulatedPeriods, startKDE, userKDE
Output: userKDE updated

1: if startKDE then
2: userKDE.clear() ▷ reset userKDE
3: for key in EventsByWeek.keys() do
4: if key not in UsedPeriods and key not in AccumulatedPeriods then
5: EventsByWeek.erase(key)

6: fusion(EventsByWeek, UsedPeriods, fusiondata)
7: userKDE ← computationoftheKDE
8: startKDE ← false

Action Computation KDE (See algorithm 2) computes the KDE after veri-
fying the value of startKDE. In this case, it resets the userKDE, cleans up
the map EventsByWeek by deleting the periods not existing in UsedPeriods and
AccumulatedPeriods, merges the data in EventByWeek from the UsedPeriods
into a single list and starts the KDE computation.

Algorithm 3 alert

Input: userKDE, ID, CreationDate, alerts, threshold
Output: alerts updated

1: value← Compute minute(CreationDate)
2: if userKDE[value] ≤ threshold then
3: add ID to alerts

Action Alert (see Algorithm 3) compares the probability of occurrence of the
event and the threshold. It computes the minute of occurrence of the received
event. It retrieves the probability of occurrence of events at this minute using
userKDE, compares the probability to a threshold. If the probability is less
than the threshold, ID is added to the alerts list.

The numweek method receives as input the day, month and year. It returns
the number of the week associated with this date. The calculNbrEvents method
receives as input a map of event data and a list of periods. It returns the number
of values (events) for those periods in the map. The diffnext⟨period1, period2⟩
method calculates the difference between two periods, assuming that period2 >

period1.
The insert method (See Algorithm 4) inserts the periods in the lists UsedPeriods

and AccumulatedPeriods. The insertion of the periods in the two lists is done
while keeping an ascending order. This order in the lists is created to ensure
the order of the events and identify the events received late: It sometimes hap-
pens that there are events that are received after one month of their occurrence.
Therefore, it would be relevant to delete them when calculating the current KDE
profile. These events can be determined because they belong to a period very far

Development of monitoring systems using ASTD spec 11

from the first period of the current period list (a difference of more than three
periods between the old period and the first period of the list). If we receive an
event corresponding to an old period, this period will not be inserted into the
list.

Algorithm 4 insert

Input: vec, period
Output: vec updated

1: it← upper bound(vec.begin(), vec.end(), period) ▷

upper bound return an iterator pointing to the first period in the

range [vec.begin(),vec.end()) which compares greater than period

2: if it == vec.begin() and it! = vec.end() then ▷ if vec is not empty and

period should be inserted at the beginning of vec

3: diff ← diffnext(value at it, period)
4: if diff ≤ 3 then
5: insert period at the position pointed by it

6: else
7: insert period at the position pointed by it

3.3 IDS code generation

The generation of the IDS source code is done by compiling the ASTD specifica-
tion by the cASTD compiler [28]. The latter produces code in C++ programming
language from an ASTD specification in JSON. The compilation takes place in
the following four steps :

– Parsing the ASTD specification in JSON and producing an ASTD object
model by the ASTD Parser.

– Translation from ASTD to an intermediate model (IM) using the ASTD
Compiler.

– Translation from IM to a programming language like C++ using the IM
Translator.

– Code optimization by removing redundant calculations

The specification is first modeled using the eASTD editor, which generates
the specification in JSON. This specification and the code defining the set of
operations required for the training and detection processes are passed as input
to the cASTD. It generates as output the source code in the C++ programming
language and the associated program (monitor) that will be executed on the data
streams (see Fig 3). The source code is composed of the helper file, which calls
the constructors associated with given string types; the logger file, which allows
debugging of the generated program; the IDS source code file, which contains
the translated code of the ASTD specifications; and the makefile for linking
and compilation. This makefile calls the native compiler corresponding to the

12 C. El Jabri et al.

C++ language and is automatically executed by cASTD to produce the IDS
executable.

cASTD

Graphic astd spec (.eastd)

Astd spec (.json)

User

eASTD Editor

User files

IDS executable

IDS Code

helper

logger

makefile

 Alertes

Event streams

Modeling of the
ASTD specification

Definition
of actions

Fig. 3. IDS code generation.

3.4 Example of specification execution

To clarify the period management methodology, we proceed with an explicit
example. It is assumed that a user’s events are received with the following se-
quence of periods: [202225, 202225, 202225, 202221, 202227, 202227, 202227,
202228, 202228, 202228,202228 , 202229, 202229, 202226]. We take k = 10, n = 3
and threshold = 0.001.

When the first three events are received, the lists of periods are as follows:
UsedPeriods = [202225 (3 events)], AccumulatedPeriods = [] and NewPeriods =
[], according to the condition in line 6 of the addEvent method

We receive the event of period 202221, which is supposed to be inserted in
the first position in UsedPeriods, in order to keep the list in ascending order.
However when we compute the difference between the first period of UsedPeriods
202224 and 202221, we obtain 4 which is greater than 3 so the period 202221 will
not be inserted in UsedPeriods according to the method insert (Algorithm 4).

Development of monitoring systems using ASTD spec 13

The lists of periods remains unchanged: UsedPeriods = [202225 (3events)],
AccumulatedPeriods = [] and NewPeriods = [].

The following seven events [202227, 202227, 202227, 202228, 202228, 202228,
202228] will be inserted in UsedPeriods according to the method addEvent (Al-
gorithm 1). The lists of periods will have the following content: UsedPeriods =
[202225 (3 events), 202227 (3 events), 202228 (4 events)], AccumulatedPeriods
= [] and NewPeriods = [202227 (3 events), 202228 (3 events)].

We receive the event of the period 202229, UsedPeriods contains more than
n periods, the number of events associated to it is equal to k, the last period
of UsedPeriods 202228 is less than 202229, which means that period 202228 is
finished, and AccumulatedPeriods is empty. So all the conditions are satisfied
to launch the computation of the KDE : startKDE receives true. According to
the condition in line 11 of addEvent, we add 202229 to AccumulatedPeriods.
The period lists are as follows: UsedPeriods = [202225 (3 events), 202227 (3
events), 202228 (4 events)], AccumulatedPeriods = [202229 (1event)] and New-
Periods = [202227 (3 events), 202228 (3 events), 202229 (1 event)]. Then the
Computation KDE method is executed to compute the user profile that will be
stored in UserKDE.

We receive another event of the period 202229. The content of the periods
is as follows: UsedPeriods = [202225 (3 events), 202227 (3 events), 202228 (4
events)], AccumulatedPeriods = [202229 (2 event)] and NewPeriods = [202227
(3 events), 202228 (3 events), 202229 (2 event)]. The condition in the line
15 of addEvent is satisfied, we renew the list of periods to have the following:
UsedPeriods = [202227 (3 events), 202228 (3 events), 202229 (2 event)], Ac-
cumulatedPeriods = [] and NewPeriods = []. The condition g3 is satisfied which
allows to execute the Alert method which classifies the event as being normal or
abnormal.

Finally we receive the event of the period 202226, which, as the condition
of the line 6 of addEvent, is inserted in UsedPeriods, to obtain the following
lists: UsedPeriods = [202226 (1 event), 202227 (3 events), 202228 (3 events),
202229 (2 events), 202229 (2 events)], AccumulatedPeriods = [] and NewPeriods
= [202227 (3 events), 202228 (3 events), 202229 (2 events), 202229 (2 events)].
This event also passes through the detection process as g3 is satisfied.

4 Evaluation and Discussion

The flow operator coordinated the two sub-ASTDs of the training and detection
processes. A received event is added to the training data structure and evaluated
against the learned model if already computed. This means that the training
data is fed simultaneously as the detection is maintained. The fact that the two
sub-ASTDs share the attributes inherited from the parent ASTD reinforces this
coordination, as the model computed by the first sub-ASTD is used to perform
the detection at the second sub-ASTD.

The quantified interleave operator creates the sub-ASTD for each entity pro-
cessed, which means that there are as many independent IDS as there are entities.

14 C. El Jabri et al.

The advantage of the processing independence of the different users in the de-
veloped case study is that the update of the training data is done depending on
the user’s activity, not blindly at the same time for all entities. Each entity has
its own attributes, and in the ASTD language, an attribute can be initialized
by the value returned by a method. The initialization can also be dependent on
the properties of the entity.

The automation of the training data update has been implemented accord-
ing to if-else instructions; this is possible thanks to continuous data process-
ing. The reference profile is renewed when a new training data set meets de-
fined conditions. This was achieved in the case study by the executable code
Computation KDE, responsible for recalculating the KDE profile according to
the value of the boolean startKDE, which is executed directly after the execu-
tion of the action addEvent that checks the value of startKDE.

The ASTD language formalized the scheduling and coordination of the vari-
ous IDS processes, which reduces the mental load and the effort required for the
development. The modeling of the specification in a graphical representation fa-
cilitates modifying or extending the specification. The cASTD tool with its IDS
source code generation methodology ensures the modularity and reusability of
the IDS specification. Modularity results from the separation of the reading of
the data flows, the operations composing the system, and the coordination of the
different processes. Reusability is due to the fact that the IDS code generated
by cASTD can be compiled and executed in any environment.

The IDS specification was executed on a dataset containing 3,827,551 events
of 10 distinct users collected over 10 weeks from one of our industrial collabora-
tors operating a Microsoft365 SAS, using an Intel Core i7 processor machine with
frequency 3 GHz x 8 and 32 GB of RAM. The execution took 1h:34min:13s (wall
clock time) and 138MB of RAM, which represents an average execution time of
1.476ms by event. This Microsoft365 site collects around 40 million events per
week, so our generated code can clearly cope with this workload. In [28] a com-
parison was made between cASTD and other event processing tools (BeepBeep
v3, MonPoly, iASTD); it turned out that cASTD is the fastest among them.

5 Conclusion

A study on the use of ASTDs in the context of intrusion detection systems
is presented in this paper. This study demonstrates the simplicity of allowing
data updates without interrupting the detection process and the creation of
modularity at the level of each user that can be treated independently. The
ASTD language made it possible to coordinate the anomaly detection model’s
different processes by using the algebra operators. Evaluation conducted in this
paper shows that ASTD specification language can be used to develop anomaly-
based detection systems. The cASTD tool that has been used to compile the
specifications has shown to be efficient in terms of execution time.

The anomaly detection application presented in the case study is of point type
detection. Future works will be carried out to develop other types of anomaly

Development of monitoring systems using ASTD spec 15

detection that are contextual or collective. A new evaluation will present the
advantages of the ASTD specification language in terms of flexibility to apply
other estimation calculation methods. The hope founded by this formalization
work can allow greater resilience of detection systems in the face of new modern
threats. Moreover, the work carried out in this study shows that this could be a
probable solution to the current detection problems.

References

1. Home (Feb 2022), http://suricata-ids.org/

2. Ahmad, I., Basheri, M., Iqbal, M.J., Rahim, A.: Performance com-
parison of support vector machine, random forest, and extreme learn-
ing machine for intrusion detection. IEEE Access 6, 33789–33795 (2018).
https://doi.org/10.1109/ACCESS.2018.2841987

3. Bauder, R., Khoshgoftaar, T.: Multivariate anomaly detection in medicare using
model residuals and probabilistic programming (2017), https://aaai.org/ocs/

index.php/FLAIRS/FLAIRS17/paper/view/15429

4. Frappier, M., Gervais, F., Laleau, R., Fraikin, B., St-Denis, R.: Extending state-
charts with process algebra operators. Innovations in Systems and Software Engi-
neering 4, 285–292 (10 2008). https://doi.org/10.1007/s11334-008-0064-1

5. Hallé, S.: Event Stream Processing with BeepBeep 3: Log Crunching and Analysis
Made Easy (12 2018)

6. Hoare, C.A.R.: Communicating sequential processes. Communications of the ACM
21(8), 666–677 (1978)

7. Ihaka, R., Gentleman, R.: R: A language for data analysis and graphics. Journal
of Computational and Graphical Statistics 5(3), pp. 299–314 (1996), http://www.
jstor.org/stable/1390807

8. Kasinathan, P., Pastrone, C., Spirito, M.A., Vinkovits, M.: Denial-of-service detec-
tion in 6lowpan based internet of things. 2013 IEEE 9th International Conference
on Wireless and Mobile Computing, Networking and Communications (WiMob)
pp. 600–607 (2013)

9. Kauffman, S., Dunne, M., Gracioli, G., Khan, W., Benann, N., Fischmeister, S.:
Palisade: A framework for anomaly detection in embedded systems. Journal of
Systems Architecture 113, 101876 (2021)

10. Khakurel, N., Bhagat, N.: Advanced engineering and ICT–convergence 2019
(ICAEIC-2019), p. 22 (2019)

11. Létourneau, L.S., El Jabri, C., Frappier, M., Tardif, P.M., Lépine, G., Boisvert, G.:
Statistical approach for cloud security: Microsoft office 365 audit logs case study.
In: 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems
and Networks Workshops (DSN-W). pp. 15–18. IEEE (2021)

12. Lifandali, O., Abghour, N.: Deep learning methods applied to intrusion de-
tection: Survey, taxonomy and challenges. In: 2021 International Conference
on Decision Aid Sciences and Application (DASA). pp. 1035–1044 (2021).
https://doi.org/10.1109/DASA53625.2021.9682357

13. Liu, G., Yi, Z., Yang, S.: Letters: A hierarchical intrusion detection
model based on the pca neural networks. Neurocomput. 70(7–9), 1561–1568
(mar 2007). https://doi.org/10.1016/j.neucom.2006.10.146, https://doi.org/10.
1016/j.neucom.2006.10.146

http://suricata-ids.org/
https://doi.org/10.1109/ACCESS.2018.2841987
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS17/paper/view/15429
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS17/paper/view/15429
https://doi.org/10.1007/s11334-008-0064-1
http://www.jstor.org/stable/1390807
http://www.jstor.org/stable/1390807
https://doi.org/10.1109/DASA53625.2021.9682357
https://doi.org/10.1016/j.neucom.2006.10.146
https://doi.org/10.1016/j.neucom.2006.10.146
https://doi.org/10.1016/j.neucom.2006.10.146

16 C. El Jabri et al.

14. Nakayama, H., Kurosawa, S., Jamalipour, A., Nemoto, Y., Kato, N.: A dynamic
anomaly detection scheme for aodv-based mobile ad hoc networks. IEEE transac-
tions on vehicular technology 58(5), 2471–2481 (2008)

15. Neal, R.M.: Speed improvements in pqr: Current status and future plans
16. Nganyewou Tidjon, L.: Modélisation formelle des systèmes de détection

d’intrusions. Ph.D. thesis, Institut polytechnique de Paris (2020)
17. Pao, H.K., Lee, F.R., Lee, Y.J.: Dealing with interleaved event inputs for intrusion

detection. Journal of Information Science & Engineering 35(1) (2019)
18. Paxson, V.: Bro: A system for detecting network intruders in real-time. In: Pro-

ceedings of the 7th Conference on USENIX Security Symposium - Volume 7. p. 3.
SSYM’98, USENIX Association, USA (1998)

19. Raza, S., Wallgren, L., Voigt, T.: Svelte: Real-time intrusion detec-
tion in the internet of things. Ad Hoc Networks 11(8), 2661–2674
(2013). https://doi.org/https://doi.org/10.1016/j.adhoc.2013.04.014, https://

www.sciencedirect.com/science/article/pii/S1570870513001005

20. Roesch, M.: Snort: Lightweight intrusion detection for networks. In: LISA (1999)
21. Roudjane, M., Rebäıne, D., Khoury, R., Hallé, S.: Real-time data mining for event

streams. In: 2018 IEEE 22nd International Enterprise Distributed Object Com-
puting Conference (EDOC). pp. 123–134. IEEE (2018)

22. Sanchez, L., Galache, J.A., Gutierrez, V., Hernandez, J.M., Bernat, J., Gluhak, A.,
Garcia, T.: Smartsantander: The meeting point between future internet research
and experimentation and the smart cities. In: 2011 Future Network & Mobile
Summit. pp. 1–8. IEEE (2011)

23. Sun, R., Zhang, S., Yin, C., Wang, J., Min, S.: Strategies for data stream mining
method applied in anomaly detection. Cluster Computing 22(2), 399–408 (2019)

24. Szmit, M., Adamus, S., Szmit, A., Buga la, S.: Implementation of brutlag’s al-
gorithm in anomaly detection 3.0. In: 2012 Federated Conference on Computer
Science and Information Systems (FedCSIS). pp. 685–691 (2012)

25. Thakkar, A., Lohiya, R.: A review of the advancement in intrusion detection
datasets. Procedia Computer Science 167, 636–645 (2020)

26. Thakkar, A., Lohiya, R.: A review on machine learning and deep learning
perspectives of ids for iot: Recent updates, security issues, and challenges.
Archives of Computational Methods in Engineering 28(4), 3211–3243 (Jun
2021). https://doi.org/10.1007/s11831-020-09496-0, https://doi.org/10.1007/

s11831-020-09496-0

27. Tidjon, L.N., Frappier, M., Mammar, A.: Intrusion detection using astds. In: In-
ternational conference on advanced information networking and applications. pp.
1397–1411. Springer (2020)

28. Tidjon, L.N.: Formal modeling of intrusion detection systems. Ph.D. thesis, Institut
Polytechnique de Paris; Université de Sherbrooke (Québec, Canada) (2020)

29. Tidjon, L.N., Frappier, M., Leuschel, M., Mammar, A.: Extended algebraic state-
transition diagrams. In: 2018 23rd International Conference on Engineering of
Complex Computer Systems (ICECCS). pp. 146–155. IEEE (2018)

30. Zhang, F., Kodituwakku, H.A.D.E., Hines, J.W., Coble, J.B.: Multilayer data-
driven cyber-attack detection system for industrial control systems based on net-
work, system, and process data. IEEE Transactions on Industrial Informatics 15,
4362–4369 (2019)

https://doi.org/https://doi.org/10.1016/j.adhoc.2013.04.014
https://www.sciencedirect.com/science/article/pii/S1570870513001005
https://www.sciencedirect.com/science/article/pii/S1570870513001005
https://doi.org/10.1007/s11831-020-09496-0
https://doi.org/10.1007/s11831-020-09496-0
https://doi.org/10.1007/s11831-020-09496-0

	Development of monitoring systems for anomaly detection using ASTD specifications

