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Abstract. Distributed Petri Net Synthesis corresponds to the task to7

decide, for a transition system A (with event set E) and a natural number8

κ, whether there exists a surjective location map λ : E → {1, . . . , κ}9

and a Petri net N (with transition set E) such that, if two transitions10

e, e′ ∈ E share a common pre-place, then they have the same location11

(λ(e) = λ(e′)), whose reachability graph is isomorphic to A (in which12

case such a solution should be produced as well). In this paper, we show13

that this problem is NP-complete.14

1 Introduction15

Labeled transition systems, TS for short, are a widely used tool for describing16

the potential sequential behaviors of discrete-state event-driven systems such as,17

for example, Petri nets.18

Petri net synthesis consists in deciding, for a given transition system A,19

whether there exists a Petri net N whose reachability graph AN is isomorphic to20

A, i. e., whether the TS indeed describes the behavior of a Petri net. In case of21

a positive decision, a possible solution N should be constructed as well. In this22

case, many solutions may usually be exhibited, sometimes with very different23

structures, and we may try to find solutions in a structural subclass of Petri nets24

with a particular interest.25

Petri net synthesis has numerous practical applications, for example, in the26

field of process discovery to reconstruct a model from its execution traces [1], in27

supervisory control for discrete event systems [8], and in the design and synthesis28

of speed-independent circuits [5].29

One of the most important applications of Petri net synthesis is the extraction30

of concurrency and distributability data from the sequential behavior given for31

instance by a TS [3]: Although TS are used in particular to describe the behavior32

of concurrent systems like Petri nets [10], they reflect concurrency only implicitly33

by the non-deterministic interleaving of sequential sequences of events.34

In a Petri net whose reachability graph is isomorphic to a TS, the events of the35

TS correspond to the transitions of the Petri net, and the pre-places of a transition36

(an event in the TS) model the resources necessary for the firing of the transition37

(the occurrence of the event in the TS). Accordingly, the pre-places of a transition38

control the executability of the latter and, following Starke [11], transitions may39
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be considered to be potentially concurrent if the intersection of their presets is40

empty, i. e., if they do not require the same resources. The concurrency of events41

(of the TS) thus becomes explicitly visible through the empty intersection of the42

presets of their corresponding transitions (in a synthesized net).43

The question whether a TS having the event set E allows a distributed44

implementation not only asks about the concurrency of events, but goes a step45

further and asks whether concurrent events can actually be implemented at46

different physical locations. More exactly, for a set L of locations, one wonders47

if there is a surjective mapping λ : E → L that assigns a (physical) location to48

each event e ∈ E of the TS such that no two events sent to different locations49

share an input place.50

In particular, it should be emphasized that concurrency and distributability51

are not equivalent properties: As elaborated in [4], transitions can be concurrent,52

but still not distributable. This phenomenon occurs, for example, in the context53

of the problem known as confusion: Although two transitions, say a and b, do54

not share any pre-places (do not require the same resources), there is a third55

transition, say c, that requires both resources from a and resources from b, so56

that a, b, and c must always be assigned to the same physical location.57

The distributability of a transition system can thus be reduced to the dis-58

tributability of Petri nets [3]. Note however that a TS may have various kinds of59

synthesized nets, some of which may be more or less highly distributed, while60

other ones are not at all. If λ is a distribution over E (in the sense just described),61

we may then say that a TS is λ-distributable if it has a λ-distributable Petri net62

synthesis. It is known that the question whether, for a TS A with event set E63

and a location map λ : E → L, a corresponding λ-distributable Petri net exists64

can be decided in polynomial time if λ is fixed in advance [3]. However, it is not65

clear a priori how a set of locations, and a location map can be chosen such that66

they describe an optimal distributed implementation of A, i. e., such that they67

imply a solution of the following optimization problem:68

Given a TS A with event set E, find the maximum number κ of locations,69

and a (surjective) location map λ : E → {1, . . . , κ} that allow a distributed70

implementation of A, i. e., such that there exists a λ-distributable Petri net N71

whose reachability graph is isomorphic to A.72

Since location maps are surjective, κ ≤ |E|, and sending all transitions to a73

single location is always valid so that κ ≥ 1. Moreover, if we have a distribution74

over κ locations, by grouping some of them we can get location maps to any75

subset of them. Hence, we can reduce by dichotomy the previous problem to the76

following:77

Given a TS A with event set E, and a natural number κ between 1 and78

|E|, decide whether there exists a (surjective) location map λ : E → {1, . . . , κ}79

allowing a λ-distributable Petri net N whose reachability graph is isomorphic to80

A.81

In this paper, we shall show that the latter problem is NP-complete, hence82

also the optimal one (so that these problems most probably cannot be solved83

efficiently in all generality).84
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The remainder of this paper is organized as follows: The following Section 285

introduces the definitions, and some basic results used throughout the paper,86

and provides them with examples. After that, Section 3 analyzes the distribution87

problem and Section 4 provides the announced NP-completeness result. Finally,88

Section 5 briefly closes the paper. The appendix contains some figures to help89

the reader understand some of the proofs.90

2 Preliminaries91

In this paper, we consider only finite objects, i. e., sets of events, states, places,92

etc. are always assumed to be finite.93

Definition 1 (Transition System). A (deterministic, labeled) transition sys-94

tem, TS for short, A = (S,E, δ, ι) consists of two disjoint sets of states S and95

events E and a partial transition function δ : S × E −→ S and an initial state96

ι ∈ S.97

An event e occurs at state s, denoted by s e , if δ(s, e) is defined. By ¬e we98

denote that δ(s, e) is not defined. We abridge δ(s, e) = s′ by s
e
s′ and call99

the latter an edge with source s and target s′. By s e
s′ ∈ A, we denote that100

the edge s e
s′ is present in A. A sequence s0

e1 s1, s1
e2 s2, . . . , sn−1

en sn101

of edges is called a (directed labeled) path (from s0 to sn in A), denoted by102

s0
e1 s1

e2 . . .
en sn.103

We assume that A is reachable: there is a path from ι to s for every state104

s ∈ S \ {ι}.105

Two transition systems A1 = (S1, E, δ1, ι1) and A2 = (S2, E, δ2, ι2) on the event106

set E are said isomorphic (denoted A1 ∼= A2) if there is a bijection β : S1 → S2107

such that β(ι1) = ι2 and δ1(s1) = s′1 iff δ2(β(s1)) = δ2(s′1) for any s1, s
′
1 ∈ S1108

(also meaning that δ1(s1) is undefined iff so is δ2(β(s1))).109

s0 s1

s2s3

A

a

bb

a

110 011

002101

A′

a

bb

a

Fig. 1: Two isomorphic TS A and A′; the initial states are indicated in bold.
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Definition 2 (Petri net). A (weighted) Petri net N = (P,E, f,m0) consists110

of finite and disjoint sets of places P and transitions E, a (total) flow f :111

((P ×E) ∪ (E × P ))→ N and an initial marking m0 : P → N (more generally, a112

marking is any function P → N, interpreted as giving a number of tokens present113

in each place).114

The preset of a transition is the set •e = {p ∈ P |f(p, e) > 0} of its pre-places.115

The same may be defined for places, as well as postsets.116

A transition e ∈ E can fire or occur in a marking m : P → N, denoted by117

m
e , if m(p) ≥ f(p, e) for all places p ∈ P . The firing of e in marking m118

leads to the marking m′(p) = m(p)− f(p, e) + f(e, p) for all p ∈ P , denoted by119

m
e

m′. This notation extends to sequences w ∈ E∗ and the reachability set120

RS(N) = {m | ∃w ∈ E∗ : m0
w

m} contains all of N ’s reachable markings. The121

reachability graph of N is the TS AN = (RS(N), E, δ,m0), where, for every122

reachable marking m of N and transition e ∈ E with m
e

m′, the transition123

function δ of AN is defined by δ(m, e) = m′ (δ(m, e) is undefined if e cannot fire124

in m).125

Many subclasses of Petri nets may be defined, and we shall consider some126

examples in the next section.127

Definition 3 (Petri net synthesis). Petri net synthesis consists in deciding,128

for a given transition system A, whether there exists a Petri net N whose129

reachability graph AN is isomorphic to A, i. e., whether the TS indeed describes130

the behavior of a Petri net.131

In the positive case, one usually wants to also build such a net, called a solution132

of the synthesis problem. In the negative case, it may be useful to exhibit one or133

more reasons of the failure.134

It is also possible to restrict the target to some specific subclass of nets.135

N

a b

p0 p1

N ′

a b

p2

p0 p1

N ′′

a b

p2

p0 p1

Fig. 2: Three different solutions of the TS A and A′ in Figure 1. A′ is the reachability
graph of N ′.
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Classical synthesis procedures are linked to the notion of regions and to the136

solution of separation properties.137

Definition 4 (Region). Let A = (S,E, δ, ι) be a TS. A region R = (sup, con, pro)138

of A consists of three mappings support sup : S → N, as well as consume139

and produce con, pro : E → N, such that if s e
s′ is an edge of A, then140

con(e) ≤ sup(s) and sup(s′) = sup(s)− con(e) + pro(e).141

A region may be seen as a place of a Petri net with transition set E, with142

sup giving the marking of the place at each reachable state as specified by A,143

con(e) giving the number of tokens needed (and thus consumed when firing) by144

e in that place, and pro(e) giving the number of tokens produced by e in that145

place when firing.146

The state separation property ensures that different states may be differenti-147

ated by a region, i.e., be associated with different markings:148

Definition 5 (State Separation Property). Two distinct states s, s′ ∈ S149

define the state separation atom, SSA for short, (s, s′) of A. A region R =150

(sup, con, pro) solves (s, s′) if sup(s) 6= sup(s′). A state s ∈ S is called solvable151

if, for every s′ ∈ S \ {s}, there is a region that solves the SSA (s, s′). If every152

state of A is solvable, then A has the state separation property, SSP for short.153

The event state separation property ensures that if an event e does not occur154

at a state s in A, that is s ¬e , then the transition e cannot fire in the marking155

associated to s in some region:156

Definition 6 (Event State Separation Property). An event e ∈ E, and a157

state s ∈ S of A such that s ¬e define the event state separation atom, ESSA for158

short, (e, s) of A. A region R = (sup, con, pro) solves (e, s) if con(e) > sup(s).159

An event e ∈ E is called solvable if, for every state s ∈ S such that s ¬e , there160

is a region of A that solves the ESSA (e, s). If all events of A are solvable, then161

A has the event state separation property, ESSP for short.162

Definition 7 (Admissible Set). Let A = (S,E, δ, ι) be a TS. A set R of163

regions of A is called an admissible set if it witnesses the SSP and the ESSP of164

A, i. e., for every SSA, and for every ESSA of A, there is a region in R that165

solves it.166

If R is an (admissible) set of regions of A, NRA is the Petri net where E is the set167

of transitions, R is the set of places and, for each place R = (sup, con, pro) ∈ R,168

the initial marking is sup(ι) and, for each transition e ∈ E, f(R, e) = con(e) and169

f(e,R) = pro(e).170

A classical result about Petri net synthesis is then:171

Theorem 1 ([6]). A labeled transition system A has a weighted Petri net solu-172

tion iff it has an admissible set R of regions. A possible solution is then NRA .173
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3 Distributability174

The idea here is to bind the events of a transition system or a Petri net to certain175

(physical) locations.176

Definition 8 (Location Map). Let E be a set, and L a set of locations. A177

location map (over E and L) is a surjective mapping λ : E → L.178

In the case of a Petri net, the intent is to separate the pre-sets of transitions179

sent to different locations:180

Definition 9 (Distributable Petri net). Let N = (P,E, f,m0) be a Petri181

net, L a set of locations, and λ : E → L a location map. N will be called λ-182

distributable if the following condition is satisfied: for all transitions e, e′ ∈ E183

and every place p ∈ P , if f(p, e) > 0 and f(p, e′) > 0, then λ(e) = λ(e′).184

Let κ ∈ N; N will be called κ-distributable (with 1 ≤ κ ≤ |E|) if it is λ-185

distributable for some location map λ such that |L| = κ.186

The last definition results from the observation that the exact identity of the187

locations is not important: what really matters is the partition of the transition188

set defined by λ, i.e., {λ−1(e)|e ∈ L}. Hence we may always choose L = [1...|L|].189

Moreover, if π is a permutation of L, we may use equivalently π ◦ λ instead of λ.190

For instance, the nets N and N ′ in Figure 2 are λ-distributable with λ(a) =191

1 and λ(b) = 2, hence also 2-distributable. On the contrary, N ′′ is only 1-192

distributable.193

We may then consider the synthesis problems where the target is the class of194

λ-distributable Petri nets, for some location map λ, or the class of κ-distributable195

Petri nets, for some κ ∈ [1...|E|].196

Definition 10 (Localized Region). Let A = (S,E, δ, ι) be a TS, L a set of197

locations and λ : E → L a location map. A λ-localized region is a region R =198

(sup, con, pro) of A such that, if con(e) > 0, and con(e′) > 0, then λ(e) = λ(e′).199

In other words, if λ(e) 6= λ(e′), then either con(e) = 0 or con(e′) = 0 (or200

both).201

Definition 11 (Localized admissible Set). Let A = (S,E, δ, ι) be a TS, L a202

set of locations, and λ : E → L a location map. An admissible set R of regions203

of A will be said λ-localized if all its members are λ-localized. It will be said204

κ-localizable (for some κ ∈ [1...|E|]) if it is λ-localized for some location map λ205

with |λ(E)| = κ.206

The following result extends Theorem 1 to the localized context. It states207

that the question whether there is a λ-distributable (or a κ-distributable) Petri208

net whose reachability graph is isomorphic to A is equivalent to the question209

whether there is a λ-localized (or a κ-localizable) admissible set of regions of A:210
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Theorem 2 ([2]). Let A = (S,E, δ, ι) be a TS, L a set of locations, λ : E → L211

a location map, and κ ∈ [1...|E|] a degree of distribution. A has a λ-distributed212

(or a κ-distributed) Petri net solution iff it has an admissible λ-localized (or213

κ-localizable) set R of regions. A possible solution is then NRA .214

If a TS A allows a λ-distributed (hence also a κ-distributed) Petri net solution215

N , it is possible to extend the location map to the places: if p ∈ •e, we may216

coherently state λ(p) = λ(e). If a place p has an empty post-set, we may arbitrarily217

associate it to any location, for instance to λ(e) if e ∈ •p (if any), but here the218

location may rely on the particular choice of e. If we add the initial marking and219

the arcs between the connected places and transitions in each location, we shall220

then get |L| subnets N1, . . . , N|L|.221

If these subnets are well separated, N =
⊕|L|

i=1 Ni is the disjoint sum of its222

various localized components, in the sense of [7], and then its reachability graph is223

isomorphic to the disjoint product of the reachability graphs of those components:224

if Ai = RG(Ai) for each i ∈ [1...|L|], A ∼= RG(N) ∼=
⊗|L|

i=1 RG(Ni). This is the225

case for example for the net N in Figure 2, but not for N ′ while both nets are226

2-distributable and solutions of the same TS A.227

In general, however, each component Ni still has to send tokens to places228

belonging to other components, and the relationship on the reachability graphs229

is not so obvious. In [3], the authors show how to get around the difficulty.230

Albeit we shall not need it in the following, we sketch here their procedure.231

When components have to exchange tokens, it is not possible to read it in232

the corresponding transition systems, since the latter are considered up to233

isomorphisms, so that the markings disappear. Instead, the idea is to add special234

transitions materializing the sending or reception of a token to or from another235

component, but these extra transitions will be considered as invisible from outside.236

This leads to reachability graphs and transition systems with invisible events,237

but it is possible to define an equivalence, called branching bisimulation, which238

generalizes the isomorphism between transition systems without invisible events,239

and to combine disjoint transition systems with invisible events in such a way240

that the combination of the reachability graphs of the (extended) components Ni241

is branching bisimilar to the original TS A. For instance, for net N ′ in Figure 2,242

this leads to the components, reachability graphs and combination illustrated by243

Figures 3, 4, and 5.244

4 Complexity Analysis245

In [3], it is shown that the question whether, for a TS A with event set E and a246

location map λ : E → L, a corresponding λ-distributable Petri net exists can be247

decided in polynomial time. But this is only proved when λ is fixed in advance,248

and it is not clear a priori if this remains true if λ is left unknown, as in the249

decision problems mentioned in the Introduction, which may now be formalized250

as follows:251
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Optimal Distributability
Input: A TS A with event set E and an integer κ ∈ [1...|E|].
Question: Is κ the maximal value such that A has a κ-distributable solution?

252

N ′
1

a

p′
2

p0

1!p2

N ′
2

b

p2 p1

2?p2

m

Fig. 3: N ′
1 and N ′

2 are the local components of N ′ associated to locations 1 and 2,
respectively; 1!p2 is the invisible transition that sends asynchronously a token to p2 in
N ′

2 from location 1, and 2?p2 is the invisible transition that receives asynchronously in
N ′

2 a token for p2. We can think of this sending/receiving of tokens as follows: There is
an additional (message) place m; the firing of 1!p2 produces a token on m (message
“N ′

1 sends a token for p2”); the firing of 2?p2 consumes a token from m, and produces a
token on p2 (“message received”).

10 01

00

A′
1

a

1!p2

10

01 02

11 12

A′
2

b

2?p2

2?p2

b

2?p2

Fig. 4: A′
1 and A′

2 are the corresponding reachability graph (bounded by the maximal
marking 2 of p2 in N ′).

〈(10, 10), (0)〉 〈(01, 10), (0)〉 〈(00, 10), (1)〉 〈(00, 11), (0)〉

〈(10, 01), (0)〉 〈(01, 01), (0)〉 〈(00, 01), (1)〉 〈(00, 02), (0)〉

A′
1 ⊗A′

2

a 1!p2 2?p2

a 1!p2 2?p2

b b b b

Fig. 5: Finally, A′
1 ⊗A′

2 is the combination of A′
1 and A′

2 that is branching bisimilar to
A. A state (〈(s, s′)〉, (i)) of A′

1 ⊗A′
2 corresponds to the pair (s, s′) of states of A′

1 and
A′

2, respectively, and i is the number of messages sent but not yet received.
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κ-Distributability
Input: A TS A with event set E and an integer κ ∈ [1 . . . |E|].
Question: Is there a κ-distributable solution?

253

We shall show in this section that the second problem (hence also the first254

one) is unfortunately NP-complete. First of all, we argue for the membership255

in NP: On the one hand, if, for a given TS A, and a natural number κ, there256

is a location map λ that allows a corresponding λ-admissible set, then a non-257

deterministic Turing machine can compute λ in polynomial time (by simply258

guessing λ(e) ∈ [1 . . . |E|] for all e ∈ E). On the other hand, as mentioned259

above, it is known that once λ is fixed, one can compute in polynomial time a260

corresponding λ-distributable admissible set R if it exists (and reject the input261

otherwise) [2]. Hence, κ-distributability is in NP.262

Cubic Monotone 1 in 3 3Sat (CM1in33Sat)
Input: A pair (U,M) that consists of a set U of boolean variables

and a set of 3-clauses M = {M0, . . . ,Mm−1} such that Mi =
{Xi0 , Xi1 , Xi2} ⊆ U and i0 < i1 < i2 for all ∈ {0, . . . ,m − 1}.
Every variable of U occurs in exactly three clauses of M

Question: Does there exist a one-in-three model of (U,M), i. e., a subset
S ⊆ U such that |S ∩Mi| = 1 for all i ∈ {0, . . . ,m− 1}?

263

Theorem 3 ([9]). Cubic Monotone 1 in 3 3Sat is NP-complete.264

Example 1. The instance (U,M), where U = {X0, X1, X2, X3, X4, X5}, and265

M = {M0, . . . ,M5} such that M0 = {X0, X1, X2}, M1 = {X0, X1, X3}, M2 =266

{X0, X1, X5}, M3 = {X2, X3, X4}, M4 = {X2, X4, X5}, and M5 = {X3, X4, X5},267

allows a positive decision: S = {X0, X4} defines a one-in-three model for (U,M).268

In the following, until explicitly stated otherwise, let (U,M) be an arbitrary269

but fixed instance of CM1in33Sat such that U = {X0, . . . , Xm−1}, and M =270

{M, . . . ,Mm−1}, where Mi = {Xi0 , Xi1 , Xi2} ⊆ U, and i0 < i1 < i2 for all271

i ∈ {0, . . . ,m− 1}. Note that |U| = |M | holds by the definition of a valid input.272

Lemma 1. If S ⊆ U, then S is a one-in-three model of (U,M) if and only if273

S ∩Mi 6= ∅ for all i ∈ {0, . . . ,m− 1}, and m = 3 · |S|.274

Proof. Every variable of U occurs in exactly three distinct clauses. Hence, every275

set S ⊆ U intersects with 3|S| (distinct) clauses Mi0 , . . . ,Mi3|S|−1 ∈ M if and276

only if |S ∩Mij | = 1 for all j ∈ {0, . . . , 3|S| − 1}.277

We shall polynomially reduce (U,M) to a TS A = (S,E, δ, ι) and a number κ278

such that there is location map λ : E → {1, . . . , κ}, and a λ-localizable admissible279

set of A if and only if (U,M) has a one-in-three model.280

For a start, let κ = 2m
3 + 3, and L = {1, . . . , 2m

3 + 3}. (By Lemma 1, if281

m 6∼= 0 mod 3, then (U,M) has no one-in-three model.) We proceed with the282

construction of A, being the composition of several gadgets that are finally283



10 Raymond Devillers and Ronny Tredup (�)

connected by some uniquely labeled edges. First of all, the TS A has the following284

gadget H that will allow to consider the ESSA α = (k, h1):285

H = h0 h1

f0,0 f0,1

f1,0 f1,1

f2,0 f2,1

...
...

fm−1,0 fm−1,1

k

u0

k

u1
k

u2
k

um−1

k

286

Moreover, for every i ∈ {0, . . . ,m− 1}, the TS A has the following gadget Ti287

that represents the clause Mi = {Xi0 , Xi1 , Xi2} by using its variables as events,288

and uses the event ui again.289

Ti =

ti,0 ti,1

ti,2ti,3

ti,4 ti,5

ti,6ti,7

Xi0

Xi0

Xi0

Xi0

Xi1

Xi1

Xi1

Xi1

Xi2

Xi2

Xi2

Xi2

ui

290

Finally, the TS A = (S,E, δ, ι) has the initial state ι from which all introduced291

gadgets are reachable by unambiguous labeled edges: for every i ∈ {0, . . . ,m−1},292

the TS A has the edge ι ai ti,0, and, moreover, it has the edge ι am h0. Note that293

E = U∪{k}∪{a0, . . . , am}∪{u0, . . . , um−1}, and |E| = 3m+ 2. In the following,294

for any gadget G, we shall denote by S(G) the set of all its states.295

Lemma 2. If there is a location map λ : E → L and a λ-localizable admissible296

set R of A, i. e., for all e 6= e′ ∈ E and all R = (sup, con, pro) ∈ R, if con(e) > 0297

and con(e′) > 0, then λ(e) = λ(e′), then there is a one-in-three model for (U,M).298
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Proof. We show that if R = (sup, con, pro) is a λ-distributable region of R that299

solves (k, h1), then the set S = {X ∈ U | con(X) > 0} defines a one-in-three300

model of (U,M).301

We first argue that λ(ai) = λ(aj) for all i 6= j ∈ {0, . . . ,m}: Since R witnesses302

the ESSP of A, and tj,0
¬ai , there is a region R = (sup, con, pro) ∈ R that303

solves the ESSA (ai, tj,0). By ι ai , we have con(ai) ≤ sup(ι), and, since R solves304

(ai, tj,0), we have con(ai) > sup(tj,0) ≥ 0. Together this implies sup(ι) > sup(tj,0),305

and thus con(aj) > pro(aj) ≥ 0, since sup(tj,0) = sup(ι) − con(aj) + pro(aj).306

Hence, by con(ai) > 0, and con(aj) > 0, we obtain λ(ai) = λ(aj).307

Similarly, one argues that if i 6= j ∈ {0, . . . ,m − 1} are arbitrary but fixed,308

then λ(ui) = λ(uj), which results from a region that solves (ui, fj,0). Hence,309

λ(ui) = λ(uj) for all i 6= j ∈ {0, . . . ,m}.310

Let R = (sup, con, pro) be a region of R that solves (k, h1). (Note that R311

exists, since R is an admissible set.) We first show now that the set S = {X ∈ U |312

con(X) > 0} contains at least m
3 elements (which thus have all the same location313

as k): Let i ∈ {0, . . . ,m− 1} be arbitrary but fixed. By h0
k , we have con(k) ≤314

sup(h0), and since R solves (k, h1), we have con(k) > sup(h1). On the other315

hand, by fi,0
k , we have con(k) ≤ sup(fi,0), which implies sup(h1) < sup(fi,0),316

and thus con(ui) < pro(ui). By ti,6
ui ti,0, and con(ui) < pro(ui), we have that317

sup(ti,0) > sup(ti,6). This implies that there is an event X ∈ {Xi0 , Xi1 , Xi2} on318

the path ti,0
Xi0 ti,1

Xi1 ti,2
Xi2 ti,6 that satisfies con(X) > 0. This is due to the319

fact that sup(ti,6) = sup(ti,0)− (
∑2

j=0 con(Xij
)) + (

∑2
j=0 pro(Xij

)). Since i was320

arbitrary, this is simultaneously true for all i ∈ {0, . . . ,m− 1}. Hence, as every321

X ∈ U occurs in exactly three distinct clauses, say Mi,Mj ,M` (corresponding322

to Ti, Tj , T`), we have 3|S| ≥ m, and thus |S| ≥ m
3 . Moreover, for all X ∈ S, it323

holds λ(k) = λ(X).324

Finally, we argue that S contains exactly m
3 elements: Since λ is a surjective325

mapping, and |{1, . . . , 2m
3 + 3} \ {λ(k), λ(a0), λ(u0)}| ≥ 2m

3 , and λ(a0) = · · · =326

λ(am), and λ(u0) = · · · = λ(um−1), there have to be 2m
3 pairwise distinct327

events left that correspond to the remaining locations, i. e., we have that |E \328

({k, a0, . . . , am, u0, . . . , um−1} ∪S)| = |(U \S)| ≥ 2m
3 . By |U| = m, and |S| ≥ m

3 ,329

this implies |S| = m
3 . In particular, by Lemma 1, we obtain that S defines a330

one-in-three model of (U,M). This proves the lemma.331

In order to complete the proof of the adequacy of our reduction, we now332

show that the existence of a one-in-three model for (U,M) implies the existence333

of a location map λ : E → {1, . . . , 2m
3 + 3} such that there is a λ-localizable334

admissible set R of A. So let S be a one-in-three model of (U,M), and let335

U \S = {Xj1 , . . . , Xj 2m
3
} be set of all variable events, which do not participate336
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at the model. For all e ∈ E, we define λ as follows:337

λ(e) =


1, if e ∈ {k} ∪S

2, if e ∈ {a0, . . . , am}
3, if e ∈ {u0, . . . , um−1}
`+ 3, if e = Xj`

for some ` ∈ {1, . . . , 2m
3 }

The following facts show that A’s events are solvable by λ-localizable regions.338

Due to space restrictions, we present regions R = (sup, con, pro) only implicitly339

by sup(ι), and con, and pro; it will be easy to chack that the definitions are340

coherent, i.e., ny support is negative and two different paths to a same state do341

not lead to different supports. We summarize events by ER
c,p = {e ∈ E | con(e) =342

c and pro(e) = p}. If e ∈ E is not explicitly mentioned in a set Ec,p, where c 6= 0343

or p 6= 0, then e ∈ ER
0,0 = E \ {e ∈ E | con(e) 6= 0 or pro(e) 6= 0}, and we leave344

this set implicitly defined in the obvious way.345

In order to help the reader understand the regions presented in Fact 1 to346

Fact 4, and Lemma 3, we gathered in an Appendix several figures illustrating347

the gadgets H,T0, . . . , T5 of the TS A that would be the result of the reduction348

applied on the instance of Example 1. For every figure, the coloring of the states349

corresponds to the support of the states according to the region addressed by350

the figure: red colored states have support 1, green colored states have support351

2, blue colored states have support 3, and states without color have support 0.352

These figures are intended to be withdrawed in a ready to publish version, to353

cope with length constraints.354

Fact 1. The event k is solvable by λ-localizable regions.355

Proof. The following region (see Figure 6) R1 = (sup1, con1, pro1) solves (k, s)356

for all s ∈ {h1} ∪
⋃m−1

i=0 {fi,1}: sup1(ι) = 1, and ER1
1,0 = {k} ∪ S, and ER1

0,1 =357

{u0, . . . , um−1}.358

The following region (see Figure 7) R2 = (sup2, con2, pro2) solves (k, s) for359

all states S \ S(H): sup2(ι) = 0, and ER2
1,1 = {k}, and ER2

0,1 = {am}.360

Fact 2. If e ∈ {a0, . . . , am}, then e is solvable by λ-localizable regions.361

Proof. The following region R3 = (sup3, con3, pro3) solves (e, s) for all e ∈362

{a0, . . . , am} and all s ∈ S \ {ι}: sup3(ι) = 1, and ER3
1,0 = {a0, . . . , am}.363

Fact 3. If e ∈ {u0, . . . , um−1}, then e is solvable by λ-localizable regions.364

Proof. The following region R4 = (sup4, con4, pro4) solves (u, s) for all u ∈365

{u0, . . . , um−1}, and all s ∈ S \ ({h1} ∪
⋃m−1

i=0 {ti,6}): sup4(ι) = 0, and ER4
3,0 =366

{u0, . . . , um−1}, and ER4
0,2 = {k}, and ER4

0,1 = {am}∪U. See Figure 8, Appendix A.367

Let j ∈ {0, . . . ,m − 1} be arbitrary but fixed. The following region Rj
5 =368

(supj
5, con

j
5.pro

j
5) solves (uj , s) for all s ∈ (

⋃m−1
i=0 {ti,6}) \ {tj,6}: supj

5(ι) = 0, and369

ERj
5

1,1 = {uj}, and ERj
5

0,1 = {aj , am}. See Figure 9, Appendix A.370
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Fact 4. For every e ∈ U, the event e is solvable by λ-localizable regions.371

Proof. Let i ∈ {0, . . . ,m−1} be arbitrary but fixed, and let i0, i1, i2 ∈ {0, . . . ,m−372

1} be the three pairwise distinct indices such that Xi ∈ Mij for all j ∈373

{0, 1, 2}. The following region Ri
6 = (supi

6, con
i
6, pro

i
6) solves (Xi, s) for all374

s ∈ S \ ({s ∈ S | s Xi } ∪ S(H)): supi
6(ι) = 0, and ERi

6
1,0 = {Xi}, and ERi

6
0,1 =375

{ai0 , ai1 , ai2 , ui0 , ui1 , ui2}. See Figure 10, Appendix A.376

The following region Ri
7 = (supi

7, con
i
7, pro

i
7) solves (Xi, s) for all s ∈ S(H):377

supi
7(ι) = 0, and ERi

7
1,1 = {Xi}, and ERi

7
0,1 = {ai0 , ai1 , ai2}. See Figure 11, Ap-378

pendix A. Since i was arbitrary, this proves the lemma.379

The following lemma completes the proof of Theorem 4:380

Lemma 3. If there is a one-in-three model for (U,M), then there is a location381

map λ : E → {1, . . . , 2m
3 + 3}, and a λ-localizable admissible set R of A.382

Proof. By Fact 1 to Fact 4, there are enough λ-localizable regions of A that383

witness the ESSP of A. Moreover, the region R3 of Fact 2 solves (ι, s) for all384

s ∈ S \ {ι}. Furthermore, if i ∈ {0, . . . ,m − 1} is arbitrary but fixed, then the385

following region Ri
8 = (supi

8, con
i
8, pro

i
8), which is defined by supi

8(ι) = 0, and386

ERi
8

0,1 = {ai}, solves (s, s′) for all s ∈ S(Ti) and all S \ S(Ti). See Figure 12,387

Appendix A. Hence, it remains to argue for the solvability of the SSA (s, s′) such388

that s and s′ belong to the same gadget of A.389

Let i ∈ {0, . . . ,m− 1} be arbitrary but fixed. One finds out that the regions390

Ri0
6 , and Ri1

6 , and Ri2
6 that are defined in Fact 4 in order to solve the events Xi0 ,391

and Xi1 , and Xi2 , respectively, altogether solve all SSA of Ti.392

Hence, it remains to consider the SSA of H. Let i 6= j ∈ {0, . . . ,m− 1} be393

arbitrary but fixed. The region R1 of Fact 1 solves (h0, h1), and (fi,0, fi,1), and394

the region Ri0
6 of Fact 4 solves (s, s′) for all s ∈ {h0, h1}, and all s′ ∈ {fi,0, fi,1}.395

It remains to show that (s, s′) is solvable for all s ∈ {fi,0, fi,1}, and all396

s′ ∈ {fj,0, fj,1}. In order to do that, we observe that there is a ` ∈ {0, 1, 2}, such397

that Xi`
6∈Mj , since Mi, and Mj would be equal otherwise. Hence, the region398

Ri`
6 of Fact 4 solves (s, s′). By the arbitrariness of i, and j, we have finally argued399

that there is a witness of λ-localizable regions for the SSP of A.400

Combining the various results of this section, we thus get our main result:401

Theorem 4. κ-Distributability is NP-complete.402

5 Conclusion403

In this paper, we show that the problem of finding an optimal distributed404

implementation of a given TS A is a computationally hard problem by showing405

that the corresponding decision problem is NP-complete. The presented reduction406

is crucially based on the fact that the transitions of λ-distributed Petri nets may407

simultaneously consume and produce from the same place. Future work could408
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therefore investigate the complexity of the problem restricted to pure Petri nets.409

Also, one may investigate whether the parameterized version of the problem is410

fixed parameter tractable when κ is chosen as the parameter.411
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A Graphical Supports for the Regions of Fact 1 to Fact 4,443

and Lemma 3444
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Fig. 6: A sketch of the region R1 of Fact 1.
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Fig. 7: A sketch of the region R2 of Fact 1.
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Fig. 8: A sketch of the region R4 of Fact 3.
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Fig. 9: A sketch of the region R2
5 of Fact 3.
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Fig. 10: A sketch of the region R2
6 of Fact 4.
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Fig. 11: A sketch of the region R2
7 of Fact 4.
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Fig. 12: A sketch of the region R2
8 of Lemma 3.


