
Evaluating GPU Programming Models
for the LUMI Supercomputer

George S. Markomanolis1 , Aksel Alpay2, Jeffrey Young5 ,
Michael Klemm3 , Nicholas Malaya3 , Aniello Esposito4 ,

Jussi Heikonen1 , Sergei Bastrakov6, Alexander Debus6 , Thomas Kluge6 ,
Klaus Steiniger6 , Jan Stephan6,7(B) , Rene Widera6 ,

and Michael Bussmann6,7

1 CSC - IT Center for Science Ltd., Espoo, Finland
{georgios.markomanolis,jussi.heikonen}@csc.fi

2 Heidelberg University, Heidelberg, Germany
aksel.alpay@uni-heidelberg.de

3 Advanced Micro Devices Inc, Santa Clara, USA
{michael.klemm,nicholas.malaya}@amd.com
4 Hewlett Packard Enterprise, Spring, USA

aniello.esposito@hpe.com
5 Georgia Institute of Technology, Atlanta, USA

jyoung9@gatech.edu
6 Center for Advanced Systems Understanding, Görlitz, Germany

7 Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
{s.bastrakov,a.debus,t.kluge,k.steiniger,
j.stephan,r.widera,m.bussmann}@hzdr.de

Abstract. It is common in the HPC community that the achieved
performance with just CPUs is limited for many computational cases.
The EuroHPC pre-exascale and the coming exascale systems are mainly
focused on accelerators, and some of the largest upcoming supercomput-
ers such as LUMI and Frontier will be powered by AMD InstinctTM accel-
erators. However, these new systems create many challenges for devel-
opers who are not familiar with the new ecosystem or with the required
programming models that can be used to program for heterogeneous
architectures. In this paper, we present some of the more well-known
programming models to program for current and future GPU systems.
We then measure the performance of each approach using a benchmark
and a mini-app, test with various compilers, and tune the codes where
necessary. Finally, we compare the performance, where possible, between
the NVIDIA Volta (V100), Ampere (A100) GPUs, and the AMD MI100
GPU.

Keywords: GPU · Programming models · HIP · CUDA · OpenMP ·
hipSYCL · Kokkos · Alpaka

1 Introduction

Europe has procured a number of supercomputers through the EuroHPC Joint
Undertaking (JU) organization. In this work, we focus on the LUMI [1] super-
c© The Author(s) 2022
D. K. Panda and M. Sullivan (Eds.): SCFA 2022, LNCS 13214, pp. 79–101, 2022.
https://doi.org/10.1007/978-3-031-10419-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10419-0_6&domain=pdf
http://orcid.org/0000-0002-5571-4823
http://orcid.org/0000-0001-9841-4057
http://orcid.org/0000-0002-8634-4634
http://orcid.org/0000-0001-6259-7453
http://orcid.org/0000-0003-1597-0811
http://orcid.org/0000-0003-3396-6154
http://orcid.org/0000-0002-3844-3697
http://orcid.org/0000-0003-4861-5584
http://orcid.org/0000-0001-8965-1149
http://orcid.org/0000-0001-7839-4386
http://orcid.org/0000-0003-1642-0459
http://orcid.org/0000-0002-8258-3881
https://doi.org/10.1007/978-3-031-10419-0_6


80 G. S. Markomanolis et al.

computer which is being installed in Finland by Hewlett-Packard Enterprise
and is run by a consortium of ten European countries. LUMI will have both
a CPU and a GPU partition, where the CPU partition performance is only a
few petaflops, the AMD InstinctTM GPUs provide almost 0.5 EFLOPS across
2560 nodes with 64 core AMD Trento CPU and four AMD MI250X GPUs, using
similar technology as the Frontier system [2].

There are a few parallel older programming models, however, with the arrival
of the GPUs, other programming models had to be created, such as Compute
Unified Device Architecture (CUDA) [3], OpenCL [4], or directive-based pro-
gramming models such as OpenMP [5] and OpenACC [6]. Meanwhile, even more
programming models have emerged, some of which are more widely known than
others. For some of them, there is a significant learning curve, and others are to
be used by HPC domain experts.

When a scientist prepares an application to be ported to a GPU architecture,
or to move from NVIDIA GPUs to AMD GPUs, the effort often depends on the
used programming model. With such a wide variety of available programming
models, it sometimes is not straightforward which one to use. In this paper, we
explore the porting procedure for the LUMI supercomputer, discuss the appli-
cable programming models, and present some results of various benchmarks and
performance comparisons across AMD and NVIDIA GPUs.

The main contributions of this work are as follows:

– We present a porting diagram that illustrates how the LUMI users could port
their application in various scenarios.

– To our knowledge, this is one of the first comparisons between NVIDIA
V100/A100, and AMD MI100.

– We evaluate the performance of many programming models such as HIP,
CUDA, OpenMP Offloading, hipSYCL, Kokkos, and Alpaka while optimizing
when possible.

– We present results of the BabelStream with Alpaka backend for the first time.
– We present how to tune some of the kernels.

2 Related Work

For many programming models, there are studies that evaluate these for CPUs
or GPUs. In [7] the authors study OpenMP offload on NVIDIA V100 with a few
mini-apps and various compilers, observe performance variations, and provide
some OpenMP optimization techniques. In [8], the authors present the compute-
bound mini-app miniBUDE and evaluate various programming models, including
offload to GPUs. In [9], the authors present a performance analysis of CUDA,
OpenACC, and OpenMP programming models on V100 GPU where they illus-
trate how it is easier to use OpenMP offloading and OpenACC compared to
CUDA, and they measure the performance. Deakin et al. in [10] evaluate the
performance of benchmarks in SYCL and comparing them with an OpenCL ver-
sion. They use three applications for this purpose. The authors in [11] present
a performance portability study on different CPUs/GPUs, using programming



Evaluating GPU Programming Models for the LUMI Supercomputer 81

models and codes to investigate the performance portability. However, not many
of them supported an AMD GPU at that time.

Compared to the current related work, we use some new GPUs, and especially
the AMD MI100 and evaluate the programming models and tune them based on
its hardware specifications. Furthermore, we try to use the most recent versions
of the programming models where possible. Finally, we provide box plots in some
cases to identify variations.

3 Programming Models

In this section, we present a few programming models that we plan to use on
LUMI, and later we describe in which situation to use them.

3.1 HIP

The Radeon Open Compute (ROCm) platform [12,13] includes programming
models to develop codes for AMD GPUs. Among those is the Heterogeneous-
compute Interface for Portability (HIP) [14]. HIP is a C++ API and kernel
language to create portable applications for the AMD ROCm platform as well
as NVIDIA GPUs using the same source code. It is open source, it provides an
API to port your code, and the syntax is very similar to CUDA. It supports
a large subset of the CUDA runtime functionality and has almost no negative
performance impact over coding directly in CUDA. HIP includes features such
as C++11 lambdas, namespaces, classes, templates, etc. The HIPify [15] tools
convert CUDA code to HIP. Of course, tuning will be required for each specific
GPU.

Table 1 exemplifies some similarities between CUDA and HIP. For most cases,
replacing the “cuda” in the function name with “hip” as well as for the arguments
is enough to translate the API. However, not all the CUDA API is supported in
HIP yet. Executing a GPU kernel is similar as you can see in the corresponding
table but there is also a HIP API called hipLaunchKernelGGL.

With the HIP translation tool, a common approach is to semi-automatically
port a CUDA code to HIP. For example, to convert a CUDA file called exam-
ple.cc, the command hipify-perl --inplace example.cc performs the trans-
lation of CUDA API calls to HIP API calls (a backup of the original code is kept
as example.cc.hip. There is also hipconvertinplace-perl.sh to translate all
source files of a directory as well as a version of the HIPify tool that is based on
the clang compiler. For more details about porting codes there are a few sources
such as [16,17].

For CUDA Fortran codes, it is required to do the following steps (further
details are available at [17]):

– Port CUDA Fortran code to HIP kernels in C++. The hipfort API helps to
invoke the HIP API from Fortran.

– Wrap the kernel launch in function with C calling convention.
– Call the launch function from Fortran through the Fortran 2003 C bindings.



82 G. S. Markomanolis et al.

Table 1. Convert CUDA code to HIP

CUDA HIP Description

cudaMemcpy hipMemcpy Copy data between two
different memory
locations

cudaMalloc hipMalloc Allocates a memory
pointer on the device

cudaFree hipFree Deallocate memory
from the GPU

kernel name <<<
gridsize, blocksize,
shared mem size,
stream >>>(arg0,
arg1, ...);

kernel name <<<
gridsize, blocksize,
shared mem size,
stream >>>(arg0,
arg1, ...);

Execute a GPU kernel

3.2 The OpenMP Application Programming Interface

The OpenMP API supports offloading computation to accelerator devices since
version 4.0 and has since then refined and extended the features continu-
ously [18]. The OpenMP API supports a variety of target directives that control
the transfer of data (if needed), transfer of control flow, as well as parallelism
on the target device. OpenMP also offers low-level API interfaces for memory
allocation and data transfers similar to the interfaces of the CUDA and HIP
programming models.

This is a very basic example of an OpenMP offload region, running code on
a GPU:

#pragma omp target teams distribute parallel for simd \
map(to:A[:N]) map(from:B[:N]) \
num_teams(x) thread_limit(y)

for (int i = 0; i < N; ++i) {
B[i] = expression(A[i], i);

}

In the example above, the target construct transfers the control flow from
the host device to the default target device (the host thread will await completion
of the offload region). The map clauses are used to specify the data that is needed
for execution as well as the direction of the data flow. If the host and accelerator
have distinct memories, the OpenMP implementation will perform an actual
transfer. If host and device have a shared memory (emulation), the map clauses
do not issue an actual data transfer.

Since the OpenMP API does not only support GPU-like architectures as
target devices, it has been a design decision by the OpenMP Language Com-
mittee to separate offload directives and parallelism from each other. Through
this decision programmers can use the best matching OpenMP directives to



Evaluating GPU Programming Models for the LUMI Supercomputer 83

create parallelism for a specific target architecture. Also, the OpenMP API sup-
ports a more descriptive approach via the loop construct instead of the teams
distribute parallel for construct.

The teams distribute directive then partitions the loop iteration space
across the available warps or wavefronts, while the parallel for simd con-
structs can parallelize the partitioned loop for the available GPU threads.
Another approach is to map parallel for to a single GPU thread and use simd
to create parallelism within the warp/wavefront. OpenMP explicitly allows for
this flexibility in laying out the execution on the GPU, such that implementa-
tions can pick the best possible strategy.

Many compilers now have (partial) support for version 5.0 and version 5.1 of
the OpenMP API. In this work, we use only OpenMP offloading as we benchmark
GPU accelerators. For AMD GPUs, we rely on the AMD OpenMP compiler
(AOMP).

3.3 SYCL

SYCL [19] is an open standard for heterogeneous programming. It is developed
and maintained by the Khronos Group. Unlike other heterogeneous programming
models, SYCL does not introduce any custom syntax extensions or pragmas.
Instead, expresses heterogeneous data parallelism with pure C++. The latest
SYCL version is SYCL 2020, which relies on C++17. Originally, SYCL was
intended as a higher-level single-source model for OpenCL. This means that in
contrast to OpenCL, host and device code reside in the same source file in SYCL,
and are processed together by the SYCL compiler. Starting with SYCL 2020, a
generalized backend architecture was introduced that allows for other backends
apart from OpenCL. Backends used by current SYCL implementations include
OpenCL, Level Zero, CUDA, HIP and others.

While a more task-oriented model is available as well, SYCL currently
strongly focuses on data parallel kernels. The execution of these kernels is orga-
nized by a task graph that is maintained by the SYCL runtime. There are two
memory management models in SYCL: the buffer-accessor model and the unified
shared memory (USM) model.

In the buffer-accessor model, the SYCL runtime handles data transfers auto-
matically according to data access specifications given by the programmer. These
are also used by the SYCL runtime to automatically construct a task graph for
the execution of kernels. In the pointer-based USM model, the programmer is
responsible for correctly inserting dependencies between kernels and making sure
that data is available on the device when necessary. While the buffer-accessor
model may introduce overheads due to the evaluation of the access specifica-
tions and calculatation of kernel dependencies, if the scheduler receives detailed
information that can be used to optimize the task graph execution.

The execution model in SYCL is largely inherited from OpenCL. Parallel
work items are grouped into work groups, and synchronization is only possible
within a work group. Starting with SYCL 2020, work groups are additionally
subdivided into subgroups that are typically mapped to SIMD units. On GPUs,



84 G. S. Markomanolis et al.

a SYCL work group usually corresponds to a thread block from HIP or a team in
the OpenMP model. As such, the SYCL work-group size is a tuning parameter
as in those other models. In SYCL, multiple methods exist to invoke kernels. In
the simplest method, parallel for, the work groups are not exposed and, on
GPUs, a SYCL implementation automatically selects an appropriate work group
size. In the more complex nd range model, the user is responsible for choosing
an appropriate work group size.

There are multiple implementations of SYCL. The most well-known imple-
mentations include ComputeCpp [20], DPC++ [21], hipSYCL [22] and triSYCL
[23]. In this work, we will be using hipSYCL as it has mature support both
for the GPUs investigated in this work. hipSYCL consists of a multi-backend
runtime with support for CPUs and GPUs from AMD, NVIDIA and Intel, the
SYCL kernel and runtime header library, as well as a compiler component with
a unified compiler driver called syclcc. This compiler component is designed
to integrate with existing compiler toolchains. For example, when compiling for
NVIDIA and AMD GPUs, hipSYCL acts as an additional layer on top of CUDA
and HIP. During compilation, hipSYCL loads an additional clang plugin that
extends clang’s native HIP and CUDA support with support for SYCL-specific
constructs, such as automatic kernel detection and outlining. This design not
only allows a user to mix-and-match CUDA or HIP kernel code with SYCL code
even within one kernel, it also allows using vendor-supported toolchains with
hipSYCL since e.g. AMD’s official ROCm HIP compiler uses the same clang
HIP toolchain. Consequently, hipSYCL can be deployed on top of the AMD
HIP compiler.

3.4 OpenACC

OpenACC is a directive programming model for the GPUs that has evolved
significantly since its beginning. Initially, there were two options for OpenACC
support on LUMI. First, the HPE/Cray compiler supports only Fortran and
OpenACC version 2.7, with potential for up to v3.1 until end of 2022. Second,
the GNU compiler [24], which is not a contractual agreement. Thus, our guidance
is not recommending OpenACC without also mentioning these caveats.

For illustration, the following OpenACC directive uses a few clauses. The
gang clause corresponds to the thread blocks, while the worker clause is the
warp or wavefront, and vector is the threads:

#pragma acc parallel loop \
copyin(A[:N]) copyout(B[:N]) \
vector_length () gang worker num_workers ()
...

As GCC with offload to AMD MI100 GPUs is not focus on performance
this moment, but more to functionality, we do not report OpenACC results.
We mention though that GCC v10.3, v11.1, and later have fixed an issue that
GPU memory was cleaned too often and as a result the performance on NVIDIA
GPUs is improved by almost 30% for all BabelStream kernels except the dot



Evaluating GPU Programming Models for the LUMI Supercomputer 85

kernel for which the performance remained similar. Moreover, in the future we
plan to explore a research project called clacc [25,26] that provides OpenACC
support for Clang and LLVM. This will allow for simplified porting of OpenACC
codes to the OpenMP API (amongst other benefits).

3.5 Alpaka

The Abstraction Library for Parallel Kernel Acceleration (alpaka) [27] is imple-
mented as a header-only C++14 abstraction library for accelerator development
and portability. Originally developed to support large-scale scientific applications
like PIConGPU [28], alpaka enables an accelerator-agnostic implementation of
hierarchical redundant parallelism, that is, the API allows a user to specify data
and task parallelism at multiple levels of compute and memory for a particular
platform. Currently, alpaka provides support for backends for OpenMP, (C++)
threads, Intel Threading Building Blocks, CUDA, HIP, and SYCL for FPGA
along with new backends for directives in development.

Alpaka code can be used to express hierarchical parallelism for both CPU-
style and GPU devices. In addition to grids, blocks, and threads, alpaka also
provides an element construct that represents an n-dimensional set of inputs
that is amenable to vectorization by the compiler. This extra level of parallelism
is key to achieve good performance when attempting to map GPU-style kernels
to a CPU architectures that offer SIMD instructions as part of their instruction
set architecture.

In addition to the optimized kernels via alpaka, users can also use the C++
User interface for the Platform independent Library Alpaka (cupla) [29] to port
CUDA code to use the alpaka library. Cupla codes have a very similar syntax
to regular CUDA kernels and can include calls to the CUDA API for data allo-
cation and movement. While cupla introduces some host-side API call overhead
compared to pure alpaka, it provides a suitable path to map existing codes to
alpaka’s supported backends.

3.6 Kokkos

The Kokkos [30] C++ Performance Portability Ecosystem is a framework for
writing modern C++ applications with portability across a variety of hardware.
It is part of the Exascale Computing Project (ECP) and is used by many HPC
users and packages. It supports several backends, such as CUDA, HIP, SYCL,
and OpenMP offloading to target various accelerators, including NVIDIA and
AMD GPUs.

The Kokkos abstraction layer maps C++ source code to the specific instruc-
tions required for the backend during build time. When compiling the source
code, the binary will be built for the declared backends:

– Serial backend, for serial code on a host device.
– Host-parallel backend, which executes in parallel on the host device (OpenMP

API, etc.).
– Device-parallel backend, which offloads on a device, such as a GPU.



86 G. S. Markomanolis et al.

4 Choosing a Programming Model

Figures 1 and 2 present the porting diagrams of potential codes targeting the
LUMI system. Initially, developers make a decision based on whether the code
is already able to use a GPU or not. If not (see Fig. 1), there is an option for the
developer to try various programming models such as SYCL, Alpaka, or Kokkos
if the application’s programming language is supported. Expert developers could
port their code directly to HIP, identifying the kernels and preparing them sim-
ilarly to CUDA. If the code does not have OpenMP directives, a tool such as
Cray Reveal could be used to port the code to the OpenMP API. This procedure
can be more productive for Fortran applications, and it could be expanded to
the rest main programming languages later. Then the developer can manually
port the OpenMP CPU code to user OpenMP target directives.

Then, a standard software tuning cycle can kick in. If the performance is not
as expected and desired, then developers profile and tune the OpenMP directives,
especially avoiding unnecessary data transfers. This cycle repeats until the prob-
lem is solved and the code works as expected. Otherwise, some OpenMP offload
regions can be ported to HIP to expose more control over kernel execution. It
should be mentioned that at the time of writing, the OpenMP implementation
of AMD is composable with the HIP API, but requires to keep OpenMP code
and HIP code in separate compilation units. If the code is in C/C++, then pro-
file, identify the kernels, and port to HIP. If the code is CUDA Fortran, then
it is required to use a Fortran interface for GPU kernels, called hipfort [31], to
port the code to HIP. The developers could also use OpenACC instead of the
OpenMP API once the compilers are available, but it depends on whether the
applications are already using OpenMP directives or not, and what preference
for the programming model is.

If the application is already ported to a GPU (see Fig. 2) there is a possibility
to use the programming models such as SYCL, Alpaka, etc. If the initial appli-
cation is developed in OpenACC, there are three options that are divided into
sub-categories. First of all the Cray compilers are supporting only Fortran codes.
LUMI is an HPE supercomputer, which means there is contractual engagement
on the availability of some programming models. On the other side, the GCC
efforts were mentioned in the OpenACC section before. Finally, the research
projects such as Clacc, and Flacc which provides OpenACC support for Flang,
are not yet in the final state. If the performance with any of the previous solu-
tions is not good, then port the OpenACC calls to OpenMP to investigate the
performance and tune the code.

If the GPU code is written in CUDA, and if it is C/C++ code it could be
ported with the HIPify tools, while if it is in CUDA Fortran, then the hipfort
should be used as also described in Sect. 3.1. Finally, if the performance is not
as expected, a similar software tuning cycle is used to resolve the issue.



Evaluating GPU Programming Models for the LUMI Supercomputer 87

5 Benchmarks and Applications

5.1 BabelStream

BabelStream [32,33] is a memory bound benchmark with many programming
models implemented. There are five computational kernels that we are using,
the add (a[i] = b[i] + c[i]), multiply (a[i] = b ∗ c[i]), copy (a[i] = b[i]), triad
(a[i] = b[i] + d ∗ c[i]), and dot (sum = sum + a[i] ∗ b[i]). The default problem
size is 225 FP64 operations and 100 iterations. We are evaluating BabelStream
v3.4 (6fe81e1). We developed the Alpaka backend for BabelStream for which we
present some results in this paper.

Fig. 1. Diagram for porting CPU applications to LUMI



88 G. S. Markomanolis et al.

5.2 MiniBUDE

We use also the mini-app called miniBUDE for the Bristol University Docking
Engine (BUDE) [34], a kernel of a drug discovery application that is compute
bound and provides performance results in single precision. BUDE is designed
for in silico molecular docking. In the computationally intensive virtual screen-
ing, molecules of drug candidates, known as ligands, are bonded to target protein
molecule. BUDE predicts the binding energy of the ligand with the target, how-
ever, there are many ways this bonding could happen, and a variety of positions
and rotations of the ligand relative to protein, known as poses, are explored.
And for each pose, a number of properties are evaluated. We are evaluating the
version with commit 1af5b39.

Fig. 2. Diagram for porting GPU applications to LUMI

Both BabelStream and miniBUDE support many programming models such
as HIP, CUDA, OpenMP Offloading, SYCL, OpenACC, Kokkos.

6 Methodology

6.1 Compilation

For the compilation, we used the provided instructions from the benchmark and
application. For the miniBUDE, we had some concerns about our installation



Evaluating GPU Programming Models for the LUMI Supercomputer 89

that we will discuss later as we could not achieve the expected performance but
we had no issue with the BabelStream.

6.2 Execution and Tuning

We save the data from ten executions (in the same submission script, so using the
same compute nodes). We then visualize the results in a box plot to determine
variations and to ensure sure that our observations are correct. As our runs do
not include MPI, we try to investigate if binding the processes helps in some
cases or trying to have a process as close to the GPU as possible, but for our
cases, we did not observe any significant improvement. We tune where possible
by adjusting the number of the thread blocks to be a multiple of the number
of compute units for the MI100 or streaming multiprocessors for V100/A100
GPUs.

7 Results

7.1 Configuration

We plan to utilize a single GPU, as we do not want to interfere with MPI
performance evaluation in this work. CSC provides two supercomputers called
Puhti and Mahti. The AMD Accelerator Cloud is a remote, heterogeneous system
provided by AMD. Technical details about the GPUs specifications are presented
in Table 2.

The Puhti [35] supercomputer at CSC, is constituted by 682 CPUs and 80
GPU nodes. Each GPU node has two Intel Xeon Gold 6230 processors with
20 cores each, and four NVIDIA V100 with 32GB HBM2 memory each. The
interconnect is based on a dual-rail Mellanox HDR100 fabric.

The Mahti [36] supercomputer has 1404 CPUs and 24 GPU nodes. Each
GPU node has two AMD EPYCTM 7H12 Processors (“Rome”) with 64 cores
each, four NVIDIA A100 with 40 GB HBM2 memory for each one, and a total
of 512 GB of memory.

Table 2. List of utilized GPU architectures and specifications

Vendor Model HBM Memory (GB) MemoryBandwidth (GB/s) Threads Peak FP64 (TFLOPS) Peak FP32 (TFLOPS)

NVIDIA V100 32 900 5,120 7.8 15.7

NVIDIA A100 40 1,555 6,912 9.7 19.5

AMD MI100 32 1,200 7,680 11.5 23.1

The AMD Accelerator Cloud offers different GPU options. We used a
node with two AMD EPYC 7742 Processors and four AMD Instinct MI100
accelerators.

In Table 3 we mention the compilers/software for each system that partici-
pated in our study and their versions.



90 G. S. Markomanolis et al.

7.2 BabelStream

In this subsection we present the results from the BabelStream and do compar-
isons between GPUs.

Versions and Generic Tuning

We mention some software versions and generic tuning that applies in most of
the kernels below. If a kernel has a different tuning, it will be mentioned in the
corresponding kernel. About HIP, we decrease the number of threads per block
to 256 instead of 1024, and achieve on average a performance improvement of
up to 28% than using the default number of threads. The AMD MI100 has 120
compute units, thus when the blocks of threads are a multiple of 120, are usually
more efficient for this GPU because we hide the latency cost. It is known that
the AOMP is under heavy development to achieve better performance. We work
with one of the latest AOMP versions instead of building the LLVM from the
provided AMD GitHub repository through ROCm, as the AOMP is closer to
production. Moreover, according to our tests, all the kernels perform around
5% better between AOMP 13.x and AOMP 12.x except the dot kernel that it
is improved with a factor of 2.7. One of the reasons is also that AOMP 13.x
creates automatically two times more block of threads compared to version 12.x,
including the AOMP performance improvements and the utilization of LLVM
13. A table which displays the range of the percentage of speedup of MI100 over
V100 or the slowness of MI100 over A100 will be presented for each kernel. For
all the experiments, hipSYCL uses HIP as backend for AMD GPUs and CUDA
for NVIDIA GPUs. Finally, we developed the Alpaka backend for BabelStream
[37].

Table 3. List of compilers

Compiler/Software Version System

AOMP 13.0-4-4 AMD accelerator cloud

LLVM 13.0.0 AMD accelerator cloud

ROCM/HIP 4.2 AMD accelerator cloud

NVIDIA HPC SDK 21.7 Puhti, Mahti

GCC devel/omp/gcc-
10
(6b88ea4)

Puhti

hipSYCL 0.9.1 (c759aac1d) Puhti, Mahti, AMD
accelerator cloud

Kokkos 3.4.1 Puhti, Mahti, AMD
accelerator cloud

Alpaka (cupla) commit 287deace Puhti, Mahti, AMD
accelerator cloud



Evaluating GPU Programming Models for the LUMI Supercomputer 91

Copy Kernel

Figure 3 demonstrates the results from the Copy kernel of the BabelStream
across many programming models. On the x-axis are the names of the program-
ming models and on the y-axis the bandwidth in GB/s is depicted. However,
as we plot the boxplots, we split the y-axis in order to be able to visualize the
plots more clearly. On each y-axis range, there are results only from a specific
GPU whose name is mentioned on the right y-axis. In Table 4, we present in the
three first rows the peak performance (in %) based on the best programming
model and the last two rows demonstrate the percentage range of the differences,
either slower for MI100 vs A100 or faster for MI100 vs V100. We observe that
for all the GPUs, the HIP/CUDA programming models achieve the highest per-
formance. Although the OpenMP performance seems to be close to the CUDA’s
one, thanks to efficient NVHPC compiler, the AMD OpenMP based on LLVM
is not performing similar to HIP for this pattern. The default Kokkos imple-
mentation in BabelStream does not provide tuning options, however, we observe
that for MI100 its results are close to not tuned HIP. Finally, hipSYCL has a
variation on A100 which is less than 2%, and Alpaka achieves a performance
similar to HIP for the MI100.

Fig. 3. Results of BabelStream for copy kernel across the programming models on
AMD MI100, and NVIDIA V100/A100



92 G. S. Markomanolis et al.

Table 4. Copy kernel results, percentage peak and comparison (%)

HIP/CUDA OpenMP Kokkos hipSYCL Alpaka

A100 100 98.5 96.3 97.53 97.3

MI100 100 92.6 99 97.8 99.99

V100 100 97.95 89.01 98.4 98.2

MI100 slower
than A100

28.5–29.25 33–34 25.29–26.79 28.74–29.79 26.14–26.78

MI100 faster
than V100

22.5–23 14.9–15.9 36.2–37.1 20.67–21.42 25.75–25.93

Multiply Kernel

We plot the results for the Multiply kernel in Fig. 4 and present the peak perfor-
mance and the comparison in the Table 5. For MI100, most of the programming
models achieve 96.63% and above except OpenMP, while for A100 all the pro-
gramming models perform close to the peak, however, for V100, the not tuned
Kokkos underperforms. For MI100, most programming models perform 21.6–
37.8% faster than V100, except OpenMP, and similarly, MI100 is 25–31% slower
than A100. For some cases there is variation up to 4.5% on A100 where for the
moment we have not identified a specific reason as for all the cases we use a
dedicate single node. However, it could be considered as execution variation.

Fig. 4. Results of BabelStream for mul kernel across the programming models on AMD
MI100 and NVIDIA V100/A100



Evaluating GPU Programming Models for the LUMI Supercomputer 93

Table 5. Multiply kernel results, percentage peak and comparison (%)

HIP/CUDA OpenMP Kokkos hipSYCL Alpaka

A100 100 99.59 97.75 97.63 99.99

MI100 100 93.98 99.07 96.63 99.95

V100 100 98.54 89.52 98.39 99.90

MI100 slower
than A100

26.16–26.78 30.4–30.98 24.92–25.79 26.99–27.57 26.96–27.44

MI100 faster
than V100

23.8–24.74 17.8–18.6 37.0–37.8 21.6–22.22 21.74–24.52

Add Kernel

We plot the results for the Add kernel in Fig. 5 and present the peak performance
and the comparison in the Table 6. The performance of Alpaka programming
model is quite close to HIP/CUDA for all the devices with hipSYCL following,
and the OpenMP is less efficient on the MI100 compared to the rest GPUs.
Finally, Kokkos, seems to be between Alpaka and hipSYCL, regarding the per-
formance.

Fig. 5. Results of BabelStream for add kernel across programming models on AMD
MI100 and NVIDIA V100/100



94 G. S. Markomanolis et al.

Table 6. Add kernel results, percentage peak and comparison (%)

HIP/CUDA OpenMP Kokkos hipSYCL Alpaka

A100 100 99.80 97.6 97.70 99.99

MI100 100 94.52 98.92 97.06 99.99

V100 100 97.91 99.90 98.93 99.93

MI100 slower
than A100

28.55–28.86 32.46–32.86 29.44–29.78 29.27–29.54 28.91–29.19

MI100 faster
than V100

18.94–21.55 14.74–17.58 17.76–20.08 16.55–18.88 19.20–21.60

Triad Kernel

We plot the results for the Triad kernel in Fig. 6 and present the peak perfor-
mance and the comparison in the Table 7. For this kernel Alpaka performs equally
to HIP/CUDA, with following Kokkos, and then hipSYCL and OpenMP.

Fig. 6. Results of BabelStream for triad kernel across programming models on AMD
MI100 and NVIDIA V100/A100

Dot Kernel

We plot the results for the Dot kernel in Fig. 7 and present the peak performance
and the comparison in the Table 8. In the first segment of V100, we have also a



Evaluating GPU Programming Models for the LUMI Supercomputer 95

Table 7. Triad kernel results, percentage peak and comparison (%)

HIP/CUDA OpenMP Kokkos hipSYCL Alpaka

A100 100 99.78 99.72 97.77 99.89

MI100 100 94.62 98.83 97.30 99.94

V100 100 98.82 99.86 98.80 99.69

MI100 slower
than A100

28.93–29.31 32.6–32.81 29.52–29.87 29.21–29.57 28.91–29.19

MI100 faster
than V100

18.63–21.25 13.47–16.40 17.79–20.13 17.00–19.25 19.02–21.61

plot of MI100 for hipSYCL as they were too close these values. MI100 GPU is
around 2.69–14.62% faster than NVIDIA V100 except for OpenMP, and 28.00–
69.69% slower than A100. The OpenMP on MI100 does not perform efficiently
for the reduction pattern, and Kokkos is not optimized but it is quite close to
non-optimized HIP version. For HIP/CUDA; We define 216 blocks of threads
for the A100, as it has 108 streaming multiprocessors, and improved the dot
kernel performance by 8–10%. For hipSYCL; we utilize 960 blocks of threads
and 256 threads per block to achieve around 8% faster than the default values.
For Alpaka; we are able to tune also the dot kernel with 720 blocks of threads for
MI100 and improve its performance by 28% comparing to the default settings.

Table 8. Dot kernel results, percentage peak and comparison (%)

HIP/CUDA OpenMP Kokkos hipSYCL Alpaka

A100 100 96.77 84.43 94.63 98.52

MI100 100 42.16 74.40 89.53 99.99

V100 100 96.5 72.87 96.95 99.38

MI100 slower
than A100

29.09–29.84 68.7–69.69 37.19–38.43 32.67–33.65 28.00–28.62

MI100 faster
than V100

10.80–11.86 –51.06 -
(–51.513)

12.60–14.62 2.69–3.38 11.80–12.59

Summary

We can observe that based on the hardware performance AMD MI100 performs
faster than NVIDIA V100 and slower than NVIDIA A100. The peak band-
width percentage for the OpenMP programming model is 42.16%–94.68% for
MI100 while it is at least 96% for the NVIDIA GPUs which demonstrates that
AOMP needs further development. For Kokkos, the range is 74–99% for MI100,
72.87–99% for the NVIDIA GPUs, where the non-optimized version has lower



96 G. S. Markomanolis et al.

Fig. 7. Results of BabelStream with Kokkos HIP backend on AMD MI100 and NVIDIA
V100/A100

performance mainly on MI100 and V100. hipSYCL achieves at least 96% of the
HIP/CUDA performance except for MI100 and dot kernel that achieves 89.53%.
Finally, Alpaka achieves at least 97.2% for all the cases and demonstrates its per-
formance. The OpenMP compiler performs better for NVIDIA GPUs regarding
dot kernel, however, the version that we used for AMD GPUs, is not the final
product yet. The Kokkos results regarding the dot kernel are not optimized, we
did not modify the execution policy and, we tried to use the default code and
change only specific values, thus the low percentage. Also this demonstrates that
some tuning are not so straight forward for Kokkos. Overall, the Alpaka perfor-
mance is quite close to HIP, followed by hipSYCL and Kokkos, while OpenMP
can perform slower depending on the kernel. We have to mention that all the
remaining programming models except the OpenMP utilize HIP or CUDA as
backend. The OpenMP Offloading for AMD GPUs has a potential to improve
in the future as it is under development.
Finally, we should mention that we can observe that various programming mod-
els could have similar performance on the same GPU with some variation except
OpenMP for some cases and Kokkos because is not optimized for some specific



Evaluating GPU Programming Models for the LUMI Supercomputer 97

cases. Overall, the tuning is not difficult if the developer is aware of the archi-
tecture and the programming model. Also, the utilization of each programming
model depends on the experience of the developer, and the programming lan-
guage as it was presented in the porting workflow.

7.3 MiniBUDE

Large problem sizes for miniBUDE are required to be able to saturate the GPUs.
For every experiment, we execute 8 iterations with 983040 poses. We calculate
this number by tuning for AMD MI100, however, this value achieves peak per-
formance on the NVIDIA GPUs also with minimal variance of 1–2% and we
decided to use the same workload for all the devices. The miniBUDE provides in
the output the single precision GFLOP/s, and we observe in the Fig. 8 that the
AMD MI100 GPU achieves a performance close to A100 by 2% and around 26%
over V100. As the benchmark does not use tensor cores or other features, the
peak performance is based on the FP32 capabilities of the GPUs. Thus, AMD
MI100 is on average 1.25 times faster than NVIDIA V100, and 0.018 times slower
than NVIDIA A100 for single precision using miniBUDE. For the moment, the
other programming models do not perform very well, and we are still investi-
gating the reasons. The code varies a bit between the programming models and
the performance is significantly worse, thus we can not identify yet why both
hipSYCL and Kokkos perform lower than HIP while using HIP for backend.
Moreover, the Alpaka version for miniBUDE is under preparation. Regarding
single precision, we tested also the mixbench [38,39] benchmark and the MI100
was 1.16 times faster than A100, achieving both close to their peak performance.

Fig. 8. Results of miniBUDE on various GPUs for HIP and CUDA



98 G. S. Markomanolis et al.

8 Conclusion and Future Work

In this paper, we present a methodology for porting applications to LUMI super-
computer, an AMD GPU-based system. As we expect many users to utilize
LUMI, we are getting ready for a variety of porting scenarios. We benchmark
various programming models to understand how they perform, how efficient they
are, and which ones to propose to our future users. Thus, we do a performance
comparison between AMD MI100, NVIDIA V100, and A100. We utilize a bench-
mark and a mini-app, which are memory and compute-bound respectively. We
illustrate how various programming models perform on these GPUs and what
techniques can improve the performance for specific cases. We discuss the lack of
performance on some aspects of OpenMP, how to tune some programming mod-
els based on the targeted hardware and we verify the results. Moreover, the single
precision mini-app demonstrates how similar performance to NVIDIA A100 has
the AMD MI100 when not utilizing tensor cores. Overall, HIP/CUDA perform
quite good and most of the programming models are quite close, depending
on the kernel pattern. Depending on your experience, the programming lan-
guage, and the kernel, you could leverage many of the programming models and
always compare with the peak performance. Finally, programming models such
as Alpaka and hipSYCL could be utilized as they support many backends, are
portable and for many kernels they provide similar performance to HIP. All the
scripts and the results are provided in [40] for reproducibility purposes.

For future work, we plan to identify what the issue with some programming
models and miniBUDE is. We want to analyze the OpenACC performance from
the GCC and Cray Fortran compiler, amongst tuning further the programming
models, and to test the new functionalities from the ROCm platform such as Het-
erogeneous Memory Management (HMM). We envision evaluating multi-GPU
benchmarks and their scalability across multiple nodes. By using LUMI we will
be able to use the MI250X GPU and compare it with the current GPU genera-
tion. Finally, we are interested in benchmarking I/O from the GPUs memory as
we have already hipified Elbencho [41] benchmark and a few applications could
have significant I/O bottlenecks but we plan to benchmark them when LUMI is
available as its architecture is much different to the available systems.

Acknowledgement. We want to thank CSC - IT Center for Science Ltd. for the
access to Puhti and Mahti supercomputers. Tomas Tobias from Siemens for the discus-
sions about GCC and LLVM. Finally, thank to Simon McIntosh-Smith and Wei-Chen
Lin from University of Bristol for providing the necessary files to create new input
problem sizes for miniBUDE.

This work was partly funded by the Center for Advanced Systems Understanding
(CASUS) that is financed by Germany’s Federal Ministry of Education and Research
(BMBF) and by the Saxon Ministry for Science, Culture and Tourism (SMWK) with
tax funds on the basis of the budget approved by the Saxon State Parliament.

Copyright 2021 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD
Arrow logo, EPYC, and Instinct and combinations thereof are trademarks of Advanced
Micro Devices, Inc. Other product names used in this publication are for identification
purposes only and may be trademarks of their respective companies.



Evaluating GPU Programming Models for the LUMI Supercomputer 99

References

1. CSC LUMI supercomputer. https://www.lumi-supercomputer.eu/lumis-full-
system-architecture-revealed/

2. Frontier web page. https://www.olcf.ornl.gov/frontier/
3. NVIDIA. CUDA. https://developer.nvidia.com/about-cuda
4. Stone, J.E., Gohara, D., Shi, G.: OpenCL: a parallel programming standard for

heterogeneous computing systems. In: Computing in Science & Engineering, vol.
12, no. 3, pp. 66–73, May-June 2010. https://doi.org/10.1109/MCSE.2010.69

5. OpenMP Architecture Review Board. OpenMP Application Programming Inter-
face, version 4.0. https://openmp.org/40pdf

6. OpenACC Specification 3.0. https://www.openacc.org/sites/default/files/inline-
images/Specification/OpenACC.3.0.pdf

7. Davis, J.H., Daley, C., Pophale, S., Huber, T., Chandrasekaran, S., Wright, N.J.:
Performance assessment of OpenMP compilers targeting NVIDIA V100 GPUs. In:
Bhalachandra, S., Wienke, S., Chandrasekaran, S., Juckeland, G. (eds.) WACCPD
2020. LNCS, vol. 12655, pp. 25–44. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-74224-9 2

8. Poenaru, A., Lin, W.-C., McIntosh-Smith, S.: A performance analysis of modern
parallel programming models using a compute-bound application. In: 36th Inter-
national Conference, ISC High Performance 2021, Frankfurt, Germany (2021)

9. Khalilov, M., Timoveev, A.: Performance analysis of CUDA, OpenACC and
OpenMP programming models on TESLA V100 GPU. In: Journal of Physics:
Conference Series, vol. 1740 (2021)

10. Deakin, T., McIntosh-Smith, S.: Evaluating the performance of HPC-style SYCL
applications. In: Proceedings of the International Workshop on OpenCL (2020)

11. Deakin, T., et al.: Performance portability across diverse computer architec-
tures. In: 2019 IEEE/ACM International Workshop on Performance, Portability
and Productivity in HPC (P3HPC), pp. 1–13 (2019). https://doi.org/10.1109/
P3HPC49587.2019.00006

12. AMD. ROCm Platform. https://github.com/RadeonOpenCompute/ROCm
13. AMD. ROCm Documentation. https://rocmdocs.amd.com/en/latest/
14. AMD. HIP. https://github.com/ROCm-Developer-Tools/HIP
15. AMD. HIPify Tools. https://github.com/ROCm-Developer-Tools/HIPIFY
16. AMD. HIP Porting Guide. https://github.com/RadeonOpenCompute/ROCm

Documentation/blob/master/Programming Guides/HIP-porting-guide.rst
17. CSC. Porting GPU Codes to HIP. https://github.com/csc-training/hip
18. de Supinski, B.R., et al.: The ongoing evolution of OpenMP. In: Proceedings of the

IEEE, vol. 106, no. 11, pp. 2004–2019, November 2018
19. Khronos Group. SYCL 2020 Specification. https://www.khronos.org/registry/

SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
20. Codeplay Software. ComputeCpp. https://www.codeplay.com/solutions/

ecosystem/
21. Intel Corporation. SYCL* Compiler and Runtimes. https://github.com/intel/llvm
22. Alpay, A., Heuveline, V.: SYCL beyond OpenCL: the architecture, current state

and future direction of hipSYCL. In: Proceedings of the International Workshop on
OpenCL (IWOCL 2020), Association for Computing Machinery, New York, Article
vol. 8, no. 1 (2020). https://github.com/illuhad/hipSYCL

23. triSYCL. https://github.com/trisycl/trisycl

https://www.lumi-supercomputer.eu/lumis-full-system-architecture-revealed/
https://www.lumi-supercomputer.eu/lumis-full-system-architecture-revealed/
https://www.olcf.ornl.gov/frontier/
https://developer.nvidia.com/about-cuda
https://doi.org/10.1109/MCSE.2010.69
https://openmp.org/40pdf
https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC.3.0.pdf
https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC.3.0.pdf
https://doi.org/10.1007/978-3-030-74224-9_2
https://doi.org/10.1007/978-3-030-74224-9_2
https://doi.org/10.1109/P3HPC49587.2019.00006
https://doi.org/10.1109/P3HPC49587.2019.00006
https://github.com/RadeonOpenCompute/ROCm
https://rocmdocs.amd.com/en/latest/
https://github.com/ROCm-Developer-Tools/HIP
https://github.com/ROCm-Developer-Tools/HIPIFY
https://github.com/RadeonOpenCompute/ROCm_Documentation/blob/master/Programming_Guides/HIP-porting-guide.rst
https://github.com/RadeonOpenCompute/ROCm_Documentation/blob/master/Programming_Guides/HIP-porting-guide.rst
https://github.com/csc-training/hip
https://www.khronos.org/registry/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://www.khronos.org/registry/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://www.codeplay.com/solutions/ecosystem/
https://www.codeplay.com/solutions/ecosystem/
https://github.com/intel/llvm
https://github.com/illuhad/hipSYCL
https://github.com/trisycl/trisycl


100 G. S. Markomanolis et al.

24. ORNL and Mentor Graphics. https://www.olcf.ornl.gov/2020/09/03/oak-ridge-
leadership-computing-facility-fosters-gcc-compiler-development-with-mentor-
contract/

25. Denny, J.E., Lee, S. and Vetter, J.S.: Clacc: translating OpenACC to OpenMP in
clang. In: 2018 IEEE/ACM 5th Workshop on the LLVM Compiler Infrastructure
in HPC. LLVM-HPC), Dallas, TX, USA (2018)

26. Clacc. https://github.com/llvm-doe-org/llvm-project/tree/clacc/main
27. Zenker, E., et al.: Alpaka-an abstraction library for parallel kernel acceleration. In:

2016 IEEE International Parallel and Distributed Processing Symposium Work-
shops (IPDPSW), pp. 631–640, May 2016

28. Bussmann, M., et al.: Radiative signature of the relativistic kelvin-helmholtz insta-
bility. In: SC 2013: Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis, pp. 1–12 (2013)

29. René, W., Sergei, B., Simeon, E., Jeffrey, K., Jan, S.: Cupla - C++ User interface
for the Platform Independent Library alpaka. https://rodare.hzdr.de/record/1103

30. Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: enabling manycore perfor-
mance portability through polymorphic memory access patterns. J Parall. Distrib.
Comput. 74, 3202–3216 (2014). https://doi.org/10.1016/j.jpdc.2014.07.003

31. AMD. hipfort. https://github.com/ROCmSoftwarePlatform/hipfort
32. Deakin, T., Price, J., Martineau, M., McIntosh-Smith, S.: GPU-STREAM v2.0:

benchmarking the achievable memory bandwidth of many-core processors across
diverse parallel programming models. In: Paper presented at P̂ MA Workshop at
ISC High Performance, Frankfurt, Germany (2016). https://doi.org/10.1007/978-
3-319-46079-6 34

33. Tom, D., Simon, M.-S.: BabelStream. https://github.com/UoB-HPC/
BabelStream

34. miniBUDE. https://github.com/UoB-HPC/miniBUDE/
35. CSC. Puhti Supercomputer. https://docs.csc.fi/computing/systems-puhti/
36. CSC. Mahti Supercomputer. https://docs.csc.fi/computing/systems-mahti/
37. CUPLA BabelStream Fork, v3.4-alpaka release https://github.com/jyoung3131/

BabelStream/releases/tag/v3.4-alpaka
38. Konstantinidis, E., Cotronis, Y.: A quantitative roofline model for GPU kernel

performance estimation using micro-benchmarks and hardware metric profiling. J.
Parall. Distrib. Comput. 107, 37–56 (2017)

39. Mixbench. https://github.com/ekondis/mixbench
40. Reproduce the results of the paper Evaluating GPU Programming Models for the

LUMI Supercomputer. https://zenodo.org/record/6307447
41. Elbencho. https://github.com/breuner/elbencho

https://www.olcf.ornl.gov/2020/09/03/oak-ridge-leadership-computing-facility-fosters-gcc-compiler-development-with-mentor-contract/
https://www.olcf.ornl.gov/2020/09/03/oak-ridge-leadership-computing-facility-fosters-gcc-compiler-development-with-mentor-contract/
https://www.olcf.ornl.gov/2020/09/03/oak-ridge-leadership-computing-facility-fosters-gcc-compiler-development-with-mentor-contract/
https://github.com/llvm-doe-org/llvm-project/tree/clacc/main
https://rodare.hzdr.de/record/1103
https://doi.org/10.1016/j.jpdc.2014.07.003
https://github.com/ROCmSoftwarePlatform/hipfort
https://doi.org/10.1007/978-3-319-46079-6_34
https://doi.org/10.1007/978-3-319-46079-6_34
https://github.com/UoB-HPC/BabelStream
https://github.com/UoB-HPC/BabelStream
https://github.com/UoB-HPC/miniBUDE/
https://docs.csc.fi/computing/systems-puhti/
https://docs.csc.fi/computing/systems-mahti/
https://github.com/jyoung3131/BabelStream/releases/tag/v3.4-alpaka
https://github.com/jyoung3131/BabelStream/releases/tag/v3.4-alpaka
https://github.com/ekondis/mixbench
https://zenodo.org/record/6307447
https://github.com/breuner/elbencho


Evaluating GPU Programming Models for the LUMI Supercomputer 101

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Evaluating GPU Programming Models for the LUMI Supercomputer
	1 Introduction
	2 Related Work
	3 Programming Models
	3.1 HIP
	3.2 The OpenMP Application Programming Interface
	3.3 SYCL
	3.4 OpenACC
	3.5 Alpaka
	3.6 Kokkos

	4 Choosing a Programming Model
	5 Benchmarks and Applications
	5.1 BabelStream
	5.2 MiniBUDE

	6 Methodology
	6.1 Compilation
	6.2 Execution and Tuning

	7 Results
	7.1 Configuration
	7.2 BabelStream
	7.3 MiniBUDE

	8 Conclusion and Future Work
	References




