Skip to main content

Critical Points Properties of Ordinary Differential Equations as a Projection of Implicit Functions Using Spatio-temporal Taylor Expansion

  • Conference paper
  • First Online:
Book cover Computational Science and Its Applications – ICCSA 2022 (ICCSA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13376))

Included in the following conference series:

  • 535 Accesses

Abstract

This contribution describes a new approach to formulation of ODE and PDE critical points using implicit formulation as t-variant scalar function using the Taylor expansion. A general condition for the critical points is derived and specified for t invariant case. It is expected, that the given new formulae lead to more reliable detection of critical points especially for large 3D fluid flow data acquisition, which enable high 3D vector compression and their representation using radial basis functions (RBF).

In the case of vector field visualization, e.g. fluid flow, electromagnetic fields, etc., the critical points of ODE are critical for physical phenomena behavior.

Research supported by the University of West Bohemia - Institutional research support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It should be noted that in the case of the PDE the coordinates\(\mathbf {x}\) are as sumed to be time independent.

References

  1. Agoston, M.: Computer Graphics and Geometric Modelling: Implementation & Algorithms. Computer Graphics and Geometric Modeling, Springer, London (2005). https://doi.org/10.1007/b138805

  2. Biancolini, M.: Fast Radial Basis Functions for Engineering Applications. Springer ,Cham (2018). https://doi.org/10.1007/978-3-319-75011-8

  3. Bronson, R., Costa, G.B.: Matrix Methods: Applied Linear Algebra. Academic Press, Boston (2009)

    MATH  Google Scholar 

  4. Drake, K., Fuselier, E., Wright, G.: A partition of unity method for divergence-free or curl-free radial basis function approximation. SIAM J. Sci. Comput. 43(3), A1950–A1974 (2021). https://doi.org/10.1137/20M1373505

    Article  MathSciNet  MATH  Google Scholar 

  5. Goldman, R.: Curvature formulas for implicit curves and surfaces. Comput. Aid. Geomet. Des. 22(7 SPEC. ISS.), 632–658 (2005). https://doi.org/10.1016/j.cagd.2005.06.005

  6. Goldman, R., Sederberg, T., Anderson, D.: Vector elimination: a technique for the implicitization, inversion, and intersection of planar parametric rational polynomial curves. Comput. Aid. Geomet. Des. 1(4), 327–356 (1984). https://doi.org/10.1016/0167-8396(84)90020-7

    Article  MATH  Google Scholar 

  7. Helman, J., Hesselink, L.: Representation and display of vector field topology in fluid flow data sets. Computer 22(8), 27–36 (1989). https://doi.org/10.1109/2.35197

    Article  Google Scholar 

  8. Huang, Z.B., Fu, G.T., Cao, L.j., Yu, M., Yang, W.B.: A parallel high-precision critical point detection and location for large-scale 3D flow field on the GPU. J. Supercomput. 78(7), 9642–9667 (2022). https://doi.org/10.1007/s11227-021-04220-6

  9. Kabel, A.: Maxwell-Lorentz equations in general Frenet-Serret coordinates. In: Proceedings of the 2003 Particle Accelerator Conference. vol. 4, pp. 2252–2254 (2003). https://doi.org/10.1109/PAC.2003.1289082

  10. Kim, K.R., Kim, P.T., Koo, J.Y., Pierrynowski, M.R.: Frenet-Serret and the estimation of curvature and torsion. IEEE J. Select. Topics Signal Process. 7(4), 646–654 (2013). https://doi.org/10.1109/JSTSP.2012.2232280

    Article  Google Scholar 

  11. Koch, S., Kasten, J., Wiebel, A., Scheuermann, G., Hlawitschka, M.: 2D Vector field approximation using linear neighborhoods. Visual Comput. 32(12), 1563–1578 (2015). https://doi.org/10.1007/s00371-015-1140-9

    Article  Google Scholar 

  12. Lebl, J.: Notes on Diffy Qs: Differential Equations for Engineers. CreateSpace Independent Publishing Platform (2021)

    Google Scholar 

  13. Scheuermann, G., Kruger, H., Menzel, M., Rockwood, A.P.: Visualizing nonlinear vector field topology. IEEE Trans. Visual. Comput. Graph. 4(2), 109–116 (1998). https://doi.org/10.1109/2945.694953

    Article  Google Scholar 

  14. Skala, V.: Efficient Taylor expansion computation of multidimensional vector functions on GPU. Ann. Math. Informat. 54, 83–95 (2021). https://doi.org/10.33039/ami.2021.03.004

  15. Skala, V., Smolik, M.: A new approach to vector field interpolation, classification and robust critical points detection using radial basis functions. Adv. Intell. Syst. Comput. 765, 109–115 (2019). https://doi.org/10.1007/978-3-319-91192-2_12

    Article  Google Scholar 

  16. Smolik, M., Skala, V.: Classification of critical points using a second order derivative. Procedia Comput. Sci. 108, 2373–2377 (2017). https://doi.org/10.1016/j.procs.2017.05.271

    Article  Google Scholar 

  17. Smolik, M., Skala, V.: Spherical RBF vector field interpolation: experimental study. In: SAMI 2017 - IEEE 15th International Symposium on Applied Machine Intelligence and Informatics, Proceedings, pp. 431–434 (2017). https://doi.org/10.1109/SAMI.2017.7880347

  18. Smolik, M., Skala, V.: Reconstruction of corrupted vector fields using radial basis functions. In: INFORMATICS 2019 - IEEE 15th International Scientific Conference on Informatics, Proceedings, pp. 377–382 (2019). https://doi.org/10.1109/Informatics47936.2019.9119297

  19. Smolik, M., Skala, V.: Radial basis function and multi-level 2d vector field approximation. Math. Comput. Simul. 181, 522–538 (2021). https://doi.org/10.1016/j.matcom.2020.10.009

    Article  MathSciNet  MATH  Google Scholar 

  20. Smolik, M., Skala, V., Majdisova, Z.: 3D vector field approximation and critical points reduction using radial basis functions. Int. J. Mech. 13, 100–103 (2019)

    Google Scholar 

  21. WiKi: Frenet-Serret-formulas (2022). https://en.wikipedia.org/wiki/Frenet%E2%80%93Serret_formulas. Accessed 18 Jan 2022

Download references

Acknowledgments

The author thanks to students and colleagues at the University of West Bohemia, Plzen and VSB-Technical University, Ostrava for their critical comments, discussions and especially to Michal Smolik for producing some images. Thanks belong also to the anonymous reviewers, as their comments and hints helped to improve this paper significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaclav Skala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Skala, V. (2022). Critical Points Properties of Ordinary Differential Equations as a Projection of Implicit Functions Using Spatio-temporal Taylor Expansion. In: Gervasi, O., Murgante, B., Hendrix, E.M.T., Taniar, D., Apduhan, B.O. (eds) Computational Science and Its Applications – ICCSA 2022. ICCSA 2022. Lecture Notes in Computer Science, vol 13376. Springer, Cham. https://doi.org/10.1007/978-3-031-10450-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10450-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10449-7

  • Online ISBN: 978-3-031-10450-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics