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ABSTRACT
This paper concerns the challenge to evaluate and predict a district vitality index (VI) over the years. There
is no standard method to do it, and it is even more complicated to do it retroactively in the last decades.
Although, it is essential to evaluate and learn features of the past to predict a VI in the future. This paper
proposes a method to evaluate such a VI, based on a k-mean clustering algorithm. The meta parameters of
this unsupervised machine learning technique are optimized by a genetic algorithm method. Based on the
resulting clusters and VI, a linear regression is applied to predict the VI of each district of a city. The weights
of each feature used in the clustering are calculated using a random forest regressor algorithm. This method
can be a powerful insight for urbanists and inspire the redaction of a city plan in the smart city context.

1 Introduction
Cities are constantly evaluating. Too often, several
districts in a city has been forgotten for years and
without warning, they are devitalized. It is often too
late to act. People and businesses are leaving this
district because of many factors such as the disuse of
the houses and the buildings, the bad economic ac-
tivities, the criminality rate, and so on. Even though
it is easy to note when a district is already devi-
talized, urbanists do not have some good tools to
predict which district will be devitalized, and when.
Historically, the firsts relevant publications were
made between 1960 and 1980. The works of Donald
Appleyard for instance with a study named "Styles
and methods of structuring a city" [4] was aiming
to explain different city patterns according to some
features like the level of education, the age, the sex
and so on. Having back then very few processing ca-
pacities, those works was preparing a new numeric
era for urbanism.
In the late 70s, a paper [21] introduced some concept
that will become a Geographical Information System
(GIS). There were many publications at the begin-
ning of the 80’s studying those new GIS. Muehrcke

in [25] made a good review of the literature at this
time. Since then, the GIS are a very useful tool to
every system that must manage geographical data.

The concept of smart city came later at the end of
the 90’s [12] [24]. One of the first smart city was
Singapore. Many others were following: Suwon,
Seoul (Korea), Taipei (Taiwan), Mikita (Japan),
Waterloo and Calgary (Canada), Glasgow (Scot-
land), New-York (USA) and Teheran (Iran), to
name a few [31]. There are mainly three new soft-
ware tools/technologies that allow smart cities to
progress: Big data, Internet of things (IoT) and ar-
tificial intelligence (AI). Talking about Big data and
IoT, a study [8] present the case of Santander, Spain.
A platform named "SmartSantander" has made this
city one of the most connected in the world, with
its 15,000 sensors (1,200 nodes) over its territory.
Many sensors are statics and some others are mobile
(mounted on some bus, taxis, or police cars, for in-
stance). A big data platform named "CiDAP" was
created especially for the city of Santander. Zam-
poglou et al. in [37] present a good review of those
useful technology for smart cities. Artificial intel-
ligence is also a must for intelligent cities. Ma-
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chine learning (ML) techniques like clustering [3]
[15] [13] [5], neural networks [27] [36], Bayesian net-
works [20] [23], cellular automata [9] [28] [36] and
genetic algorithms [14] [33] [18] are very useful in
this field. Learning from features of the past is the
main strength of ML. Clustering allows to regroup
similar features. Neural networks are useful to make
some non-linear regressions. Bayesian networks can
compute probabilities of some future event. Cellular
automata allow to simulate a two dimensions geo-
graphical map. Finally, genetic algorithms (GA) are
useful to optimize different types of configuration.
In the large spectrum of smart cities is the intelli-
gent urbanism [6] [29] [26] [35]. This specific part
of smart cities aims to help urbanists to read better
their city features and to predict how the urban ter-
ritory will change. There are some paper studying
different city district indexes. They all study some
geographical region and geolocalized features from
the past to predict what will happen in the future.
The case of Attica (Athens area) in which they pre-
dict urban growth was proposed in [15]. Their work
aims to presents an artificial intelligence approach
integrated with GIS for modeling urban evolution.
They use a fuzzy logic system using a c-means clus-
tering algorithm to divide the territory using fuzzy
frontiers. In this system, each geographical posi-
tion has a level of membership defined by a mem-
bership function [34]. The clusters represent a spe-
cific level of urban growth. This system also uses a
multilayers neural network (MNN) to learn and pre-
dict urban growth in the Attica area, by analyzing
population changes over time and by building pat-
terns. All the geographical data are managed by a
GIS. Amongst many features, 9 has been selected to
feed the system: population, population growth in
the decade, number of buildings, number of building
growth in the last decade, use of residential sector,
use of commercial sector, use of industrial sector,
use of public sector, other uses. The results shown
a clear profile for each district. For instance, for
group “A”, there is the strongest population growth
rate (54.6%). Buildings growth rate is also high at
96.5%. The residential use of the land is high at
91.2%. We can conclude that group “A” represents
a residential district in full growth. Data from the
past was learned and used to predict growth rate of
each district in the future. A very strong correlation
between real and predicted features was shown.
Some other papers are doing a similar work, but they
model the territory using a cellular automaton [16]
[32]. This is a good approach when features can
be precisely geolocalized. In this case, it is possi-
ble to extract information and place it into a two-

dimensional grid. From this grid, some simulation
can be run according to some previously defined (or
learned) rules. The results of those simulation can
give some hints of what the territory will look like
in the future. Obviously, the cellular automaton is
used combined with some other artificial intelligence
techniques to give some more complete results [22]
[30].
There is no standard for the evaluation and the pre-
diction of a vitality index (VI). Some papers [2]
[1] [11] refer to VI, defining their own set of fea-
tures (both qualitative and qualitative) and meth-
ods. Since each city does not archive the same data
over the years, it is difficult to establish a standard
set of features for the evaluation of a VI. Each city
must use the consistent data available from the last
decades. Being inspired by the previous works, this
paper proposes a method based on ML algorithms to
define, evaluate, and predict a VI in Trois-Rivières
city. It shows the methodology for data preprocess-
ing such as normalise and represent features, and to
fill some gap. It defines how both supervised learn-
ing and unsupervised learning were used to calcu-
late the VI and to make some prediction through
years. The usage of a k-means algorithm (unsuper-
vised learning) that partially defines the index will
be proposed. The usage of a feature-weighted in-
puts with stochastic gradient descent technique, will
also be explained. Finally, we will see how a GA is
used to optimize the clustering parameters. At the
end, this proposed method based on ML algorithms
provides some good insights for urbanists.
The next sections of this paper are organized with
the following structure: Section 2 describes the pro-
posed methodology. Section 3 presents the results.
Section 4 discusses about the results and their mean-
ing and Section 5 concludes this research.

2 The proposed method for
the vitality index

2.1 Selected features
According to the Trois-Rivières urbanists, the “vi-
tality” of a district can be defined by the strength of
its economy, the health and social status of its cit-
izen. Unlike the urban growth index, which tells if
a territory is occupied by urban space, the VI index
refers to the economic health of an urban territory
and to the social condition of its citizens. This paper
aims to define the VI, to evaluate it according to the
Trois-Rivières city features and predict this index
for each targeted district in the future. In urbanism
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context, we have access to massive data information.
The first step was to prioritize and select the right
features needed to calculate a VI. This was done
in collaboration with urbanism experts. They have
selected the features they thought could have a sig-
nificant influence on a VI. Table 1 presents the eight
selected features and the pre-processing applied on
them.
As shown in Table 1, pre-processing as been ap-

plied to each feature. First, every feature has been
normalized using a MinMax function based on the
assumption that each feature has same importance
in the VI. Eq. 1 shows the MinMax normalization
formula. It simply normalizes a number to get a 0
to 1 range, associating the smallest value to 0 and
the highest to 1.

Table 1: Vitality index features and their pre-
processing

This is easier way to calculate the index and to
present features on the same scale using different
graphics. The presentation of the features is es-
pecially important since it must be interpreted by
urbanists. To have a better feature distribution, a
logarithmic function is used to scale the feature in
logarithmic scale. Some features have been inverted
to keep the consistency: 0 is always the worst fea-
ture value and 1 is always the better feature value.
Finally, some average values were used when no data
were available.

z = x−min(x)
max(x)−min(x) (1)

2.2 Framework design to predict vi-
tality index

The proposed framework design includes several
parts to finally predict a VI. First, the model must
learn from district’s features the VI. Since the out-
puts of the past are unknown, an unsupervised learn-
ing technique (k-mean algorithm) had to be used.

This algorithm’s parameters are optimized with a
GA. Afterward, having all the VI for three years
2006, 2011 and 2016 in a 10 years range, the method
based on this model architecture can predicted the
district evolution in the future. This prediction is
made using a linear regression.
Fig. 1 shows the block diagram of the dataflow and
the ML used represented in 3 steps: (1) GA and
clustering, (2) for neural network, and (3) linear
regression.

Figure 1: Proposed framework design in three steps
(1) genetic algorithm and clustering, (2) for neural
network, and (3) linear regression.

To have a whole system to evaluate and predict a
VI, several types of ML algorithms must be used.

2.3 Unsupervised learning — k-
means clustering

To determine the VI, it is necessary to use an unsu-
pervised learning technique since there is no tagged
label for each input data. This algorithm will assign
to each district a cluster reference letter, according
to a similarity level of their features. A k-means
algorithm has been used to determine the clusters.
Eq. 2 defined the k-means clustering equation where
J is a clustering function, k is the number of clusters,
n is the number of features, x

(j)
i is the input (fea-

ture i in cluster j) and cj is the centroid for cluster
j. Centroids are obtained by randomly trying some
values and selecting the best.

J =
k∑

j=1

n∑
i=1

∥∥∥x
(j)
i − cj

∥∥∥2
(2)

There are several metrics that allow to measure a
clustering performance. Although, every metric is
not compatible with every algorithm. Since a ge-
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netic algorithm was used to optimize the cluster-
ing (using several techniques), we had to make some
choice according to the chosen clustering technique.
Since k-means algorithm was selected, the clustering
performance has been measured by the “Silhouette”
metrics. This metric is documented by Kaufman and
Rousseeuw [19] and [17]. This metric includes two
important equations. The distance between each
point and the center of its cluster is shown in Eq.
2. The distance between the center of each cluster
is shown in Eq. 3. Finally, Eq. 5 uses the result of
Eq. 3 and Eq. 4 to calculate the final "Silhouette
score" that indicate the quality (the consistency) of
the clustering. The silhouette ranges from -1 to +1.
Values from -1 to 0 indicates that the point is associ-
ated to a wrong cluster and from 0 to 1 are associated
to a good cluster. The higher the value, the better
the cluster consistency [19].

a(i) = 1
|ci − 1|

∑
j∈cii6=j

d(i, j) (3)

b(i) = min
k 6=i

1
|ck|

∑
j∈ck

d(i, j) (4)

s(i) = b(i)− a(i)
max (a(i), b(i)) , if |Ci| > 1 (5)

If most elements have a high value, then the clus-
tering configuration is appropriate. If many points
have a low or negative value, then the clustering con-
figuration may have too many or too few clusters. In
our case, we had to create clusters of 5, 6, 7 or 8 di-
mensions. It is way more complicated to get a high
silhouette score than with some 2- or 3-dimensions
features.

2.4 Genetic algoriths
There are some relevant features to calculate a VI.
Although, no label can be assigned to each set of fea-
tures. Therefore, we can not use a supervised learn-
ing algorithm. Unsupervised learning algorithms
allow a machine to learn without labels, though.
There are several techniques to do so, each one us-
ing some different parameters. Consequently, there
is a numerous of possible configurations. To opti-
mize the results of the clustering, a GA (Cedeno,
1995) is used. Four genes are used in the evolution
process: k-mean maximum iteration parameter, k-
mean n centroid parameter, the number of clusters
to find, and a list of features. Table 2 shows the
configuration of the GA. The fitness function was
the silhouette score of the clustering. This metric
that evaluate the cluster consistency is defined by
Eq. 4. The GA parameters are the following:

1. Number of generations: number of iterations
on the fitness/breeding/mutation process.

2. Chromosomes: Number of individuals config-
urations tested by the process. Population.

3. Initial chromosomes initialisation: The
method used to initialize the chromosomes at
generation 0.

4. Mutation rate: At breeding time, a percentage
of the chromosomes that do not inherits from
parents but are randomly reinitialized.

5. Percentage of chromosomes fitting well enough
to breed: A threshold of the fitness func-
tion. The chromosomes ranking better than
this value will be breeded in the next genera-
tion.

The configuration maximizing the silhouette score
is displayed in Table 2 in the column "Best-Score",
where we maximized the Silhouette score using GA
considering different number of clusters, number
of features among the 8 features (Table 1). We
reach a Silhouette score of 0.46, with N_init = 14,
Max_iter = 196, 5 clusters using the features 1, 6,
7, and 8. Otherwise, in some application cases, the
number of clusters is fixed by the urbanism experts
considering all features.

2.5 Feature-weighted inputs
One important answer we had to find was the impor-
tance of each feature in the clustering process. To
do so, a loop evaluating the totality of the feature’s
list combination has been processed. This clustering
process returned a silhouette score for each feature
combination. Having a list of features configuration
and silhouette index, the "random forest regressor"
technique was used to determine the importance of
each feature. A random forest is an iteration over n
"decision trees" (n = 250, in this case). The result
was a list of importance ordered features and their
weight.

2.6 Linear regression to predict VI
The last stage of the proposed framework concerns
the prediction of VI in the future for each first sur-
rounding area districts. The VI were available by
dissemination area. There can be many dissemina-
tion areas in each district. We had to regroup them
by district and calculate the linear regression line
through the available years to predict 10 years later.
Although, in some case, there is not many points
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in the cloud, and it is hazardous to conclude to a
reliable prediction.

3 Results applied on the
first belt districts in Trois-
Rivières city

The Trois-Rivières territory as we know it exists
since an important fusion between six cities and mu-
nicipalities, in 2002. In this case, data from be-
fore this fusion era is considered irrelevant. Trois-
Rivières aera is 334 km2 and has 136 000 people liv-
ing on its territory. 40% of its territory is in agricul-
tural area, 20% in rural area and 40% in urban area.
It is situated at the junction of St-Laurent river and
St-Maurice river, about mid distance from Montreal
and Quebec City. Trois-Rivières is also known for its
major infrastructures for planes, trains and ships.
Fig. 2 shows a map of Trois-Rivières. The greyed
part is the first belt districts (the important part for
this study).

Figure 2: The city of Trois-Rivières, Quebec,
Canada. The grey color defines the first belt area.

The urbanisation of its area happened in three steps.
The first one was prior to 1950. This area is called
“firsts districts” or “central districts”. The “first
belt” or “first agglomeration” was built between
1950 and 1980. Since then, the new areas are known
to be the “second belt” area. Since the important
fusion of 2002, residential development is more im-
portant than foreseen.
The city of Trois-Rivières needed to have some in-
sights to write its urbanism plan. Specially, there
was a need to better foresee the vitality of the first
belt districts. The reason is that is some demo-

graphic issues (weak growth, aging of the popula-
tion, etc.). The city needed to have more infor-
mation about short-term vitality (5-10 years), aver-
age term vitality (10-20 years), and long-term vital-
ity (20-30 years) of the first belt districts of Trois-
Rivières. Basically, this study is focusing on this
vitality aspect. Many more aspects may be studied
in some future work.

3.1 Features distribution and repre-
sentation

First, let us see the distribution of each of the 8
features for year 2016. There is a similar distribu-
tion for each available year. Section 2.1 (Table 1)
show to methodology to obtain these values. Fig. 4
shows the distribution of the features. The X-axis
represent the dissemination area (DA) which is a ge-
ographical location in the city. There is 135 of them
in Trois-Rivières city. The Y-axis is the feature nor-
malized value. For each of the 135 dissemination
areas, and for every year, all the features are repre-
sented on the same “radar” graphics. Since all fea-
tures are normalized, they can be displayed on the
same scale. Fig. 3 show an example of this radar
graphics (DA: 24370200 in year 2016).

3.2 Vitality index
In the graphics of Fig. 3, we can extract the aver-
age of the sum of the features. The result is also
a normalized value where a lower value means less
vitality and a higher value means more vitality.

Figure 3: Typical "Radar" graphic used to represent
the 8-dimensional features.
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Feature 1

Feature 3

Feature 5

Feature 7

Feature 2

Feature 4

Feature 6

Feature 8

Figure 4: Features 1 to 8
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Although, this information is incomplete. There are
some very different district profiles having the same
average of the sum of the features. The best way
to visualise the district profile is to regroup them.
This was made by using the clustering technique de-
scribed in section 3.3 For this reason, this research
defines the vitality index by the two parts, as follow-
ing:

1. A letter representing the profile (cluster), and

2. A number representing the average of the sum
of the features.

For instance, "C45" means a "C" cluster with an av-
erage of the sum of the features of 0.45. The 45 value
is the average sum of the feature (0.45) multiplied
by 100. The inspiration of this classification sys-
tem comes from the works on star classification by
Annie-Jump Cannon in [7]. In this two-dimension
notation system, a star could have a G5 type.

3.3 Clustering

Like described in Section 3.3, the number of clus-
ters and the number of used features has been de-
termined by thousands of simulations of GA includ-
ing feedback analysis from urbanists. We were to
use all the 8 features and to divide the 135 aeras of
dissemination in 10 clusters. The distribution of the
clusters (year 2016) in shown in Fig. 5. For each
cluster on the X-axis, a distribution level on the Y-
axis. Fig. 6 shows on the Y-axis the average of the
sum of each feature (year 2016), for each dissemina-
tion area (X-axis). Vertical red lines divide the clus-
ters, and horizontal dotted lines show the average of
each cluster. The best way to visualize and interpret
every cluster is to superpose every radar graphic of
dissemination area of the same group. In Fig. 6, we
can see that the 6th and 7th (clusters F and G) have
about the same average of the sum of the features
(around 0.4). Without having their cluster profile,
it would be impossible to see the difference.
Fig. 7 and Fig. 8 show the profile of those two
clusters. We can easily see that even though they
both have a similar average of the sum of the fea-
tures, the distribution of theses sum values is not
the same. They have a very different profile.

Figure 5: Clusters distribution histogram

Figure 6: Feature average for each dissemination
area, cluster division and cluster average

Figure 7: Cluster A and its stacked radar graphics

It is even easier to see when both the profile and
average of the sum of the features are different. Fig.
9 shows cluster I. Most of the cluster members are
rather smalls.
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Figure 8: Cluster H and its stacked radar graphics

Figure 9: Cluster I and its stacked radar graphics

Fig. 3a shows the distribution of the features be-
tween 5 clusters. We can note that there are very
few clustering errors (from -1 to 0) and a silhouette
score value of 0.46. This is the configuration that
optimizes the silhouette score. Fig. 3b shows the
distribution of the features between 10 clusters. We
can note that there are very few clustering errors
(from -1 to 0) and a silhouette score value of 0.22.
As mentioned earlier, the clustering process was op-
timized by a GA. The results shown in Table 2 for 10
clusters given Silhouette score of 0.22. The N_init

parameter is the number of times the k-means algo-
rithm will be run with different centroid seeds. The
Max iter is the maximum number of iterations of the
k-means algorithm for a single run.

Figure 10: Silhouette metrics using 4 features: a) 5
clusters b) 10 clusters (2016 data).

Fig. 11 shows the typical evolution of fitness func-
tion of GA defined by the Silhouette score. Red
curve represents the silhouette score average and
green curve represents the silhouette score maxi-
mum.

Table 2: Chromosome clustering configuration max-
imizing the Silhouette score (Best-Cluster) and spec-
ifying the number of cluster (Fixed-Cluster).

Figure 11: Typical evolution of silhouette score over
generations.

3.4 Weighting the features
Urbanists wanted to know which features are the
most relevant in the clustering process. Section 2.5
presented a methodology based on a Random For-
est algorithm to weight the 8 features proposed by
urbanists. The weights of the features in 2016 are
given by Fig. 12. In order of importance, from the
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most important to the least important (the number
in parenthesis is the level of importance):

1. feature 3 (0.125) Proportion of dwelling requir-
ing minor repairs

2. feature 2 (0.122363) Proportion of dwelling re-
quiring major repairs

3. feature 8 (0.113767) Housing vacancy rate

4. feature 6 (0.112084) Average value of single-
family homes

5. feature 5 (0.109790) Social deprivation index

6. feature 4 (0.109603) Material deprivation in-
dex

7. feature 7 (0.109569) Median value per dwelling

8. feature 1 (0.109211) Major renovation permit

Figure 12: Weights of feature.

3.5 Predicting vitality indexes
This research is only able to predict the average of
the sum of the features part of the VI. At least for
the numeric part it is possible to have a regression
that learns from the past to estimate future. Since
the goal is to predict vitality in the first surround-
ing area, we have first to regroup dissemination area.
Fig. 13 shows a district that includes four areas of
dissemination. It is usually from 1 to 7 per district.
To make some prediction, we must plot the VI (nu-
meric part) of each aera of dissemination included in
each district. Then the regression line must be added
and used to make the prediction about the future.
In this case, results must be interpreted with caution
since there are only three years of history to predict
years 2021 and 2026. Fig. 14 shows an example of

such a prediction using past VI (numeric part) com-
puted on 6 areas of dissemination (on 3 years 2006,
2011 and 2016). Each aera of dissemination is de-
fined by a blue dot. In this case, the 6 areas are those
included in the TR-3 district. Those results are some
examples taken in the final report [10] written for ur-
banists of the city of Trois-Rivières. Obviously, this
report includes hundreds of figures to illustrate data
on every district of the first belt and every dissemi-
nation area.

Figure 13: Map of TR-3 district of Trois-Rivières
and its dissemination areas.

Figure 14: Regression line and vitality prediction
based on areas of dissemination of the past, for TR-
6 district of TroisRivières city.
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4 Discussions
A method for calculating and predicting a VI has
been developed in this paper. The main objective
was to help urbanists to have a better understand-
ing of the raw data available in different sources,
including their own. The data was collected, then
pre-processed to optimize distribution and readabil-
ity. Four ML algorithms were used to process data:
k-mean clustering technique, GA, feature-weighted
inputs and linear regression. There is no simple way
to use a GA on some clustering techniques. For
different clustering techniques, we must use differ-
ent types of parameters. There are also some issues
about the evaluation of the results of the clustering.
The Silhouette metrics finally did a fair job to evalu-
ate the clusters consistency. Obviously, the cluster-
ing of some 8-dimensions indexes is a greater chal-
lenge than the 2- dimensions points cloud clusters
usually presented. Due to this higher dimensionality,
there was also some issues about the graphical repre-
sentation of the features. The “radar” graphic type
was very useful. The new custom “Omni” graphic
type invented for the purpose was also helpful to
present the totality of the information at a glimpse.
The superposed radar graphic was also helpful to
visualize the clusters consistency, maybe in an even
better way than using the Silhouette metric. The are
some tables of appreciation of the Silhouette scores,
but they are based on some 2- dimensions features.
It is very difficult to know if some 8- dimensions
features clusters (like the ones in this research) are
consistent or not. That is why the superposition of
the radar graphics was so important to confirm the
clusters consistency. At the end, this research suc-
ceeds in converting some scattered raw data in some
valuable knowledge, well presented and useful for the
writing of the urban plan of Trois-Rivières city.

5 Conclusion
All the code written in this research has some great
generalization perspectives. In a near future, it
could be converted in a more general urban tool to
make some prediction about a broader range of ur-
ban indexes, such as criminality indexes, health in-
dexes or economic indexes. There are also some im-
provement possibilities in the clustering part. The
clustering method and the metrics could be studied
and improve. One way of improving a next version
would be to replace the k-mean clustering algorithm
by a c-mean algorithm. This would have the benefits
of fuzzifying the districts limits. A model based on
fuzzy clustering would reflect reality in a better way

than a model based on a crispy clustering algorithm.
Some improvement can also be done by making some
prediction on each available feature, instead of only
the numeric part of the VI (which is the average of
those features). Since this system must deal with
an input that includes multiple features, some algo-
rithms based on dimensionality reduction must be
explored. There could be some improvement possi-
bilities by using this solution in the pro-processing
phase. Finally, in a next version, it will be easy
to also project the profile part of the VI. It will be
certainly possible to predict the shapes of the mul-
tidimension VI of the future.
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