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Neural networks with superexpressive activations and integer

weights

Aleksandr Beknazaryan ∗

Abstract

An example of an activation function σ is given such that networks with activations {σ, ⌊·⌋},
integer weights and a fixed architecture depending on d approximate continuous functions on
[0, 1]d. The range of integer weights required for ε-approximation of Hölder continuous functions

is derived, which leads to a convergence rate of order n
−2β

2β+d log
2
n for neural network regression

estimation of unknown β-Hölder continuous function with given n samples.

Introduction. A family of activation functions A is called superexpressive if for every input
dimension d there are networks of fixed architecture and with activations all belonging to A that
arbitrarily well approximate functions from C([0, 1]d) in the uniform norm. Several examples of
simple superexpressive families of activation functions are given in [7]. In particular, in [7], Theorem
3, it is shown that the families {sin, arcsin} and {σ1, ⌊·⌋} are superexpressive, where σ1 is a real
analytic function which is non-polynomial on some interval. Although fixing the architecture, the
superexpressiveness of activations alone does not tell much about the complexity of approximant
networks, which in this case is associated with choices of network weights. Even if we bound the
weights required for attaining a given approximation error, the estimation of entropy of networks
may still need the activations to be Lipschitz continuous (see, e.g., [4], [5]). Thus, to bound the
entropy of approximant networks we may not only bound the weights but also discretize them.
Once this is done, we can directly count the number of networks needed to attain the given
approximation error. We will therefore consider networks with weights from Z and otherwise our
construction will be similar to the one presented in the proof of Theorem 3 of [7]. That proof
is based on the density of irrational windings on the torus, which in our case is replaced by an
effective Kronecker’s theorem. The latter not only assures that integer multipliers are enough to
densely cover the torus but also bounds the integers needed to attain a given covering radius. We
will consider the family of activation functions A = {σ, ⌊·⌋}, where the role of the activation σ is
to guarantee that the conditions of the Kronecker’s theorem are satisfied and that it gives a small
range for the integer multipliers. Having this range we then bound the entropy of approximant
networks and use this bound to get for β-Hölder continuous regression functions a convergence

rate of order n
−2β
2β+d log2 n.

Note that our approach is in some sense opposite to the one given in [1], where approximations
by deep networks with weights {0,±1

2 ,±1, 2} are considered: in one case we fix a finite set of
weights and adjust the network architecture and in the other case we fix the network architecture
and adjust the integer weights to attain a certain approximation rate.

An effective Kronecker’s Theorem. In this part we present an effective version of Kronecker’s
Theorem given in [6]. To state the theorem we will need the following definitions of absolute values,
places and heights on number fields.
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Definition 1. An absolute value on a number field K is a function | · |ν : K → R+ satisfying

1. |x|ν = 0 if and only if x = 0;

2. |xy|ν = |x|ν |y|ν for all x, y ∈ K;

3. |x+ y|ν ≤ |x|ν + |y|ν for all x, y ∈ K.

If the third condition above is replaced by a stronger condition |x+ y|ν ≤ max{|x|ν , |y|ν}, then
the absolute value | · |ν is called non-archimedean and otherwise it is called archimedean.

Definition 2. Two absolute values | · |1 and | · |2 on K are equivalent if there exists some λ > 0
such that | · |1 = | · |λ2 . An equivalence class of absolute values on K is called a place of K. The

collection of all places of K is denoted by MK .

Let Q denote the field of algebraic numbers.

Definition 3. For α = (α1, ..., αN ) ∈ Q
N

\ {0} let K be an extension of the field of rational

numbers Q of degree [K : Q] such that α ∈ KN . The number

H(α) =
∏

ν∈MK

(

max(|α1|ν , ..., |αN |ν)

)1/[K:Q]

.

is called an absolute height of α.

It can be shown that the absolute height is independent of the choice of K (see [6] for proof and

more details regarding the above definitions). For α = (α1, ..., αN ) ∈ Q
N

let r := [Q(α1, ..., αN ) :
Q] be the degree of extension field over rationals generated by α. For ε > 0 denote

Q(α, ε) := r(N + 1)2r(H(1, α1, ..., αN ))r
(

1

ε

)r−1

.

The following is a simplified version of Theorem 3.11 from [6]:

Theorem 1. Let α = (α1, ..., αN ) be a vector with algebraic and rationally independent coordinates,

that is,

{z ∈ QN : z⊺ ·α ∈ Q} = {0}.

Then for every ε > 0 and every (b1, ..., bN ) ∈ [0, 1)N there is q ∈ Z with |q| ≤ Q(α, ε) such that

|φ(qαi)− bi| ≤ ε, i = 1, ..., N,

where φ(x) = x− ⌊x⌋.

As the choice of the activation function σ in the next part suggests, we will be interested in
application of the above theorem to the case α = (21/(N+1), 22/(N+1), ..., 2N/(N+1)). In this case
we have that r = N + 1 and, therefore, there are at most N + 1 archimedean places on Q(α) (see
[2], Subsection 1.3.8). Also, as the non-archimedean absolute values of integers are in [0, 1] ([3],
Lemma 6A), then

(

H(1, (21/(N+1) , 22/(N+1), ..., 2N/(N+1))

)N+1

=

∏

ν∈MQ(α)

max(1, |21/(N+1) |ν , ..., |2
N/(N+1) |ν) =

∏

ν∈MQ(α)

max(1, |2|1/(N+1)
ν , ..., |2|N/(N+1)

ν ) =

∏

ν∈MQ(α)

max(1, |2|N/(N+1)
ν ) =

∏

ν∈MQ(α)

ν archimedean

max(1, |2|N/(N+1)
ν ) ≤ 2N .
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We thus get the following

Corollary 1. For every ε > 0 and every (b1, ..., bN ) ∈ [0, 1)N there is q ∈ Z with

|q| ≤ (N + 1)2N+3

(

2

ε

)N

such that

|φ(q2i/(N+1))− bi| ≤ ε, i = 1, ..., N.

Network selection and approximation. For a set of p functions g1, ..., gp : R → R and two
sets of p numbers {v1, ..., vp}, {y1, ..., yp} ∈ R define







g1v1
...

gpvp













y1
...
yp






=







g1(y1 + v1)
...

gp(yp + vp)






.

For K,M ∈ N and q ∈ Z denote kM := ((M + 1)d − 1)(M + 1)d/2 and consider a feedforward
neural network Zd

K,M,q on [0, 1]d of the form

Zd
K,M,q(x) = Zd

K,M,q(x1, x2, ..., xd) =

(2Kq,−2K)

(

σkM
⌊·⌋0

)(

1 0
0 q

)(

⌊·⌋0
σkM

)(

1
1

)

⌊·⌋1(1,M + 1, ..., (M + 1)d−1)











⌊·⌋0
⌊·⌋0
...

⌊·⌋0











(M · Id)











x1
x2
...
xd











−K,

where Id ∈ Rd×d is an identity matrix, ⌊·⌋ is the floor function and σ : R → R is defined as

σ(x) =

{

2
x−(m−1)m/2

m+1 , x,m ∈ N, (m−1)m
2 < x ≤ m(m+1)

2 ,

0, x ∈ R \ N.

In fact, the values of σ on R \ N will not play a role and can thus be defined arbitrarily. Here are
the first few nonzero values of σ:
σ(1) = 21/2;
σ(2) = 21/3, σ(3) = 22/3;
σ(4) = 21/4, σ(5) = 22/4, σ(6) = 23/4.

Note that analytically we can write the network Zd
K,M,q as

Zd
K,M,q(x) = 2Kφ(qσ(kM + gM (x)))−K,

where φ(x) = x− ⌊x⌋ and gM (x) = 1 +
d
∑

k=1

(M + 1)k−1⌊Mxk⌋. For Q ∈ N define a set of networks

Zd
K,M(Q) := {Zd

K,M,q, |q| ≤ Q}.

For β, F ∈ R+ and K ∈ N define

Hβ
d (F,K) =

{

f : [0, 1]d → R : ‖f‖∞ < K and |f(x)− f(y)| ≤ F |x − y|β∞ for all x,y ∈ [0, 1]d
}

.
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We have the following

Theorem 2. For any ε > 0 and any f ∈ Hβ
d (F,K) there is a network Zd

K,M,q(x) ∈ Zd
K,M(Q) with

M = ⌈(2F/ε)1/β⌉ and

Q =

⌈

(N + 1)2N+3

(

8K

ε

)N⌉

,

where N = (M + 1)d, such that ‖Zd
K,M,q(x)− f(x)‖∞ ≤ ε.

Proof. Take any ε > 0 and let M = ⌈(2F/ε)1/β⌉. Then the function

gM (x) = gM (x1, ..., xd) = 1 +
d

∑

k=1

(M + 1)k−1⌊Mxk⌋

from [0, 1]d to [1, (M + 1)d] ∩ Z maps each of (M + 1)d sets

IM,m :=

(

[
m1

M
,
m1 + 1

M
)× ...× [

md

M
,
md + 1

M
)

)

∩ [0, 1]d,

m = (m1, ...,md) ∈ [0,M ]d ∩ Zd, to a unique integer from [1, (M + 1)d]. Denote N = (M + 1)d

and let J1, ..., JN be the enumeration of the sets IM,m,m ∈ [0,M ]d ∩ Zd, such that gM (x) = i for
x ∈ Ji, i = 1, ..., N . Take any set of N points yi ∈ Ji and denote

bi =
f(yi) +K

2K
∈ [0, 1)N , i = 1, ..., N.

Let kM := ((M + 1)d − 1)(M + 1)d/2 = (N−1)N
2 . As σ(kM + i) = 2i/(N+1), then, by Corollary 1,

there exists q ∈ Z with

|q| ≤ (N + 1)2N+3

(

8K

ε

)N

such that
|φ(qσ(kM + i))− bi| ≤

ε

4K
, i = 1, ..., N.

Thus,

|2Kφ(qσ(kM + i))−K − f(yi)| ≤
ε

2
, i = 1, ..., N,

and, therefore, for the network

Zd
K,M,q(x) = 2Kφ(qσ(kM + gM (x))) −K

we have that for x ∈ Ji

|Zd
K,M,q(x)− f(x)| = |2Kφ(qσ(kM + gM (x)))−K − f(x)|

≤ |2Kφ(qσ(kM + i)) −K − f(yi)|+ |f(yi)− f(x)|

≤
ε

2
+ F |yi − x|β∞ ≤ ε.

As [0, 1]d = ∪N
i=1Ji, then ‖Zd

K,M,q(x)− f(x)‖∞ ≤ ε. �
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Application to nonparametric regression. Let f0 ∈ Hβ
d (F,K) be an unknown regression

function and let (Xi, Yi), i = 1, ..., n, be n observed iid pairs following a regression model

Yi = f0(Xi) + ǫi,

where the standard normal noise variables ǫi are assumed to be independent of Xi. Our goal is to
choose appropriate Mn, Qn ∈ N so that the empirical risk minimizer

Ẑn ∈ argmin
Z∈Zd

K,Mn
(Qn)

n
∑

i=1

(Yi − Z(Xi))
2

can well approximate f0. The accuracy of approximation of f0 by the estimator Ẑn is measured
by the prediction error

R(Ẑn, f0) = Ef0 [(Ẑn(X)− f0(X))2],

where X
D
= X1 is independent of the sample (Xi, Yi) and the subscript f0 indicates that the

expectation is taken over the training data generated by the regression model.

Choose Mn = ⌈(2F )
1
βn

1
2β+d ⌉ and

Qn =

⌈

(Nn + 1)2Nn+3

(

8Kn
β

2β+d

)Nn
⌉

,

where Nn := (Mn + 1)d. From [4], Lemma 4, it follows that for any δ ∈ (0, 1]

R(Ẑn, f0) ≤

4

[

inf
Z∈Zd

K,Mn
(Qn)

E[(Z(X)− f0(X))2] +K2
18 log2N (δ,Zd

K,Mn
(Qn), ‖ · ‖∞) + 72

n
+ 32δK

]

, (1)

where N (δ,Zd
K,Mn

(Qn), ‖·‖∞) is the covering number of Zd
K,Mn

(Qn) of radius δ taken with respect

to the ‖ · ‖∞ distance of functions on [0, 1]d. As there are only 2Qn + 1 networks in Zd
K,Mn

(Qn),
then for any δ > 0

log2N (δ,Zd
K,Mn

(Qn), ‖ · ‖∞) ≤ log2 N (0,Zd
K,Mn

(Qn), ‖ · ‖∞) ≤ log2(2Qn + 1) ≤ C ′n
d

2β+d log2 n,

for some constant C ′ = C ′(β, d, F,K). As f0 ∈ Hβ
d (F,K), then, applying Theorem 2 with ε =

n−
β

2β+d , we get that

inf
Z∈Zd

K,Mn
(Qn)

E[(Z(X)− f0(X))2] ≤ n
−2β
2β+d .

Thus, from (1) we get an existence of a constant C = C(β, d, F,K) such that

R(Ẑn, f0) ≤ Cn
−2β
2β+d log2 n,

which coincides, up to a logarithmic factor, with the minimax estimation rate n
−2β
2β+d of the predic-

tion error for β-smooth functions.
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