Skip to main content

GCANet: A Cross-Modal Pedestrian Detection Method Based on Gaussian Cross Attention Network

  • Conference paper
  • First Online:
  • 969 Accesses

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 507))

Abstract

Pedestrian detection is a critical but challenging research field widely applicable in self-driving, surveillance and robotics. The performance of pedestrian detection is not ideal under the limitation of imaging conditions, especially at night or occlusion. To overcome these obstacles, we propose a cross-modal pedestrian detection network based on Gaussian Cross Attention (GCANet) improving the detection performance by a full use of multi-modal features. Through the bidirectional coupling of local features of different modals, the feature interaction and fusion between different modals are realized, and the salient features between multi-modal are effectively emphasized, thus improving the detection accuracy. Experimental results demonstrate GCANet achieves the highest accuracy with the state-of-the-art on KAIST multi-modal pedestrian dataset.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cai, Z., Saberian, M., Vasconcelos, N.: Learning complexity-aware cascades for deep pedestrian detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3361–3369 (2015)

    Google Scholar 

  2. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  3. Choi, H., Kim, S., Park, K., Sohn, K.: Multi-spectral pedestrian detection based on accumulated object proposal with fully convolutional networks. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 621–626. IEEE (2016)

    Google Scholar 

  4. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  5. Dollár, P., Appel, R., Belongie, S., Perona, P.: Fast feature pyramids for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 36(8), 1532–1545 (2014)

    Article  Google Scholar 

  6. Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: an evaluation of the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 34(4), 743–761 (2012)

    Article  Google Scholar 

  7. Guan, D., Cao, Y., Yang, J., Cao, Y., Yang, M.Y.: Fusion of multispectral data through illumination-aware deep neural networks for pedestrian detection. Inf. Fus. 50, 148–157 (2019). https://doi.org/10.1016/j.inffus.2018.11.017

    Article  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  10. Hwang, S., Park, J., Kim, N., Choi, Y., Kweon, I.S.: Multispectral pedestrian detection: Benchmark dataset and baseline. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1037–1045 (2015)

    Google Scholar 

  11. Kim, M., Joung, S., Park, K., Kim, S., Sohn, K.: Unpaired cross-spectral pedestrian detection via adversarial feature learning. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 1650–1654 (2019)

    Google Scholar 

  12. Konig, D., Adam, M., Jarvers, C., Layher, G., Neumann, H., Teutsch, M.: Fully convolutional region proposal networks for multispectral person detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 49–56 (2017)

    Google Scholar 

  13. Li, C., Song, D., Tong, R., Tang, M.: Multispectral pedestrian detection via simultaneous detection and segmentation. arXiv preprint arXiv:1808.04818 (2018)

  14. Li, C., Song, D., Tong, R., Tang, M.: Illumination-aware faster R-CNN for robust multispectral pedestrian detection. Pattern Recogn. 85, 161–171 (2019)

    Article  Google Scholar 

  15. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  16. Liu, J., Zhang, S., Wang, S., Metaxas, D.N.: Multispectral deep neural networks for pedestrian detection. arXiv preprint arXiv:1611.02644 (2016)

  17. Park, K., Kim, S., Sohn, K.: Unified multi-spectral pedestrian detection based on probabilistic fusion networks. Pattern Recogn. 80, 143–155 (2018)

    Article  Google Scholar 

  18. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  19. Rezatofighi, H., Tsoi, N., Gwak, J.Y., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019)

    Google Scholar 

  20. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp 5998–6008 (2017)

    Google Scholar 

  21. Vs, V., Valanarasu, J.M.J., Oza, P., Patel, V.M.: Image fusion transformer. arXiv preprint arXiv:2107.09011 (2021)

  22. Wagner, J., Fischer, V., Herman, M., Behnke, S.: Multispectral pedestrian detection using deep fusion convolutional neural networks. In: ESANN, vol. 587, pp. 509–514 (2016)

    Google Scholar 

  23. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  24. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  25. Yang, Z., Dan, T., Yang, Y.: Multi-temporal remote sensing image registration using deep convolutional features. IEEE Access 6, 38544–38555 (2018)

    Article  Google Scholar 

  26. Zhu, B., et al.: AutoAssign: differentiable label assignment for dense object detection. arXiv preprint arXiv:2007.03496 (2020)

Download references

Acknowledgments

This research is supported under Grant 202020429036.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingfa Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peng, P. et al. (2022). GCANet: A Cross-Modal Pedestrian Detection Method Based on Gaussian Cross Attention Network. In: Arai, K. (eds) Intelligent Computing. SAI 2022. Lecture Notes in Networks and Systems, vol 507. Springer, Cham. https://doi.org/10.1007/978-3-031-10464-0_35

Download citation

Publish with us

Policies and ethics