Skip to main content

Network Size Reduction Preserving Optimal Modularity and Clique Partition

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13375))

Abstract

Graph clustering and community detection are significant and actively developing topics in network science. Uncovering community structure can provide essential information about the underlying system. In this work, we consider two closely related graph clustering problems. One is the clique partitioning problem, and the other is the maximization of partition quality function called modularity. We are interested in the exact solution. However, both problems are NP-hard. Thus the computational complexity of any existing algorithm makes it impossible to solve the problems exactly for the networks larger than several hundreds of nodes. That is why even a small reduction of network size can significantly improve the speed of finding the solution to these problems. We propose a new method for reducing the network size that preserves the optimal partition in terms of modularity score or the clique partitioning objective function. Furthermore, we prove that the optimal partition of the reduced network has the same quality as the optimal partition of the initial network. We also address the cases where a previously proposed method could provide incorrect results. Finally, we evaluate our method by finding the optimal partitions for two sets of networks. Our results show that the proposed method reduces the network size by 40% on average, decreasing the computation time by about 54%.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/Alexander-Belyi/best-partition.

References

  1. Agarwal, G., Kempe, D.: Modularity-maximizing graph communities via mathematical programming. Eur. Phys. J. B 66(3), 409–418 (2008). https://doi.org/10.1140/epjb/e2008-00425-1

  2. Aloise, D., Cafieri, S., Caporossi, G., Hansen, P., Perron, S., Liberti, L.: Column generation algorithms for exact modularity maximization in networks. Phys. Rev. E 82(4), 46112 (2010). https://doi.org/10.1103/PhysRevE.82.046112

  3. Arenas, A., Duch, J., Fernández, A., Gómez, S.: Size reduction of complex networks preserving modularity. New J. Phys. 9(6), 176–176 (2007). https://doi.org/10.1088/1367-2630/9/6/176

  4. Belyi, A., Bojic, I., Sobolevsky, S., Sitko, I., Hawelka, B., Rudikova, L., Kurbatski, A., Ratti, C.: Global multi-layer network of human mobility. Int. J. Geogr. Inf. Sci. 31(7), 1381–1402 (2017). https://doi.org/10.1080/13658816.2017.1301455

    Article  Google Scholar 

  5. Belyi, A., Sobolevsky, S., Kurbatski, A., Ratti, C.: Subnetwork constraints for tighter upper bounds and exact solution of the clique partitioning problem. arXiv preprint arXiv:2110.05627 (2021)

  6. Belyi, A.B., Sobolevsky, S.L., Kurbatski, A.N., Ratti, C.: Improved upper bounds in clique partitioning problem. J. Belarusian State Univ. Math. Informatics 2019(3), 93–104 (2019). https://doi.org/10.33581/2520-6508-2019-3-93-104

  7. Benati, S., Puerto, J., Rodríguez-Chía, A.M.: Clustering data that are graph connected. Eur. J. Oper. Res. 261(1), 43–53 (2017). https://doi.org/10.1016/j.ejor.2017.02.009

    Article  MathSciNet  MATH  Google Scholar 

  8. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008(10), P10008 (2008). https://doi.org/10.1088/1742-5468/2008/10/p10008

  9. Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: On modularity clustering. IEEE Trans. Knowl. Data Eng. 20(2), 172–188 (2008). https://doi.org/10.1109/TKDE.2007.190689

  10. Dorndorf, U., Jaehn, F., Pesch, E.: Modelling robust flight-gate scheduling as a clique partitioning problem. Transp. Sci. 42(3), 292–301 (2008). https://doi.org/10.1287/trsc.1070.0211

    Article  Google Scholar 

  11. Du, Y., Kochenberger, G., Glover, F., Wang, H., Lewis, M., Xie, W., Tsuyuguchi, T.: Solving clique partitioning problems: a comparison of models and commercial solvers. Int. J. Inf. Technol. Decis. Mak. 21(01), 59–81 (2022). https://doi.org/10.1142/S0219622021500504

    Article  Google Scholar 

  12. Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 75–174 (2010). https://doi.org/10.1016/j.physrep.2009.11.002

    Article  MathSciNet  Google Scholar 

  13. Fortunato, S., Hric, D.: Community detection in networks: a user guide. Phys. Rep. 659, 1–44 (2016). https://doi.org/10.1016/j.physrep.2016.09.002

    Article  MathSciNet  Google Scholar 

  14. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002). https://doi.org/10.1073/pnas.122653799

    Article  MathSciNet  MATH  Google Scholar 

  15. Grötschel, M., Wakabayashi, Y.: A cutting plane algorithm for a clustering problem. Math. Program. 45(1), 59–96 (1989). https://doi.org/10.1007/BF01589097

  16. Grötschel, M., Wakabayashi, Y.: Facets of the clique partitioning polytope. Math. Program. 47(1), 367–387 (1990). https://doi.org/10.1007/BF01580870

    Article  MathSciNet  MATH  Google Scholar 

  17. Guimerà, R., Nunes Amaral, L.A.: Functional cartography of complex metabolic networks. Nature 433(7028), 895–900 (2005). https://doi.org/10.1038/nature03288

  18. Hu, S., Wu, X., Liu, H., Li, R., Yin, M.: A novel two-model local search algorithm with a self-adaptive parameter for clique partitioning problem. Neural Comput. Appl. 33(10), 4929–4944 (2020). https://doi.org/10.1007/s00521-020-05289-5

    Article  Google Scholar 

  19. Jaehn, F., Pesch, E.: New bounds and constraint propagation techniques for the clique partitioning. Discret. Appl. Math. 161(13), 2025–2037 (2013). https://doi.org/10.1016/j.dam.2013.02.011

    Article  MathSciNet  MATH  Google Scholar 

  20. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999). https://doi.org/10.1145/331499.331504

  21. Javed, M.A., Younis, M.S., Latif, S., Qadir, J., Baig, A.: Community detection in networks: a multidisciplinary review. J. Netw. Comput. Appl. 108, 87–111 (2018). https://doi.org/10.1016/j.jnca.2018.02.011

    Article  Google Scholar 

  22. Lorena, L.H.N., Quiles, M.G., Lorena, L.A.N.: Improving the performance of an integer linear programming community detection algorithm through clique filtering. In: Misra, S., Gervasi, O., Murgante, B., Stankova, E., Korkhov, V., Torre, C., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Tarantino, E. (eds.) Improving the Performance of an Integer Linear Programming Community Detection Algorithm Through Clique Filtering. LNCS, vol. 11619, pp. 757–769. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24289-3_56

    Chapter  Google Scholar 

  23. Lu, Z., Zhou, Y., Hao, J.K.: A hybrid evolutionary algorithm for the clique partitioning problem. IEEE Trans. Cybern., 1–13 (2021). https://doi.org/10.1109/TCYB.2021.3051243

  24. Miyauchi, A., Sonobe, T., Sukegawa, N.: Exact Clustering via Integer Programming and Maximum Satisfiability. Proc. AAAI Conf. Artif. Intell. 32(1) (2018)

    Google Scholar 

  25. Miyauchi, A., Sukegawa, N.: Redundant constraints in the standard formulation for the clique partitioning problem. Optim. Lett. 9(1), 199–207 (2014). https://doi.org/10.1007/s11590-014-0754-6

    Article  MathSciNet  MATH  Google Scholar 

  26. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003). https://doi.org/10.1137/S003614450342480

    Article  MathSciNet  MATH  Google Scholar 

  27. Oosten, M., Rutten, J.H.G.C., Spieksma, F.C.R.: The clique partitioning problem: facets and patching facets. Networks 38(4), 209–226 (2001). https://doi.org/10.1002/net.10004

    Article  MathSciNet  MATH  Google Scholar 

  28. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: AAAI (2015). http://networkrepository.com

  29. Sobolevsky, S., Campari, R., Belyi, A., Ratti, C.: General optimization technique for high-quality community detection in complex networks. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 90(1) (2014). https://doi.org/10.1103/PhysRevE.90.012811

  30. Wakabayashi, Y.: Aggregation of binary relations: algorithmic and polyhedral investigations. Ph.D. thesis, Doctoral Dissertation. University of Augsburg (1986)

    Google Scholar 

  31. Wang, H., Alidaee, B., Glover, F., Kochenberger, G.: Solving group technology problems via clique partitioning. Int. J. Flex. Manuf. Syst. 18(2), 77–97 (2006). https://doi.org/10.1007/s10696-006-9011-3

  32. Xu, Y., Li, J., Belyi, A., Park, S.: Characterizing destination networks through mobility traces of international tourists - a case study using a nationwide mobile positioning dataset. Tour. Manag. 82 (2021). https://doi.org/10.1016/j.tourman.2020.104195

Download references

Acknowledgement

This research was supported by the MUNI Award in Science and Humanities (MASH) of the Grant Agency of Masaryk University under the Digital City project (MUNI/J/0008/2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Belyi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Belyi, A., Sobolevsky, S. (2022). Network Size Reduction Preserving Optimal Modularity and Clique Partition. In: Gervasi, O., Murgante, B., Hendrix, E.M.T., Taniar, D., Apduhan, B.O. (eds) Computational Science and Its Applications – ICCSA 2022. ICCSA 2022. Lecture Notes in Computer Science, vol 13375. Springer, Cham. https://doi.org/10.1007/978-3-031-10522-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10522-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10521-0

  • Online ISBN: 978-3-031-10522-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics