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Abstract. In several clinical and epidemiology studies, data from events
that occur successively in time in the same individual, are frequently re-
ported. Among these, the most common are recurrent events where each
subject may experience a number of failures over the course of follow-
up. Examples include repeated hospitalization of patients, recurrences of
tumor, recurrent infections, among others. In this work, the interest is
to study the correlation between successive recurrent events, gap times,
in the presence of right censoring. To measure the association between
two gap times we use the Kendall's τ correlation coe�cient, by incor-
porating suitable bivariate estimators of the joint distribution function
of the gap times and of the marginal distribution function of the second
gap time, into the integrals that de�ne the probability of concordant
pairs and the probability of discordant pairs. Two of the estimators of
the joint distribution function of the gap times considered in this work
are already known, but we consider also estimators with Kaplan-Meier
weights de�ned by using decision trees and random forests methodol-
ogy. We conclude that all the estimators perform better in a scenario
of negative association. When the association is moderately negative,
the performance of the estimator with smoothed weights using random
forests is superior. In the case of strong positive association, the best
estimator is the presmoothed nonparametric but, in the case of moder-
ate positive association, this estimator has identical performance as the
estimator with presmoothed weights using random forests.

Keywords: Right Censoring · Decision Trees · Kendall's Tau · Random
Forests.

1 Introduction

Recurrent events that occur in the same subject successively in time, are fre-
quently reported in clinical studies. Examples include repeated hospitalizations
of patients, tumor recurrences, recurrent infections, among others.
In this work, the interest is to study the correlation between gap times, that is,
times between two successive recurrent events.
⋆ Supported by Portuguese funds through Centre of Mathematics, University of
Minho.



Correlations between gap times are of interest in themselves, when investigating
whether the �rst gap time is predictive of the occurrence of the second event. To
measure the possible association between two gap times, it is usual to use the
nonparametric estimator of the correlation coe�cient Kendall's τ , because it has
good properties, like invariance to monotone transformations and robustness in
the presence of outliers [12].
Measuring correlation can be challenging in the presence of right censoring where
some data values are not observed due to an upper detection limit, dropout or
due to the end of the study.
Right censoring is present in a wide range of survival data, so it is natural that
one or both of the gap times may not be observed.
Several di�erent methods have been proposed to measure and test the correla-
tion between two right-censored time-to-event variables [5, 8, 10, 11].
In this paper we de�ne estimators of τ that accounts for joint information of the
random pair of gap times in the presence of right censoring. In fact, a natural
way to estimate τ is to incorporate a suitable bivariate estimator of the joint
distribution function into the integrals that de�ne the probability of concordant
pairs and the probability of discordant pairs in the context of Kendall's tau def-
inition. This is not the usual approach in the papers that have been published
on this topic. In general, the authors use a compact formula for the estimator,
considering the complementarity of concordant and discordant events.

When looking to a single subject, the censoring time distribution may be the
same for time to the �rst failure and for time to the second failure. However, the
censoring time for the second gap time depends on the time to the �rst failure
and on the censoring time for the total time.

Two of the estimators of the joint distribution function of the gap times used
in this work are already known (see [1, 2]), but we propose another estimators for
the Kaplan-Meier weights, de�ned with the same reasoning used in the de�nition
of the known semiparametric estimator of the bivariate distribution function (see
[2]), but using decision trees and random forests to de�ne the weights used in
the Kaplan-Meier estimator for the joint distribution function of the gap times.
The study presented is supported by simulations.

This paper is divided into 6 sections. In the �rst section we present an intro-
duction to the topic, a brief bibliographical review and we establish the nota-
tion. In the second section we present estimators of the joint distribution func-
tion of gap times and justi�cations for using decision trees and random forests
methodologies to de�ne the Kaplan-Meier weights. In the third section we de�ne
Kendall's tau estimators based on the probability of concordance and probabil-
ity of discordance of pairs of gap times, and we justify this approach based on
theoretical results. This section also presents a detailed description of the nu-
merical procedure for obtaining estimates of the probabilities of concordance and
probabilities of discordance. The fourth section is dedicated to the simulation
procedure and the main results. In section 5 is presented an application example
of the proposed methodology with real data. Finally, in the last section, are the
main conclusions of the work.



1.1 Notations and De�nitions

Let T1 be the time from the begining of the study to the �rst occurrence of
the event of interest or failure (�rst gap time) and T2 be the time between the
�rst failure and the second failure (second gap time). The random times T1 and
T2 are possibly correlated. Let (T1i, T2i) and (T1j , T2j), i ̸= j, be independent
realizations from (T1, T2).

De�nition 1. The pair (i, j) is said to be concordant if (T1i−T1j)(T2i−T2j) > 0
and discordant if (T1i − T1j)(T2i − T2j) < 0. If T1 and T2 are continuous, the

Kendall's correlation between T1 and T2 is given by

τ = P ((T1i − T1j)(T2i − T2j) > 0)− P ((T1i − T1j)(T2i − T2j) < 0) (1)

The correlation coe�cient, τ , is such that −1 ≤ τ ≤ 1 and τ = 0 if (T1, T2) are
independent.

Denoting marginal and joint cumulative distribution functions of T1 and T2

as F1(x) = P (T1 ≤ x), F2(y) = P (T2 ≤ y) and F12(x, y) = P (T1 ≤ x, T2 ≤ y),
respectively, and de�ning F·(x

−) = limt↑x F·(t), we have

pc = P ((T1i − T1j)(T2i − T2j) > 0) = 2

∫ +∞

0

∫ +∞

0

F12(x
−, y−)F12(dx, dy)

(2)
and

pd = P ((T1i − T1j)(T2i − T2j) < 0) = 2

∫ +∞

0

∫ +∞

0

U(x−, y−)F12(dx, dy) (3)

where
U(x, y) = P (T1 > x, T2 < y) = F12(∞, y−)− F12(x, y

−)

Now the tau Kendall's coe�cient is given by:

τ = pc − pd (4)

2 Estimators of the Bivariate Distribution Function for

Censored Gap Times

Let C be the right censoring time. This censoring time is the minimum between
the time from the start of study to the end of the study, and the time from the
start of study to dropout. So, the support of C is bounded.
We made the standard assumption that the �rst gap time, T1, and the total
time, Y = T1 + T2, are subject to independent right censoring. As T1 and Y are
observed in a single subject, the distribution function of the censoring time C,
say G(.), may be the same for both T1 and Y . So, the marginal distribution of
the �rst gap time F1, can be consistently estimated by the Kaplan and Meier
estimator, based on the observable pair (T̃1, δ1) where T̃1 = min{T1, C} and the
distribution of the total time, Y , say F , can also be estimated by the Kaplan and



Meier estimator based on (Ỹ , δ2) where Ỹ = min{Y,C} [9]. The indicator vari-
ables δj , j = 1, 2 are de�ned by δj = 1, if Ti ≤ C, and equal to 0, otherwise.
However, the second gap time, T2, and the censoring time, C2 = (C − T1)δ1,
are in general dependent. Let T̃2 = min{T2, C2} and the marginal distributions
of T̃1 and T̃2 are H1(x) = P (T̃1 ≤ x) and H2(y) = P (T̃2 ≤ y) and the joint

distribution of
(
T̃1, T̃2

)
is H(x, y) = P (T̃1 ≤ x, T̃2 ≤ y).

The estimators for the bivariate distribution function of gap times (T1, T2),
F12(x, y), are weighted Kaplan-Meier estimators with the same weights used
in the de�nition of the estimator of the total time distribution function F̂ (y)

(see [1, 2, 8]), based on the ranks of Ỹi, Ri = Rank(Ỹi), where, in the case of
ties, the ranks of the censored observations Ỹi's are higher than the ranks of the
uncensored observations.

F̂12(x, y) =

n∑
i=1

WiI
(
T̃1i ≤ x, T̃2i ≤ y

)
(5)

with I(A) the usual indicator function of the event A.
The second gap time distribution function estimator is easily obtained from
equation (5). In fact, we have

F̂2(y) = F̂12(∞, y) =

n∑
i=1

WiI
(
T̃2i ≤ y

)
(6)

The weights Wi in equation (5) presented in the expressions (7) and (9) are
already known and the corresponding estimators have already been studied (see
[1, 2]).

Wi =
δ2i

n−Ri + 1

i−1∏
j=1

(
1− δ2j

n−Rj + 1

)
(7)

With the weights de�ned in (7), the estimator (5) only assigns positive mass to
pairs of gap times with both components uncensored.

In order to assign positive mass to pairs of gap times in which only the second
gap time T2 is censored, while the weight assigned to pairs with the �rst gap
time censored remains zero, a binary classi�cation model m(x, y) can be used,
which, based on the observed values of the �rst gap time and the total time,
assigns a non-zero probability to the event δ2 = 1.

m(x, y) = P
(
δ2 = 1|T̃1 = x, Ỹ = y

)
, x ≤ y (8)

Wi = Wi(m) =
m(T̃1i, Ỹi)

n−Ri + 1

i−1∏
j=1

(
1− m(T̃1i, Ỹi)

n−Rj + 1

)
(9)

When the model m is parametric, like the logistic model, we must estimate the
model parameters, typically computed by maximizing the conditional likelihood
of the δ2's given (T̃1, T̃2) for those cases with δ1 = 1 (see [6, 7]).



An alternative way for the de�nition of the Kaplan-Meier weigths, is to con-
sider the probability m(x, y) in equation(8) given by decision trees or random
forests methodologies. The incorporation of smoothed Kaplan-Meier weigths in
the estimation of the bivariate function aims to reduce the bias imposed by right
censoring. When estimating the probabilities of the second gap time observations
being censored, knowing the values of the �rst gap time and the total time, the
objective is not to explain but to predict. So it might make sense to use decisions
trees or random forests to get these probabilities. In fact, in general terms, if
the focus is mainly on explanation, logistic regression tends to perform better
than random forests, but this in not completely true if the focus is on prediction
rather than explanation [4]. On the other hand, logistic regression requires there
to be little or no multicollinearity among the independent variables. This means
that the independent variables should not be too highly correlated with each
other which, in the case under analysis, is not veri�ed since the �rst gap time x
and the total time y can be strongly associated.

3 Estimators of the Kendall's Tau Coe�cient for

Censored Gap Times

With the de�nition and notations of subsection 1.1, to estimate the correlation
τ between two gap times, T1 and T2, we use the de�nition for Kendall's tau
coe�cient as the di�erence between the concordance probability, pc, and discor-
dance probability of T1 and T2, pd, given by expressions (2) and (3), respectively.
These probabilities depend only on the joint distribution function of the interval
times, F12, since the marginal distribution of the second interval time, T2, can
be obtained from the joint distribution function F12. Under right censoring, the
estimator of pc, p̂c, obtained from the distribution function estimator F̂12, only
converges to pc in a restricted domain, and the same goes for the estimator p̂d
of pd. In general we have p̂c + p̂d ≤ 1, therefore we will calculate these esti-
mates separately. In fact, denoting by τH the upper bound of the support of
the distribution function of Ỹ , say Hy, variable assumed to be continuous, and
de�ning

F 0
12 = P (T1 ≤ x, T2 ≤ y, T1 + T2 ≤ τH) (10)

it was proved that the estimators of F12, de�ned on section 2, converges to F 0
12,

as n → ∞, and not to F12 (see [2] for detailed explanation). The same situation
occurs for the estimator of the marginal distribution function of T2, F̂2, which
is given by

F̂2(y) = F̂1,2(∞, y) =

n∑
i=1

Wi(m)I(T̃2i ≤ y) (11)

In fact,

lim
n→∞

F̂2(y) = P (T2 ≤ y, T1 + T2 ≤ τH) ≡ F 0
2 (y) ̸= F2(y) (12)



3.1 Procedure for obtaining Kendall's Tau Estimates

In this subsection we present the numerical procedure for obtaining estimates
of Kendall's tau coe�cient. A data matrix with 4 columns and n rows is given,
M ≡ M [i, j], i = 1, . . . , n; j = 1, . . . , 4 . Each line i corresponds to one case.

� M [, 1] � time until the �rst event occurs;
� M [, 2] � total time until the second event occurs;
� M [, 3] � boolean variable: 1 if the time until the occurrence of the �rst event
is observed, 0 if it is censored;

� M [, 4] � boolean variable: 1 if the time until the occurrence of the second
event is observed, 0 if it is censored.

Step 1 The values of the columns of M are sorted in such a way that the
uncensored observations relative to the �rst time and relative to the total
time appear �rst.

Step 2 Assign a weight to each observation in such a way that the observations
with the highest rank have a greater weight. In the case of the estimator
proposed by J. de Unã-Álvarez and L. Meira-Machado [1], the censored ob-
servations both in the �rst time and in the total time have a weight of 0.
In the remaining estimators, the weight assigned to observation i is a func-
tion of the probability of this observation being censored in the second time,
knowing that it was not censored in the �rst time.

Example of the R code for this procedure:

R <- rank(M[, 2], ties.method="first")

n <- nrow(M)

Pkm <- rep(1,n)

for (i in 1:n){

for (j in 1:n){

if (R[j] < R[i])

Pkm[i] <- Pkm[i]*(1 - M2[j,4]/(n-R[j]+1))

}

Wkm[i,1] <- Pkm[i]*M2[i,4]/(n-R[i]+1)

}

n1 <- sum(M[,3])

glm.fitted <- fitted (glm(M[1:n1, 4] ~ M[1:n1,1] + M2[1:n1, 2],

family=binomial))

Mlogit <- c(glm.fitted, rep(0, n-n1))

P1 <- rep(1,n)

for (i in 1:n){



for (j in 1:n){

if (R[j]<R[i])

P1[i] <- P1[i]*(1-Mlogit[j]/(n-R[j]+1))

}

W1[i,1]<-P1[i]*Mlogit[i]/(n-R[i]+1)

}

}

Step 3 :: De�ne two indicator matrices I1 and I2 to indicate, respectively, the
concordant and discordant pairs in the data set.

R code for this procedure:

t2 <- M [ , 2] - M [ , 1]

for (i in 1:n) {

for (j in 1:n) {

if((M[j,1]<M[i,1] & t2[j]<t2[i])|(M[j,1]>M[i,1]

& t2[j] > t2[i])) I1[i j] <- 1 elseI I1[i,j] <- 0

if((M[j,1] > M[i,1] & t2[j] < t2[i])|(M[j,1]<M[i,1]

& t2[j] > t2[i])) I2[i,j] <- 1 elseI I2[i,j] <- 0

}

}

Step 4 :: Calculate the estimates of probability of concordance, probability of
discordance and the estimate of Kendall's tau coe�cient.

R code for this procedure:

hatpc1 <- t(as.matrix(W1))%*%I1%*%(as.matrix(W1))

hatpckm <- t(as.matrix(Wkm))%*%I1%*%(as.matrix(Wkm))

hatpd1 <- t(as.matrix(W1))%*%I2%*%(as.matrix(W1))

hatpdkm <- t(as.matrix(Wkm))%*%I2%*%(as.matrix(Wkm))

tau1 <- hatpc1-hatpd1

tau_km <- hatpckm-hatpdkm

4 Simulation Study

We can simulate correlated gap times by using copulas. In this work, we simu-
lated gap times with unitary exponential marginal distribution, obtained from
the Frank copula. The motivation for using the Frank copula is justi�ed because
it allows to obtain positive or negative, strong or moderate, correlations. Fur-
thermore, this copula does not have any tail dependence, so the dependences are
relatively similar for all values of the marginals.

The Frank copula is an archimedean copula, with associaton parameter α ∈
R− {0}, with generator ϕ given by

ϕ(t) = − log

(
e−αt − 1)

e−α − 1

)
, t ∈ [0, 1]



For this copula, the Kendall's tau coe�cient is given by

τ = 1 +
4(D(α)− 1)

α
, with D(α) =

1

α

∫ α

0

t

et − 1
dt

Samples of dimensions 50, 100, 150, 200 and 250 were considered. To implement
random censoring, for both the �rst gap time and the total time, we indepen-
dently generated uniform times on the interval [0, N ], where N was selected to
achieve a given proportion of censoring. Assuming independence between the
random variables C ∼ U [0, N ] with distribution function G (density g) and
Y ∼ Exp(1) with density fy, we have

P (C < Y ) =

∫ ∞

0

∫ y

0

fy(y)g(c)dcdy =

∫ N

0

1− e−y

N
dy =

N − sinh(b) + cosh(b)− 1

N

In the present work we take N = 4 to reach about 25% censoring for the �rst
gap time and a little more than 48% censoring for the total time.

#t1 first gap time; y total time

cens[,1] = runif(n,0,N)

for (i in 1:n){

ytilde[i,1] = min(y[i,1],cens[i,1])

d[i,1]=1

d1[i,1]=1

}

for (i in 1:n){

if (ytilde[i,1] < y[i,1]) d[i,1]=0

}

for (i in 1:n){

t1tilde[i,1] = min(t1[i,1],cens[i,1])

}

for (i in 1:n){

if (t1tilde[i,1] < t1[i,1]) d1[i,1]=0

}

We considered 10,000 repetitions of each procedure for generate the estimates
of Kendall's tau coe�cient. The �nal estimate was the mean of the estimates
produced in the simulation process. The standard deviation, the bias and the
Mean Squared Error of the estimate were also calculated.

4.1 Simulation Results

The tables presented in this section contain the results of the simulations, namely
the estimates for τ and the corresponding bias, standard deviation (SD) and
the Mean Squared Error (MSE) of the estimator. The di�erent methods are
identi�ed as WKM for the weights given by expression (7), WSP for the weights in
the semiparametric estimator (9), WTree and WRF have the same expression for



the weights as the latter, but the estimated probabilities for the weights based
on the model m (see (8)) are calculated with decision trees and random forests
methodologies, respectively.

In all cases, the values of standard deviation andMSE decrease as the sample
size increases, implying the consistency of the estimates. In what concerns to bias
it gets smaller and smaller with increasing sample size in all cases except for low
negative association in WSP estimator (Table 2).

Low Positive Association The Table 1 show the performance for all estima-
tors for gap times with low positive association. In this case, WSP performs better
with lower SD and MSE for all sample sizes considered.

Table 1. True tau 0.1100

n method τ̂ τ̂ − τ SD(τ̂) MSE(τ̂)

50

WSP 0.0270 −0.0830 0.0983 0.0165
WKM 0.0241 −0.0860 0.1269 0.0235
WTree 0.0223 −0.0878 0.1065 0.0190
WRF 0.0215 −0.0885 0.1087 0.0197

100

WSP 0.0348 −0.0753 0.0737 0.0111
WKM 0.0272 −0.0828 0.0952 0.0159
WTree 0.0293 −0.0807 0.0818 0.0132
WRF 0.0272 −0.0828 0.0822 0.0136

150

WSP 0.0367 −0.0733 0.0623 0.0093
WKM 0.0277 −0.0823 0.0805 0.0132
WTree 0.0291 −0.0810 0.0698 0.0114
WRF 0.0285 −0.0816 0.0702 0.0116

200

WSP 0.0381 −0.0719 0.0557 0.0083
WKM 0.0277 −0.0823 0.0719 0.0119
WTree 0.0292 −0.0809 0.0625 0.0104
WRF 0.0289 −0.0812 0.0629 0.0105

250

WSP 0.0402 −0.0698 0.0513 0.0075
WKM 0.0280 −0.0820 0.0659 0.0111
WTree 0.0292 −0.0808 0.0581 0.0099
WRF 0.0297 −0.0803 0.0579 0.0098

Low Negative Association In what concerns to data with low negative as-
sociation, the results present in Table 2, reveal that WSP estimator is again the
best estimator, but as the sample size grows, there is a change in the sign of the
bias of this estimator. The smallest values of bias are achived for moderately
sized samples (n = 100, 150).



Table 2. True tau -0.1100

n method τ̂ τ̂ − τ SD(τ̂) MSE(τ̂)

50

WSP −0.1052 0.0048 0.1097 0.0121
WKM −0.1211 −0.0111 0.1286 0.0166

WTree −0.1163 −0.0063 0.1148 0.0132
WRF −0.1209 −0.0109 0.1136 0.0130

100

WSP −0.1099 0.0002 0.0841 0.0071
WKM −0.1260 −0.0161 0.0986 0.0100

WTree −0.1192 −0.0092 0.0872 0.0077
WRF −0.1246 −0.0146 0.0874 0.0078

150

WSP −0.1109 −0.0009 0.0704 0.0050
WKM −0.1272 −0.0171 0.0827 0.0071

WTree −0.1214 −0.0114 0.0730 0.0054
WRF −0.1254 −0.0154 0.0737 0.0057

200

WSP −0.1127 −0.0027 0.0631 0.0040
WKM −0.1286 −0.0186 0.0728 0.0056

WTree −0.1231 −0.0130 0.0650 0.0044
WRF −0.1270 −0.0170 0.0650 0.0045

250

WSP −0.1131 −0.0031 0.0586 0.0034
WKM −0.1294 −0.0194 0.0664 0.0048

WTree −0.1248 −0.0147 0.0595 0.0038
WRF −0.1276 −0.0176 0.0597 0.0039

Moderate Positive Association In case of moderate positive association,
the results presented in Table 3 show that although the estimative of τ is closer
to WKM than the other estimates, this one has greater variability. In terms of
consistency, both WSP and WRF perform better with a lower MSE, the latter
being slightly better because of its lower bias.



Table 3. True tau 0.3881

n method τ̂ τ̂ − τ SD(τ̂) MSE(τ̂)

50

WSP 0.1922 −0.1959 0.0966 0.0477
WKM 0.2070 −0.1811 0.1249 0.0484
WTree 0.1890 −0.1992 0.0981 0.0492
WRF 0.1958 −0.1923 0.1028 0.0476

100

WSP 0.2093 −0.1788 0.0722 0.0372
WKM 0.2188 −0.1694 0.0944 0.0376
WTree 0.2048 −0.1833 0.0765 0.0395
WRF 0.2122 −0.1759 0.0788 0.0372

150

WSP 0.2153 −0.1729 0.0615 0.0337
WKM 0.2222 −0.1659 0.0816 0.0342
WTree 0.2124 −0.1758 0.0679 0.0355
WRF 0.2184 −0.1697 0.0689 0.0335

200

WSP 0.2208 −0.1673 0.0553 0.0311
WKM 0.2256 −0.1626 0.0732 0.0318
WTree 0.2180 −0.1701 0.0627 0.0329
WRF 0.2231 −0.1650 0.0621 0.0311

250

WSP 0.2242 −0.1639 0.0506 0.0294
WKM 0.2269 −0.1613 0.0676 0.0306
WTree 0.2209 −0.1673 0.0587 0.0314
WRF 0.2256 −0.1625 0.0573 0.0297

Moderate Negative Association In the case of moderate negative associ-
ation, the results presented in the Table 4 show a better performance for all
estimators, with the bias being considerably reduced compared to the corre-
sponding values in the case of moderate positive association. However, as in the
previous case, the estimator WKM exhibits greater variability and a higher value
for the MSE than any of the estimators WSP and WRF. In this case WRF performs
better.



Table 4. True tau -0.3881

n method τ̂ τ̂ − τ SD(τ̂) MSE(τ̂)

50

WSP −0.3056 0.0826 0.1152 0.0201
WKM −0.3167 0.0714 0.1261 0.0210
WTree −0.3130 0.0751 0.1137 0.0186
WRF −0.3154 0.0727 0.1128 0.0180

100

WSP −0.3234 0.0648 0.0855 0.0115
WKM −0.3309 0.0572 0.0939 0.0121
WTree −0.3307 0.0575 0.0863 0.0107
WRF −0.3298 0.0583 0.0843 0.0105

150

WSP −0.3311 0.0570 0.0720 0.0084
WKM −0.3380 0.0502 0.0796 0.0088
WTree −0.3374 0.0508 0.0730 0.0079
WRF −0.3372 0.0510 0.0715 0.0077

200

WSP −0.3364 0.0517 0.0634 0.0067
WKM −0.3408 0.0474 0.0709 0.0073
WTree −0.3411 0.0470 0.0652 0.0065
WRF −0.3405 0.0476 0.0638 0.0063

250

WSP −0.3392 0.0488 0.0582 0.0057
WKM −0.3435 0.0446 0.0644 0.0061
WTree −0.3435 0.0446 0.0596 0.0055
WRF −0.3433 0.0448 0.0582 0.0054

High Positive Association In relation to high positive association, according
to the results shown in the Table 5, all estimators present worse performance
when compared to the corresponding ones in the case of moderate positive asso-
ciation. Both the bias, the standard deviation and the MSE present higher values
in all estimators. For strong positive association, the estimator WSP presents a
smaller MSE and the estimator WTree has lower SD.



Table 5. True tau 0.7626

n method τ̂ τ̂ − τ SD(τ̂) MSE(τ̂)

50

WSP 0.4849 −0.2778 0.1226 0.0921
WKM 0.4856 −0.2770 0.1368 0.0954
WTree 0.4136 −0.3489 0.1058 0.1329
WRF 0.4465 −0.3160 0.1153 0.1132

100

WSP 0.5212 −0.2414 0.0995 0.0681
WKM 0.5079 −0.2547 0.1088 0.0767
WTree 0.4410 −0.3216 0.0790 0.1096
WRF 0.4776 −0.2850 0.0922 0.0897

150

WSP 0.5363 −0.2263 0.0889 0.0591
WKM 0.5128 −0.2498 0.0937 0.0712
WTree 0.4593 −0.3033 0.0705 0.0970
WRF 0.4888 −0.2738 0.0799 0.0813

200

WSP 0.5485 −0.2140 0.0814 0.0524
WKM 0.5205 −0.2421 0.0847 0.0658
WTree 0.4748 −0.2878 0.0663 0.0872
WRF 0.5006 −0.2619 0.0730 0.0739

250

WSP 0.5538 −0.2088 0.0786 0.0498
WKM 0.5219 −0.2407 0.0809 0.0645
WTree 0.4840 −0.2785 0.0638 0.0816
WRF 0.5053 −0.2573 0.0694 0.0710

High Negative Association The results in the Table 6 are in line with what
happens in moderate negative association. There is a considerable reduction in
the bias, standard deviation and MSE of the estimators in a scenario of strong
negative association. There is also a better performance of the estimator WSP in
relation to the others.



Table 6. True tau -0.7626

n method τ̂ τ̂ − τ SD(τ̂) MSE(τ̂)

50

WSP −0.6310 0.1315 0.0862 0.0247
WKM −0.6268 0.1358 0.1094 0.0304
WTree −0.6047 0.1578 0.1021 0.0353
WRF −0.6171 0.1455 0.0970 0.0306

100

WSP −0.6609 0.1017 0.0569 0.0136
WKM −0.6530 0.1096 0.0819 0.0187
WTree −0.6507 0.1119 0.0716 0.0176
WRF −0.6494 0.1132 0.0717 0.0179

150

WSP −0.6729 0.0897 0.0457 0.0101
WKM −0.6656 0.0970 0.0700 0.0143
WTree −0.6654 0.0972 0.0592 0.0130
WRF −0.6638 0.0988 0.0615 0.0135

200

WSP −0.6796 0.0830 0.0386 0.0084
WKM −0.6717 0.0908 0.0628 0.0122
WTree −0.6741 0.0885 0.0522 0.0106
WRF −0.6717 0.0909 0.0548 0.0113

250

WSP −0.6834 0.0792 0.0343 0.0074
WKM −0.6753 0.0873 0.0573 0.0109
WTree −0.6786 0.0839 0.0471 0.0093
WRF −0.6760 0.0866 0.0494 0.0099

5 Example of Application With Real Data

In this section, the methods described in Section 3 are applied to data from
a bladder cancer study in which patients had super�cial bladder tumors that
were removed. Some patients had multiple recurrences of tumors during the
study [3]. The R survival package contains data from 85 subjects in the placebo
and thiotepa treatment groups. Considering the �rst two recurrences times (in
months) and the corresponding gap times, T1 and T2 we have, of the total of
85 patients, 47 relapsed at least once and 29 of these had a new recurrence.
This data contain a high percentage of total censored time. In fact 66% of total
observations is censored and 44.7% of the observations on �rst gap time are
censored (see Figure 1).



Fig. 1. Bladder data with censored observations

In this example, the estimates obtained with the presmoothing estimator,
WSP, and with the estimator with weights obtained using the random forests
methodology, WRF, show less variability, according with the results of a nonpara-
metric bootstrap approach to calculate the con�dence intervals of Kendall's τ
(see Table 7). Table 7 also contains the value of the point estimate of τ , using
the various estimators, as well as the mean and standard deviation calculated
from 200 bootstrap samples. If we consider the results of simulation presented
in this study, WSP is the best estimator in this case, so there is no evidence of
association of the two gap times in this study (bootstrap quantiles in Table 7).

Table 7. Tau Estimatives and Bootstrap CI: Bladder Data

Method τ̂ Mean SD χ.025 χ.975

WSP −0.0614 −0.0619 0.0345 −0.1253 0.0047
WKM −0.0915 −0.0915 0.0366 −0.1701 −0.0268
WTree −0.0979 −0.0979 0.0449 −0.1542 0.0186
WRF −0.0857 −0.0857 0.0350 −0.1513 −0.0175

6 Conclusions

In this paper we estimate Kendall's tau coe�cient from the estimates of the prob-
ability of concordance and discordance of right-censored gap times pairs. This
is not the usual approach in the papers that have been published on this topic.
In general, the authors use a compact formula for the estimator, considering the
complementarity of concordant and discordant events. Both for estimating the
probability of concordance and for estimating the probability of discordance, we
used estimators of the joint distribution function of the gap times under right



censoring, as well as estimators for the marginal distribution function of the sec-
ond gap time. Recall that for the second gap time, the distributions of T2 and
censorship are not independent. The approach followed to accommodate this
dependency is not new. However, this paper presents two new alternatives for
smoothing the weights of the estimator. These alternatives consist of considering
decision trees and random forests methodologies, to calculate the probabilities
associated with the occurrence of censoring in the second gap time, given the
total time and the values of the �rst gap time.

The results of the simulations are compatible with the behavior already
known of the estimators of the joint distribution function of pairs of gap times
previously studied. In fact, the lower variability of the presmoothed semipara-
metric estimator (see [2]) in relation to the weighted Kaplan-Meier is also pre-
sented in the corresponding Kendall's tau estimators. Regarding the estimator
with smoothed weights using random forests, the simulation results are com-
patible with the best performance of this one in relation to both the weighted
Kaplan-Meier and the smoothed weight estimator using decision trees.

Estimators generally perform better in a scenario of negative association of
gap times. Furthermore, if the association is strongly negative, there is a very
marked reduction in bias, standard deviation and MSE of all estimators, even
in a context of small or moderate samples. When the association is moderately
negative, the performance of estimator with smoothed weights using random
forests is superior to the other estimators.

In the case of positive association, the best performing estimator is the pres-
moothed nonparametric, if the association is strong and, in the case of moderate
positive association, this estimador and the estimator with smoothed weights
using random forests perform identically.
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