
Fine-tuning GPT-2 to patch programs, is it worth
it?

Márk Lajkó1’2!0000-0003-0674-1275^ Dániel Horváth1’2!0000-0001-8855-921*],
Viktor Csuvik1’2!0000-0002-8642-3017^ and László Vidács1’2!0000-0002-0319-3915

1 University of Szeged, Department of Software Engineering
2 MTA-SZTE Research Group on Artificial Intelligence

https://www.sed.inf.u-szeged.hu
{mlajko,hoda,csuvikv,lac}@inf.u-szeged.hu

Abstract. The application of Artificial Intelligence (A I) in the Soft­
ware Engineering (SE) field is always a bit delayed compared to state-of-
the-art research results. While the Generative Pre-trained Transformer
(GPT-2) model was published in 2018, only a few recent works used it to
SE tasks. One of such task is Automated Program Repair (APR), where
the applied technique should find a fix to software bugs without human
intervention. One problem emerges here: the creation of proper train­
ing data is resource intensive and requires several hours of additional
work from researchers. The sole reason of it is that training a model
to repair programs automatically requires both the buggy program and
the fixed one in large scale and presumably in an already pre-processed
form. There are currently few such databases, so teaching and fine-tuning
models is not an easy task. In this work we wanted to investigate how
the GPT-2 model performs when it is not fine-tuned for the APR task,
compered to when it is fine-tuned. Prom previous work we already know
that the GPT-2 model can automatically generate patches for buggy pro­
grams, although the literature lacks of studies where no fine-tuning has
taken place. For the sake of experiment we evaluated the GPT-2 model
out-of-the-box and also fine-tuned it before the evaluation on 1559 JavaS-
ript code snippets. Based on out results we can conclude that although
the fine-tuned model was able to learn how to write syntactically correct
source code almost on every attempt, the non-fine-tuned model lacked
some of these positive features.

Keywords: Automated Program Repair • Machine learning • JavaScript • Code
Refinement • GPT-2 • fine-tune

1 Introduction

Recent researches in NLP led to the release of multiple massive-sized pre-trained
text generation models like the the Generative Pre-trained Transformer. There
are currently three versions of it (GPT-1,2,3), from which we used GPT-2. Al­
though OpenAI, the original creator of the G PT family, did not make the im­
plementation of the model publicly available, thanks to the efforts of the NLP

https://www.sed.inf.u-szeged.hu

and A I research community where are several open-access implementations of it.
These are pre-trained on a very large corpus of data in a self-supervised fashion.
Since GPT-2 is trained to guess the next word in sentences, the training pro­
cess does not require any special data, it can be easily obtained from scrapping
web pages from the internet (it was originally trained on the text from 8 million
websites). It is known that unfiltered data from the web is far from neutral,
and the OpenAI team themselves pointed out that "...G PT-2 do not distinguish
fact from fiction, we don’t support use-cases that require the generated text to
be true..." and "...G PT-2 reflect the biases inherent to the systems they were
trained on... " [23]. Although this training procedure have some limitations, the
outcome of it made the G PT family famous by writing stories about talking
unicorns [2]. There are no fundamental algorithmic breakthroughs concerning
GPT-2, the original model was essentially scaled-up, resulting a model with
lOx more parameters than the original. Although GPT-2 is not the latest GPT
model we hypothesize that the results would be roughly the same with more-
recent model variants as well. Although it limits our work to some degree, the
training data we assembled and the experiments are reproducible with larger
models as well, for any future researchers in the field.

The ease with which the G PT family can be used for a completely new un­
seen task is thrilling, without training for a single epoch. This combined with
the availability of cheap computing capacities has led many software engineers to
use these models without any special background knowledge [32]. On the other
hand, fine-tuning a model requires more computational power and also com­
petent people. While the pre-trained models are usually okay for experiments,
for real production scenarios fine-tuning to the downstream task (e.g. sentiment
detection, dialogue response generation, code completion, etc.) is usually recom­
mended. This is especially true for those special cases when the downstream task
is rather specific or it ’s domain differs from the one it was trained on. Although
it is true that the training data of GPT-2 contains source code as well, natural
language is present in the majority. Automated Program Repair is such a down­
stream task where fine-tuning might worth it, since in it the input and the output
of the model is source code. The goal of it is that by given a buggy program the
model should automatically create a patch for it without human intervention.
This so-called patch is considered to be correct when it is syntactically identi­
cal (except for white-spaces) to the developer fix. This criterion is rather strict,
by comparison tools that follow the Generate and Validate approach, validation
is usually done against an oracle, which is usually the test suite. A program
is marked as a possible fix, if it passes all the available test cases. This latter
condition gives no assurance that the program is correct, since over- and un­
derfitting [17] often occurs, resulting in inadequate patches. Although there are
some approaches that tried to tackle with this problem [8,3,5], the question of
patch correctness is considered to be still open [9].

Encouraged by the excellent recent results of data-driven A PR approaches [15,
4,30,21,5], in this work we wanted to investigate whether is it worth fine-tuning
the GPT-2 model. At the time of writing this article the top three approaches

are CoTexT [22], PLBART [1] and DeepDebug [5]. Although none of these ap­
proaches use the GPT-2 model, their operating principle is similar. From pre­
vious work we know that the fine-tuned GPT model is able to repair programs
automatically, although it is of question what is the performance of the raw
pre-trained model on the same task. We used the GPT-2 implementation of
the Hugging Face [14] community. We fine-tuned the model on JavaScript [26]
samples and evaluated it, and also used the pre-trained version out-of-the-box
and simply evaluated the test data on it. The choice of JavaScript is arbitrary,
although it is the de-facto web programming language globally and the most
adopted language on GitHub [10], the study could be executed on any other
languages as well.

To be able to fine-tune the G PT model, we mined 18736 bug-fixing commits
from GitHub and preprocessed them before fed to the model. These samples are
divided in the classic train-test-validation sets and the model was evaluated on
these samples. On the other hand, the pre-trained model was not fine-tuned,
simply evaluated on the test set. Based on our experiments the fine-tuned GPT-
2 was able to repair 126 programs on first try, while when no fine-tuning was
applied only 10. On the other hand, when the non-fine-tuned model had more
chances to generate a patch, it was able to generate fixes in 269 cases.

The paper is organized as follows. After a high-level overview of our research,
the dataset and the model is described in Section 2. Thereafter Section 2.1
and Section 3.2 describe the preprocessing and fine-tuning steps. After that
the process of patch generation is depicted in Section 3.3 and we present the
settings with which the experiments were carried out. Evaluation and analysis
are presented in Section 4, followed by the discussion of this experiment. Related
work is discussed in Section 5, and we conclude the paper in the last section.

2 Approach

In Figure 1 we depicted the high-level approach we present in this paper. First,
JavaScript files are being fetched from GitHub and stored locally. Afterwards
these files are preprocessed to form samples that can be fed to the GPT-2 model.
These samples form a (Pbuggy ,P f ixed) tuple, where Pbuggy is the state of the
program before the code change, while p f ixed is the program after the patch has
been applied patch. Note that we focused on bugs which affect only one line, thus
Pf ixed is always a single line, while p buggy is the 900 tokens before that. From
the retrieved 18736 JS files we extracted 18422 samples (18422 (p buggy,P f ixed)
pairs). These tuples are next split into two separate parts: training and test
samples. The training samples are used to fine-tune the GPT-2 model, while
the test samples are for evaluation. We conducted two experiments: (1) in which
we did not fine-tune the GPT-2 model, just evaluated the pre-trained model
on the test samples and (2) first the model is being fine-tuned and next it is
being evaluated on the same test set as the non-fine-tuned version. In both
cases the output is a list of the generated patches, since on multiple runs the
model gives back different results. Taking advantage of this, we handled the

output as an ordered list and made experiments that investigate not only the
first line (candidate patch) but the the ones that follow as well. At the end, these
ordered lists are compared against the developer fix and thus it can be easily-
decided whether the patch is correct or not. Finally we calculate the percentage
of correctly patched programs in both cases and analyze that.

2.1 Dataset

For the experiments we created our own dataset based on Github projects, also
contained by BugsJS f 12], which contains reproducible JavaScript bugs from
10 open-source projects. However we did not restricted ourselves to bugs only.
In this dataset one can find changes containing bug fixes, code refinements,
refactorings, etc. For the sake of simplicity, in the paper we refer to these code­
refinements, as bugs. The dataset contains both single- and multi-line bugs as
well. The detailed description of these code-refinements are beyond the scope
of this research, but the interested reader is encouraged to take a look at the
original paper or the aforementioned projects themselves, for further details. We
retrieved commits using the GitPython [11] package. First we downloaded the
repository, then iterated through commits one-by-one, collecting code changes
for files with .js extension. At the end of this phase we identified 18736 files.
These files served as the basis of our preprocessing step.

Preprocessing From the mined JavaScript files every comment is being re­
moved since they do not affect the execution. Then we split the 18736 files into
16863 training and 1559 test samples (some of the files were ignored because the

code-change environment is not always adequate). Each file is preprocessed from
the start until we reach the modified location and additional 10 lines. Note that
for fine-tuning we picked the fixed version of the files, so the model only learns
refined code and not its previous version. The evaluation samples on the other
hand contain the change as well, so it can be compared to the code generated
by the model. Since the model takes input sequences of fixed length, we had pad
these sequences to be of equal length (2040 tokens). The input is then saved to a
file where every line consists of 2040 tokens and it will be fed to the model line-
by-line. Keep in mind that the preprocessing steps are different for fine-tuning
and prediction depending on whether we are using the model for training or
inference.

3 Experiment setup

3.1 G PT -2

The original Generative Pre-trained Transformer, or in short GPT, model was
published in 2018, a descendant and improved version of it is GPT-2 [2]. It ’s
architecture is based on the Transformer, which is an attention model - it learns
to focus attention on the previous words that are the most relevant to the task at
hand: predicting the next word in the sentence. Since it was designed to generate
sentences, it has fixed input and output dimensions. Since it is a statistical
architecture, no linguistic information is hardcoded into it. This property allows
it to generate not just natural language but source code as well. Although the
pre-trained model is suitable for some experiments tasks, it is adviseable in
special cases to fine-tune it for downstream tasks.

3.2 Fine-tuning

Text sequences serve as the input of the GPT-2 model, which is usually plain
English text in natural language processing. While fine-tuning the model there
is no target like in classic machine learning, the model itself can learn on plain
text to generate additional text (while it was trained its goal was to predict the
next word in a sequence). In this paper the models input is a simple text file but
instead of natural language we train on source code.

In our experiments we used HugginFace [14] implementation of the pre­
trained GPT-2 model. It was used in two scenarios: generation without and with
fine-runing. The fine-tuning took place on am Nvidia GeForce RTX 3090 with
batch size of 7 due to the limited GPU memory. Fine-tuning took 3 hours and 13
minutes. As tokenizer we used GPT-2 pretrained tokenizer with additional to­
kens: bos_token= ’<|startoftext|>, eos_token= ’ <|endoftext|>’ , pad_token=
’< |pad| > ’. For the training we built a custom pytorch dataset and used it for
our custom data loader. As optimizer we used AdamW optimizer and used lin­
ear learning rate scheduler with warmup (warmup^steps = le2, total^steps =
len(train_dataloader) * epochs). As early stopping parameter we used patience

Table 1. Results of the GPT-2 model to generate patches automatically. The upper table shows the

results of the fine-tuned model and the lower table shows the results of the pre-trained model. In each

generation the model created a list of patches. We considered the generations in an accumulative

fashion: if we consider the first generation and the Top i result, only one patch is examined, in

contrast in the fifth generation there are five candidate patches (one patch per generation). In this

sense, the Top i results in the fifth generation includes 5 candidate patches. The abbreviations used

are the following: EM - Exact Match, E D n - Edit Distance within the range N (candidates with

character differences less than N).

Generation
Topi

EM # ED5 EDio

G P T -2 fine-tuned
Top5

EM # E D 5 EDio
Topio

EM # E D 5 EDio

#1 8.08 10.71 11.61 12.89 16.23 17.7 13.73 17.32 19.24
#2 8.98 11.61 12.51 14.24 17.77 19.31 15.2 19.05 21.17
#3 9.69 12.44 13.53 15.14 18.92 20.78 16.36 20.53 23.16
#4 9.81 12.63 13.73 15.59 19.5 21.49 16.87 21.3 24.12
#5 9.94 13.09 14.18 15.91 20.4 22.45 17.25 22.45 25.53

G P T -2 pre-trained

#1 0.64 1.15 2.5 1.22 1.86 5.52 1.48 2.25 7.12
#2 0.71 1.41 3.08 1.28 2.37 6.86 1.54 2.82 8.92
#3 0.77 1.48 3.78 1.35 2.69 8.21 1.67 3.34 10.78
#4 0.83 1.67 4.17 1.41 2.95 9.17 1.73 3.66 11.93
#5 0.83 1.67 4.17 1.41 2.95 9.17 1.73 3.66 11.93

3. We set 100 as maximum number of epochs. Additional parameters of the
GPT-2 model: top_k=50, top_p=0.8, do_sample=True, max_length=1024,
num _ return _ sequences= 1.

3.3 Patch Generation

First we expanded the GPT-2 models generate function so that the function
returns a list of lines of the generated code without the input given to the
model. For every bug we called this generate function 10 times which means we
generated 10 patches for every input sample. The expanded generate function
returns 124 tokens each time it is being called, thus the number of generated lines
vary by sample and generation. In every generation we compared each generated
line to our target text, which means for every bug we have 10*x candidate one-
liner patches, where x corresponds to the generated 124 tokens divided by the
number of line separators in our generated text. By doing so we ended up with a
lot of candidates, but in an ordered manner: the first line in the first generation
is treated as the "first guess of the model", so it has a privilege in some sense.
As we move forward in generations and lines, the less focus is on the candidate.
This patch generation process is executed for both the pre-trained and the fine-
tuned model which are evaluated separately. In the next sections we compare
the results in more details.

4 Results

In the previous section we described how we created candidate files for each bug.
The evaluation of the results was based on these candidate text files where all
candidates can be found for each bug. We compared each of these candidate
patches to the target text by edit distance.

In this section we are going to compare the results of the pro-trained and the
fine-tuned version of the model then analyze the results manually. The model, the
preprocessing and the generation of the candidates are essentially the same the
only difference is whether we are using fine-tuning or not. Before our experiment
we expected the fine-tuned model to be much more effective and we also supposed
that the fine-tuned version was going to be a lot better in predicting variable
names as well.

//2
r e n d e r e r S y n c = re q u i r e (’

. / extend ’) .
Tenderer Sync . l i s t ()

//113
queryParams=ut i l .

parseQueryParams (
l o c a t i o n . search)

//115
i t (’ should invoke the

c a l lb ack 404’ ,
fu n c t i on (done)

//180
e x p e c t (c o n s o l e . l o g .

c a 11 e d W i t. li (s i u o n .
match (’ Name ’))) . be .
t rue :

//261
fs . readd irSync (

___dirname — ’ / . . /
c o n t r o l l e r s ’) .
forEacli (fu n c t i on (
name) {

// 354
fo r (l e t i = 0, leu =

a r g s . length : i <
leu : i ----) {

//2
l e t Tenderer = Tenderer

. render . i ni t. ()

/ / 113
var e r ro rs = e r r o r ,

e r ro rs () :

/ / U 5
i t (’ should invoke the

c a l l b a c k when
c o m p le t e ’ , fu nc t i on
(done) {

//180
c o n s o l e . l o g (’ C a l l e d ’)

// 261
module . exports . forEacli

= fu n c t i on (name ,
da ta) {

/ / 354
i f (a r g s . l e n g t h > 0) {

Listing 1: Examples o f correct fixes generated by the fine-tuned G P T -2
m odel (le ft) and fixes for these samples generated by the pre-trained

m odel (righ t).

For our quantitative evaluation we used edit distance. Our strictest condition
was to generate identical patches, in this case we didn’t accept patches that would
be identical without white spaces. We evaluated the results with different edit
distances so that we can see how close were our candidates to the correct patch.
For both cases (pro-trained and fine-tuned model) we generated patches for one
bug 5 times and considered each generated line as a candidate. The results are
aggregated by generations so in each following generations there are greater or
equal number of correct patches, it is also obvious that the more generations
we use the less likely we are to find new additional correct patches (for example
after the first generation we are more likely to find correct patches than after
the 4th generation).

(\ (
//12 //12
i f (2 = arguments. re tu rn t h i s :

l e n g th) {
// 213 //213
r e g i s t e r (’ d a t a ’) : 5 5

//214 // 214
i f (b rowser) { } : 0 => {
//720 // 720
e l s e { e l s e {
//914 // 914
5 5

1 {
//1097
app . g e t (’ /m o v i e ’ , //1097

fu n c t i on (req , r e s) { NULL
V /V /

Listing 2: Examples o f correct patches generated by the pre-trained model
(le ft) and fixes for these samples generated by the fine-tuned m odel (righ t)

Observing Table 1 we can clearly see that the fine-tuned model performed
much better than the pre-trained one (upper table: fine-tuned, lower table pre­
trained). The pre-trained model was able to generate 10 correct patches in the
first generation and the first line, while the fine-tuned model was able to generate
126 correct patches in the first generation and the first line. As we mentioned
earlier the results are aggregated by generation so in each generation the number
of found identical patches can not be less than before. From the two observed
tables we can also see that the total generated identical patches are 27 for the
pre-trained model and 269 for the fine-tuned one. We can also observe that the
less strict we are concerning the number of candidate lines per generation the
better results we get. It is also clear that the more additional candidate lines we
consider per generation better the results get. As we stated above we generate
more than just the first line after the input code snipped given to our model
(these are the candidate lines) despite the location of the one-liner bug is right
after the input code snippet. Because gpt-2 is capable of understanding the input
code snippet the first candidate line is the most likely to be a correct patch and
as we check for later candidate lines the less likely the model is to generate the
identical patch.

Next wo analyze the generated patches manually and we are going to see
that both the pre-trained and the fine-tuned model are really good at generating
correct variable names and human readable error messages, although the fine-
tuned model can generate more complex patches. On Listing 1 we can see
the identical candidate patches generated by the fine-tuned model compared to
the fixes generated by the pre-trained model. Among these correct patches we
can see that the fine-tuned version was able to generate more complex identical
patches than the pre-trained one. Both the pre-trained and the fine-tuned model
can predict correct variable names, and there are also examples of the fine-tuned
model generating human readable error messages. On Listing 2 we can find the
identical fixes of the the pre-trained model compared to the fixes generated by the
fine-tuned model. It seems like that the pre-trained model only generated easy
fixes (i.e. short patches). Interestingly the fine-tuned model seems to "over learn"
on these simple cases. In future research we plan to investigate it in more details.
On the other hand on Listing 3 we listed only incorrect patches generated by
the pre-trained model, but as can be seen they are really close to the target. As
we described earlier our evaluation was strict so we didn’t consider these patches
correct. Knowing the fact that the pre-trained model was not trained on any hexo
(JS project) files, we can state that the reason for generating so accurate regular
expressions (bug 37) is not data leakage. Note that the patches generated by
the pre-trained model make sense in most of the cases, even a developer cannot
decide whether it is correct or not without knowing the context.

{ \
// 37
var rSwigVar = ,/\{ [\s\S] * ? \ } \ } / g : //Pre-trained
var rSwigComment. = ,/\\{ # [\ \ s\\S] * ? # \\} / g : //Fine-tuned
var rSwigComment. = /\ {# [\s\S] * ? # \ } / g : //Target
// 270
Reso lve r . p ro to type . r e s o l v e T a rg e t= fu n c t i o n () // pre-trained
Reso lve r . p ro to type . get .Depeudeucies=funct ion () // fine -

tuned
Reso lve r . p ro to type . get .Depeudeucies=funct ion () // target
/ / 1 0 6 5
app . g e t (’ / e r r o r ’ , f u n c t i o n (err , r e s) { // p r e - t r a i n e d
app . g e t (’ / e r ro r ’ , f u n c t i o n (req , r e s) { // f i n e - tu n e d
app . g e t (’ / e r r o r ’ , f u n c t i o n (req , r e s) { // t a r g e t
/ / 1 0 9 6
var paths = r e q u i r e (’path’) ; // pre-trained
var pathspec = r equ i r e (’pathspec’) ; // fine-tuned
var pathspec = r e q u i r e (’pathspec’): // target

Listing 3: Patches generated by the observed models that are nearly
identical to the developer change.

5 Related Work

In this work we used our own dataset to create the train-test-evaluation set
of data for our model, although there are others available. Defects4J [16] is a
popular dataset consisting 395 Java bugs. The ManyBugs [18] dataset contains
bugs written in C - it were used to evaluate many well-known A PR tools (Gen-
prog [28], Prophet [19], etc.). Bugs.jar [25] is another well-known dataset, which
is comprised of 1,158 Java bugs and their patches. Hovewer, despite its pop­
ularity, none of the aforementioned datasets contain bugs for JavaScript. The
seminal work of Tufano et al. [27] includes the creation of a dataset for Java
program repair and evaluation an NM T (Neural Machine Translation) model
on it. This work is also included in the CodeXGLUE benchmark [20] which in­
cludes a collection of code intelligence tasks and a platform for model evaluation
and comparison. The CodeXGLUE team also operate a leaderboard of the best­
performing tools, where an approach called NSEdit [29] comes first at the time
of writing this paper.

NSEdit [29] is a pre-trained, transformer based encoder-decoder model that
predicts an editing sequence that can fix bugs. The encoder parts are initialized
using weights from the pre-trained CodeBERT [7] model, while the decoder
weights are initialized using CodeGPT [20]. They achieve an astonishing result
of 24.04% fix rate on the small -, and 13.87% on the medium CodeXGLUE [20]
dataset.

In this paper our aim was to use the GPT-2 [2] architecture to repair bugs
automatically. While we did not achieve state-of-the-art results (although hard
to compare because of the lack of publicly available datasets), to the best of our
knowledge we used this model for this task first. In the previously mentioned
CodeXGLUE benchmark [20] the capabilities of G PT was also utilized. They
used their CodeGPT model for several tasks, including code completion. In fact,
CodeGPT achieved an overall score of 71.28 in this task. Although these results
are state-of-the-art performances, in the papers the G PT model was not used
for Automated Program Repair.

Since the original article of GPT-2, several works have investigated the capa­
bilities and limits of the model [31]. Thanks to it’s availability the internet is full
of examples of the amazing generative capabilities of the model, from poetry,
news or essay writing [6]. Despite the fact that the latest descendant of the GPT
model family writes better than many people [24], they were used less for soft­
ware engineering tasks. In a recent work the authors introduce Text2App [13],
that allows users to create functional Android applications from natural language
specifications.

6 Conclusions

Although it is known from the literature that GPT-2 can be used for coherent
natural text generation without fine-tuning, it is little known whether its source
code generation capabilities improve significantly with fine-tune or not. To follow

up on this issue, we evaluated both the pre-trained (non fine-tuned) and the fine-
tuned GPT-2 model on a dataset that has been created from Github commits.
The fine-tuned model was trained on 16863 JavaScript samples, while the pre­
trained model was used out-of-the-box. The models were evaluated on the same
set of test samples, and it turned out that both are able to generate syntactically
and semantically correct source code. While the fine-tuned model was able to
correctly refine 126 programs on first try, the pre-trained only in 10 cases. When
both models had multiple chances to generate patches, the fine-tuned generated
correct pathes in 269 cases, while the pre-trained in 27 cases. Although the
GPT-2 model was designed for Natural Language processing and its training
data mostly consists of natural language texts, based on the results, we can
conclude that without fine-tuning it is still able to generate source code as well.
On the other hand, it seems that fine-tuning it to this downstream task boosts
its performance significantly, thus in this special case it did worth the extra
computational power. We also concluded that both the pre-trained and the fine-
tuned model are effective for using existing variable names, creating human
readable error messages and creating reasonable complex regular expressions.

Acknowledgements

The research presented in this paper was supported in part by the ŰNKP-21-3-
SZTE and ŰNKP-21-5-SZTE New National Excellence Programs, by Project no.
TKP2021-NVA-09 and by the Artificial Intelligence National Laboratory Pro­
gramme of the Ministry of Innovation and the National Research, Development
and Innovation Office, financed under the TKP2021-NVA funding scheme. Lás­
zló Vidács was also funded by the János Bolyai Scholarship of the Hungarian
Academy of Sciences.

References

1. Ahmad, W., Chakraborty, S., Ray, B., Chang, K.W.: Unified Pre-training
for Program Understanding and Generation pp. 2655-2668 (mar 2021).
https: / / doi.org /10.18653/vl/2021. naacl-main. 211

2. Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, I.S.: [GPT-
2] Language Models are Unsupervised Multitask Learners. OpenAI Blog l(M ay),
1-7 (2020)

3. Csuvik, V., Horvath, D., Horvath, F., Vidacs, L.: Utilizing Source Code
Embeddings to Identify Correct Patches. In: 2020 IEEE 2nd Interna­
tional Workshop on Intelligent Bug Fixing (IBF). pp. 18-25. IEEE (2020).
https://doi.org/10.1109/IBF50092.2020.9034714

4. Dinella, E., Dai, H., Brain, G., Li, Z., Naik, M., Song, L., Tech, G., Wang, K.:
Hoppity: Learning Graph Transformations To Detect and Fix Bugs in Programs.
Tech. rep. (2020)

5. Drain, D., Wu, C., Svyatkovskiy, A., Sundaresan, N.: Generating bug-fixes using
pretrained transformers. MAPS 2021 - Proceedings of the 5th ACM SIGPLAN
International Symposium on Machine Programming, co-located with PLDI 2021
pp. 1-8 (jun 2021). https://doi.org/10.1145/3460945.3464951

https://doi.org/10.1109/IBF50092.2020.9034714
https://doi.org/10.1145/3460945.3464951

6. Elkins, K., Chun, J.: Can GPT-3 Pass a Writer’s Turing Test? Journal of Cultural
Analytics (sep 2020). https://doi.org/10.22148/001c.17212

7. Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B.,
Liu, T., Jiang, D., Zhou, M.: Codebert: A pre-trained model for programming and
natural languages (2020). https://doi.org/10.48550/ARXIV.2002.08155, https://
a rx iv .org/abs/2002.08155

8. Gazzola, L., Micucci, D., Mariani, L.: Automatic software repair: A sur­
vey. IEEE Transactions on Software Engineering 45(1), 34-67 (2019).
https://doi.org/10.1109/TSE.2017.2755013

9. Gazzola Luca, Micucci Daniela, M.L.: Automatic Software Repair: A Sur­
vey. IEEE Transactions on Software Engineering 45(1), 34-67 (jan 2019).
https://doi.org/10.1109/TSE.2017.2755013

10. The 2020 state of the octoverse. https://octoverse.github.com (2021)
11. Gitpython home, https://gitpython.readthedocs.io/en/stable/ (2021)
12. Gyimesi, P., Vancsics, B., Stocco, A., Mazinanian, D., Beszedes, A., Ferenc, R.,

Mesbah, A.: BugsJS: A benchmark of javascript bugs. In: Proceedings - 2019 IEEE
12th International Conference on Software Testing, Verification and Validation,
ICST 2019. pp. 90-101 (apr 2019). https://doi.org/10.1109/ICST.2019.00019

13. Hasan, M., Mehrab, K.S., Ahmad, W.U., Shahriyar, R.: Text2App: A Framework
for Creating Android Apps from Text Descriptions (2021)

14. Hugging face website, https://huggingface.co (2022)
15. Jiang, N., Lutellier, T., Tan, L.: CURE: Code-Aware Neural Machine Translation

for Automatic Program Repair pp. 1161-1173 (may 2021)
16. Just, R., Jalali, D., Ernst, M.D.: Defects4J: A database of existing faults to enable

controlled testing studies for Java programs. In: 2014 International Symposium on
Software Testing and Analysis, ISSTA 2014 - Proceedings, pp. 437-440. Association
for Computing Machinery, Inc (jul 2014)

17. Le, X.B.D., Thung, F., Lo, D., Goues, C.L.: Overfitting in semantics-based au­
tomated program repair. Empirical Software Engineering 23(5), 3007-3033 (oct
2018). https://doi.org/10.1007/sl0664-017-9577-2

18. Le Goues, C., Holtschulte, N., Smith, E.K., Brun, Y., Devanbu, P., Forrest, S.,
Weimer, W.: The ManyBugs and IntroClass Benchmarks for Automated Repair of
C Programs. IEEE Transactions on Software Engineering 41(12), 1236-1256 (dec
2015). https://doi.org/10.1109/TSE.2015.2454513

19. Long, F., Rinard, M.: Automatic patch generation by learning correct code.
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages - POPL 2016 pp. 298-312 (2016).
https://doi.org/10.1145/2837614.2837617

20. Lu, S., Guo, D., Ren, S., Huang, J., Svyatkovskiy, A., Blanco, A., Clement, C.,
Drain, D., Jiang, D., Tang, D., Li, G., Zhou, L., Shou, L., Zhou, L., Tufano,
M., Gong, M., Zhou, M., Duan, N., Sundaresan, N., Deng, S.K., Fu, S., Liu, S.:
CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding
and Generation, undefined (2021)

21. Lutellier, T., Pham, H.V., Pang, L., Li, Y., Wei, M., Tan, L.: CoCoNuT: Com­
bining context-aware neural translation models using ensemble for program repair.
ISSTA 2020 - Proceedings of the 29th ACM SIGSOFT International Symposium
on Software Testing and Analysis 20, 101-114 (2020)

22. Phan, L., Tran, H., Le, D., Nguyen, H., Annibal, J., Peltekian, A., Ye, Y.: Co­
TexT: Multi-task Learning with Code-Text Transformer pp. 40-47 (may 2021).
https: / / doi.org /10.18653/vl/2021. nlp4prog-1.5

https://doi.org/10.22148/001c.17212
https://doi.org/10.48550/ARXIV.2002.08155
https://doi.org/10.1109/TSE.2017.2755013
https://doi.org/10.1109/TSE.2017.2755013
https://octoverse.github.com
https://gitpython.readthedocs.io/en/stable/
https://doi.org/10.1109/ICST.2019.00019
https://huggingface.co
https://doi.org/10.1007/sl0664-017-9577-2
https://doi.org/10.1109/TSE.2015.2454513
https://doi.org/10.1145/2837614.2837617

23. Radford, A., Narasimhan, T., Salimans, T., Sutskever, I.: [GPT-1] Improving Lan­
guage Understanding by Generative Pre-Training. Preprint pp. 1-12 (2018)

24. Radford, A., Wu, J., Amodei, D., Clark, J., Brundage, M., Sutskever, I., Askell,
A., Lansky, D., Hernandez, D., Luan, D.: Better Language Models and Their Im­
plications (2019)

25. Saha, R.K., Lyu, Y., Lam, W., Yoshida, H., Prasad, M.R.: Bugs.jar: A large-scale,
diverse dataset of real-world Java bugs. Proceedings - International Conference on
Software Engineering pp. 10-13 (2018). https://doi.org/10.1145/3196398.3196473

26. Stack overflow developer survey results 2021. h ttps://insights.stackoverflow .
com/survey/2021(2021)

27. Tufano, M., Watson, C., Bavota, G., Penta, M.D., White, M., Poshyvanyk, D.:
An empirical study on learning bug-fixing patches in the wild via neural machine
translation. ACM Transactions on Software Engineering and Methodology 28(4)
(2019). https://doi.org/10.1145/3340544

28. Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically finding patches
using genetic programming. In: Proceedings of the 31st International Conference
on Software Engineering, p. 364-374. ICSE ’09, IEEE Computer Society, USA
(2009). https://doi.org/10.1109/ICSE.2009.5070536

29. Yaojie, H., Xingjian, S., Qiang, Z., Lee, P.: Fix Bugs with Transformer through a
Neural-Symbolic Edit Grammar

30. Yi, L., Wang, S., Nguyen, T.N.: Dlfix: Context-based code transformation learn­
ing for automated program repair. In: Proceedings - International Conference
on Software Engineering, pp. 602-614. IEEE Computer Society (jun 2020).
https://doi.org/10.1145/3377811.3380345

31. Zhao, T.Z., Wallace, E., Feng, S., Klein, D., Singh, S.: Calibrate Before Use: Im­
proving Few-Shot Performance of Language Models (2021)

32. Zhuang, Y., Cai, M., Li, X., Luo, X., Yang, Q., Wu, F.: The Next Breakthroughs
of Artificial Intelligence: The Interdisciplinary Nature of AI. Engineering 6(3),
245-247 (mar 2020)

https://doi.org/10.1145/3196398.3196473
https://insights.stackoverflow
https://doi.org/10.1145/3340544
https://doi.org/10.1109/ICSE.2009.5070536
https://doi.org/10.1145/3377811.3380345

