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Abstract. In the maritime world scenario, various challenges are affecting Mediterranean con-

tainer ports, which are trying to keep high their efficiency and their competitiveness through 

infrastructural and managerial improvements. The identification of the priority actions requires 

the analysis of the productivity of each port in relation to the use of its resources. This study 

applies Data Envelopment Analysis (DEA) and Principal Component Analysis (PCA) in order 

to investigate the potential factors that can affect the efficiency of Mediterranean container ports. 

These methods use six input variables (yard area, berth depth, number of quay cranes, equip-

ment, berth length and distance of the port from the Suez-Gibraltar axis) and one output variable 

(port throughput expressed in TEUs). The results can help to highlight the potential factors of 

success for Mediterranean container ports and to identify future policies and management strat-

egies aimed towards the strengthening of the analyzed context.  

Keywords : Data Envelopment Analysis; Principal Component Analysis; benchmarking; con-

tainer port; Mediterranean Sea 

1 Introduction 

Container ports represent the fastest and most immediate access doors to internal markets and con-

stitute crucial nodes of integrated and multimodal supply chains, whose efficiency depends strictly 

on the efficiency of their ports. To stay competitive, container ports must carry out operations with 

maximum efficiency to meet the requirements of a continually growing and diversified demand. Not 

surprisingly, the assessment of port efficiency is among the areas that have attracted much attention 

in logistics in the last decades [1]. 

This paper focuses on the specific case of Mediterranean container ports in an attempt to elucidate 

the most representative factors of their efficiency. The Mediterranean basin has always played a key 

role in global trading markets due to its key positioning along the main East-West trading routes 

(known as pendulum routes) and its centrality with respect to both the Atlantic and North European 

markets, and the Asian and African ones. The unique location of its ports offers network advantages 

to ocean carriers due to the shortened transit times to major emerging markets, in particular to and 

from Asia. It is estimated that Mediterranean ports collectively currently handle almost 40% of the 

world's containerized trade flows [2]. Their future growth trend will depend on several factors, both 
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endogenous and exogenous, which can contribute to determine their success or failure in the market. 

Some of these factors are mentioned below: 

• Mediterranean container ports show different levels of technological advancement [3]. The best 

Mediterranean container ports are equipped with state-of-the-art handling equipment (for exam-

ple, super post panamax cranes), often controlled by high performance IT applications. The advent 

of technology has caused major organizational and technical changes in the port sector. Vertical 

integration, blockchain and terminal automation are some of the elements that are changing activ-

ities in container terminals, and which can constitute distinctive and competitive factors of ports 

[4]. However, not all Mediterranean ports are able to keep up with these changes in the same way.  

• Naval gigantism is another critical factor that affects container trade. In 2013, ships over 10,000 

TEU (Twenty equivalent unit) were 14% of the global fleet, 36% at the beginning of 2020 [5]. 

Naval gigantism directly affects ports, as there are only a few ports properly structured to effi-

ciently manage last generation container ships.  

• External commercial strategies can both strengthen or hamper the centrality of the Mediterranean 

area. From one side, the Belt and Road initiative, for instance, supports the infrastructure of Euro-

Asian trade, with particular attention to the port of Piraeus, which aims to become the largest 

logistics hub in the Mediterranean. On the other side, new alternative routes can pose a threat to 

Mediterranean ports. For example, the Arctic route has become more plausible given the climate 

change phenomenon, which has stronger and quicker implications in the Arctic region than else-

where. The coastal states of the area have begun to take advantage of the sea route that connects 

the Atlantic and the Pacific Ocean to integrate the conventional trade routes during the summer 

season. Furthermore, more and more shipping companies decide to use the Cape Route and bypass 

the Suez Canal, due to slow steaming practice and high fees of the Suez Canal, thus rising interest 

in African ports [6] at the expense of the ports of the Mediterranean. 

• The private sector has been playing an increasing dominant role in the global container market, 

where few world carriers and global terminal operators control ever-greater market shares. Gen-

erally, global enterprises initiate their development plans in the Mediterranean, as they are the 

decision makers for possible port of calls or the potential buying out of a port’s terminal [7]. 

The effects of the Covid-19 pandemic, which is contributing to transform further the shipping market 

and the global supply chains, now further complicate this ever-changing market scenario. In such an 

evolving scenario, Mediterranean ports are required to improve their functionality and productivity 

to meet new needs and acquire ever-higher market rates [8].  

This paper intends to investigate the factors that most affect the efficiency of container ports in 

the Mediterranean area by applying and combining Data Envelopment Analysis (DEA) and Principal 

Component Analysis (PCA). The application considers 35 major Mediterranean container ports char-

acterized in terms of supply (berth length, yard area, number of QCs, depth) and demand variables 

(TEUs moved in 2019).  

The framework of the article is as follows: Section 2 presents a brief literature review of the most 

applied methods used to analyse efficiency of container ports. Section 3 describes the methodology 

used while Section 4 illustrates the selected input and output variables. The results of the analysis are 

provided and discussed in Section 5. Finally, Section 6 concludes the paper. 



2 Literature review 

In the last decades, there has been a growth of interest in the evaluation of container ports efficiency. 

Most of the available methodologies are based on Multi-Criteria Decision-Making methods. Table 

1, created by adapting to the port area the table proposed by Fancello et al. [9] for road transport, 

summarizes the main strengths and weaknesses of the most used methods applied to container port 

efficiency.  

Among the available methods for evaluating efficiency, DEA has been chosen for this study because 

of its following features that, in the authors’ opinion, make it very attractive for benchmarking port 

efficiency: 

• Differently from Electre III, DEA does not use any subjective parameter. 

• Through the identification of the efficiency frontier, DEA allows to identify not only the most 

efficient units but also their distance from the inefficient ones. 

• DEA can handle multiple inputs and outputs with independent production function specification. 

• Some methods, like TOPSIS, use indicators for which the input-output relationship may not be 

immediate, while DEA results are easily understood. 

• PROMETHEE requires obtaining and considering a distribution function, while DEA does not. 

• SFA is based on an assumption made a priori for the production function, which may be not ap-

propriate for every port, while DEA provides great flexibility. 

• PCA-DEA allows considering the correlation between variables and generates non-discrete posi-

tive principal components, thus improving the strength of DEA [19]. 

• DEA helps decision-making units to remove other sources of inefficiency from the observations. 

• DEA allows maximizing profits or minimizing resources by using an input- or an output-oriented 

approach. 

• However, DEA can be also subject to some weaknesses, such as: 

• DEA can be sensitive to the presence of an outlying observation that could determine an erroneous 

efficiency frontier used to measure inefficient DMUs. 

• DEA results are sensitive to the choice selection of input and output variables: the number of 

efficient DMUs on the frontier increases with the number of input and output variables. 

• DEA does not consider the correlation between the chosen variables. 

 

Table 1. Most common methods applied to container port performance. 

Method Strengths Weaknesses First author Year Reference 

AHP Easy to use. Scalable. Possible inconsistencies in the classi-

fication criteria. Problems of interde-

pendence between criteria and alter-

natives. 

Ismail  2018 [10] 

ELECTRE III 

 

Considers uncertainty and vagueness. Not useful for classification pur-

poses. The lowest performance based 

on certain criteria is not identifiable. 

Results can be difficult to interpret. 

Gao  2018 [11] 
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PROMETHEE Easy to use. Eliminates scale effects 

among alternatives. 

Requires the assignment of weights 

but does not provide a clear method-

ology to assign values. 

Kim 2012 [12] 

TOPSIS Easy to use. Number of steps does 

not depend on the size of the prob-

lem. 

Does not consider attributes correla-

tion. Difficult to weight attributes.  

Celik 2009 [13] 

HHI Easy to use. It is not influenced by 

arbitrary factors. 

Depends on the size of the sample. Elbayoumi  2016 [14] 

SFA Recognizes the fact that external fac-

tors can influence production. 

Based on an assumption made a pri-

ori for the production function. 

López-Bermúdez  2019 [15] 

DEA Quantifies efficiency. Evaluate the 

efficiency of alternatives against 

each other. Can manage multiple in-

puts and outputs. 

Assumes that all inputs and outputs 

are exactly known. Is sensitive to the 

number of variable measurements. 

Does not evaluate the correlation be-

tween variables. 

Iyer 2021 [16] 

CLUSTERING Easy to use. Identifies homogeneous 

groups. 

Not useful for classification pur-

poses. Results can be difficult to in-

terpret. 

Fancello 

Serra 

2014 

2020 

[8] 

[1] 

PCA-DEA Considers the correlation between 

variables. Improves the strength of 

DEA model. 

Assumes that all inputs and outputs 

are exactly known. Is sensitive to the 

number of variable measurements. 

Venkatasubbaiah 

Perico  

2018 

2020 

[17] 

[18] 

In order to increase the DEA strength and consider the correlation between variables, DEA has been 

used together with PCA in different fields, but only rarely it has been applied to container port effi-

ciency. Among the others, Venkatasubbaiah et al. [17] evaluated and analyzed the performance of 

28 container terminals in south East Asia using a DEA-PCA hybrid method. The hybrid method was 

performed implementing PCA to the cross-efficiency matrix obtained through DEA and was used to 

determine the ultimate cross-efficiency of each DMU. Périco and da Silva [18] applied a hybrid 

method of BCC-DEA with PCA to evaluate performance of the 24 largest ports in Brazil. They used 

PCA as a validation method among the chosen variables but applied PCA-DEA considering the initial 

proposal of variables, as the commonalities of the variables did not allow excluding any. Almost all 

the documents analyzed apply DEA as a benchmarking technique to compare ports in a geographic 

area. This paper proposes a decision support tool based on DEA and PCA to define which elements 

may have the greatest influence on the efficiency of ports in the Mediterranean area. 

3 Methodology 

3.1 Data Envelopment Analysis 

DEA is a performance measurement technique, formulated by Farrell in 1957, that can be used for 

evaluating the relative efficiency of Decision-Making Units (DMUs). In this application, Mediterra-

nean container ports are identified as the DMUs forming the sample. DEA method is based on a non-

parametric approach that leads to the definition of a flexible efficient frontier. The efficiency of each 

DMU is measured comparing the ratio of outputs (production) to inputs (resources), subject to the 



condition that the same ratio for all DMUs must be less than or equal to one. The two basic DEA 

models are:  

• the CCR model [20], which produces an objective evaluation of efficiency assuming constant 

returns to scale (CRS);  

• the BCC model [21], which considers variable returns to scale (VRS) and estimates the pure 

technical efficiency of the DMUs.  

In the first phase of the study, DEA is applied using both CCR and BCC models.  Their formulation 

can be input- or output-oriented. The first approach examines if a DMU wastes inputs in the produc-

tion phase, while the latter if the outputs are maximized.  

CCR MODEL. The CCR model requires all inputs and outputs to be positive. It is based on CRS, 

in which all inputs and outputs are driven back to a single virtual input and a single virtual output. 

Weights must be non-negative and that make the ratio for DMUs greater than 1. 

• Input-oriented 

The goal of the input-oriented model is to verify the efficiency conditions through the minimization 

of a real variable 𝜃, as described below: 

𝑚𝑖𝑛(𝜃,𝜆) 𝜃  

s.t. 

𝜃𝑥𝑜 −  𝜆𝑋 ≥ 0                                                               

𝜆𝑌 ≥ 𝑦𝑜 

𝜆 ≥ 0 

where λ = (λ1, … , λn)T is a transposed non-negative vector of variables.  

• Output-oriented 

The purpose of the output-oriented model, instead, is to verify the efficiency conditions through the 

maximization of a real variable 𝜏. 

𝑚𝑎𝑥(𝜏,𝜇) 𝜏  

s.t. 

𝑥𝑜 −  𝜇𝑋 ≥ 0 

𝜏𝑦𝑜 − 𝜇𝑌 ≤ 0 

𝜇 ≥ 0 

where 𝜇 = 𝜆𝜏 and 𝜏 = 1/𝜃.  
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The input-oriented approach evaluates efficiency in terms of the best reduction of inputs given an 

observed level of output, while the output-oriented one assesses competitiveness in terms of com-

mercial potential. 

BCC MODEL. The BCC model represents an extension of the CCR model. Its efficient frontier is 

not a straight line through the origin, as in the case of the CCR model, but a convex function, due to 

variable returns to scale. The modification is applied, both in CCR and in BCC model, by adding a 

convexity constraint to the model: 

𝑒𝜆 = 1,  

where 𝑒 is a unit row vector.  

BCC model estimates the pure technical efficiency of the DMUs. The complexity of the case with 

multiple inputs or outputs lies in the weighting of the quantitative variables by the calculation of 

efficiency, as it deals with dimensionally different variables. DEA allows using variable weights 

obtained from the observations and chosen to maximize the efficiency indices of each DMU relative 

to any other DMU present in the sample. To be considered optimal, the weights must be non-nega-

tive, and the relative efficiency index must be between zero and one. 

3.2 Principal Component Analysis  

In a second phase of the study, with a view to later applying the DEA by considering several input 

variables together, PCA is applied to identify the input variables that have the greatest weight in the 

description of the phenomenon under study. PCA is typically used to reduce the dimensionality of a 

data set by transforming the set of variables into a smaller one (the so-called principal components - 

PCs) that still contains most of the information in the original set. The first PC is obtained by pro-

jecting the data geometrically on the axis that produces the smallest total projection error, given by 

the perpendicular distance between the data and their projection, and the greatest variance. The sub-

sequent PCs are selected similarly, but with the additional requirement of no correlation with the 

previous PCs. The PCs are ranked by their variances in descending order: the first PC is the one that 

describes the largest share of variance in the sample. Each PC is expressed as an uncorrelated linear 

combination of input and output variable, which are multiplied by the corresponding eigenvectors. 

Each eigenvector, associated with a variable, represents the weight of that variable in determining 

the i-th PC. The i-th PC will be more influenced by the variables with higher eigenvectors in absolute 

value. In this study, PCA is used to rank the variables from the most influential to the least influential 

from a statistical point of view. 

4 Data description 

This study considers the 35 main Mediterranean container ports (Fig. 1) in terms of TEUs handled 

in the last decade. In 2019, the 35 ports, as a whole, handled nearly 60M TEUs.  



 

Fig. 1. Geographical location of the 35 container ports (Source: Authors) 

The efficiency of a container port may depend on its physical-organizational characteristics and on 

the correct use of land, infrastructures and equipment. As we have seen previously, DEA requires the 

definition of input and output variables. Following some literature hints, the input variables can be 

differentiated in three macro-groups: 

• Capital inputs: these variables describe the physical port characteristics, such as yard area, termi-

nal area, storage area, berth length, number of berths, berth depth and others. If well managed, 

they can represent the effective resources for port activity [4,6,17]. 

• Non-capital inputs: such as labour, number of cranes, number of pieces of equipment, environ-

ment, costs, etc. [22,23]. 

• Geographic inputs: the port position among global trades is a potential performance factor for 

container ports as well as their proximity to internal markets and transport networks [24,25]. 

The output variables should represent the port production. Therefore, the most used indicator is the 

annual container throughput, measured in TEUs. In this study, the choice of the input variables was 

based on the literature reviews about DEA studies on port efficiency provided by Schøyen and Odeck 

[26], Julien et al. [27], Iyer and Nanyam [16] and Fancello et al. [28]. In detail, three capital inputs, 

Yard Area (Yard) - m2, Berth Length (Berth) - m, Maximum Depth (Depth) - m, two non-capital 

inputs, no. of Quay Cranes (QC), no. of Yard Equipment (Equipment), and one geographic input 

(Distance) measuring the distance (nm) between each port and the ideal Suez-Gibraltar axis, were 

chosen as input variables. Port data were collected from official websites of the ports and are updated 

to 2019. Container throughput in 2019, expressed in terms of TEUs, was identified as the only output 

variable. 

Table 2. Input and output variables. 

 Inputs Output 

 Yard QC Distance Berth Depth Equipment Throughput 
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 [m2] (no.) [nm] [m] [m] (no.) (TEU) 

Minimum 111,000 2 1 515  10  17  54,542 

Maximum 1,807,739 40 745 4,790  20  346  5,650,000 

Mean 673,562 16 299 1,927  15  130  1,698,748 

Median 500,000 14 260 1,520  16  98  1,229,081 

Std. dev. 452,487.149 10.854 240.047 1236.302 2.218 90.247  1,575,066.848 

5 Results  

The application was performed using input- and output-oriented approaches and both CCR and BCC 

methods. 12 combinations were tested, of which 6 applying an input-oriented approach (IO) and 6 

an output-oriented one (OO). Each combination was taken out considering one output variable, fixed 

for all the combinations (Throughput 2019) and one input variable, changed each time, according to 

Table 3.  

Table 3. Combinations of input and output variables. 

 Inputs: 

 QC Berth Yard Depth Equipment Distance 

Output:      

Throughput 2019 

Test 1, IO Test 2, IO Test 3, IO Test 4, IO Test 5, IO Test 6, IO 

Test 1, OO Test 2, OO Test 3, OO Test 4, OO Test 5, OO Test 6, OO 

Table 4 provides the scores for each DMU, calculated by applying both CCR and BCC methods 

using an input-oriented approach. In the case of the CCR model, for each test, only one DMU reaches 

efficiency, totalizing a unitary score (Algeciras for test 1 and 2; Valencia for test 3 and 4; Haifa for 

test 5; Port Said East for test 6). In the case of the BCC model instead, more DMUs totalize a score 

equal to 1.000 in each combination tested. The ports that achieve efficiency are Piraeus (6 times), 

Algeciras (5), Valencia (4), Port Said East (3), Alicante (2), Haifa (2), Koper (2), Marsaxlokk (1), 

Rijeka (1), Tanger (1), Thessaloniki (1) and Tunis (1). Algeciras is the best performing port in the 

combinations that uses QC (test 1) or Berth (test 2) as the input variable while Valencia is the best 

one when Yard (test 3) or Depth (test 4) variable is considered. The two ports obtain efficiency using 

both methods. 

Table 4. CCR and BCC results: Input-Oriented approach (IO). 

 Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 

DMUs CCR BCC CCR BCC CCR BCC CCR BCC CCR BCC CCR BCC 

Alexandria.-El Dekheila 0.684 0.736 0.643 0.675 0.572 0.583 0.436 0.902 0.210 0.246 0.011 0.020 

Algeciras 1.000 1.000 1.000 1.000 0.946 0.946 0.889 0.919 0.461 0.930 0.400 1.000 

Alicante 0.450 1.000 0.185 1.000 0.204 0.740 0.038 0.679 0.080 0.415 0.001 0.010 

Ambarli 0.431 0.443 0.381 0.388 0.584 0.589 0.588 0.824 0.195 0.276 0.002 0.002 

Ashdod 0.527 0.586 0.440 0.471 0.502 0.516 0.282 0.718 0.391 0.391 0.004 0.008 

Barcelona 0.605 0.618 0.534 0.542 0.464 0.467 0.630 0.844 0.240 0.353 0.004 0.005 

Beirut 0.405 0.459 0.622 0.675 0.512 0.530 0.233 0.659 0.174 0.185 0.002 0.004 

Cagliari 0.114 0.286 0.055 0.339 0.068 0.278 0.030 0.594 0.041 0.239 0.001 0.014 

Damietta 0.563 0.653 0.410 0.452 0.241 0.251 0.223 0.709 0.137 0.157 0.026 0.077 

Genoa 0.397 0.413 0.306 0.314 0.261 0.264 0.549 0.861 0.188 0.255 0.002 0.002 

Gioia Tauro 0.579 0.604 0.414 0.426 0.283 0.286 0.438 0.709 0.371 0.497 0.003 0.004 

Haifa 0.410 0.456 0.470 0.503 0.502 0.516 0.282 0.718 1.000 1.000 0.003 0.006 



Similarly to Table 4, Table 5 illustrates the results of both CCR and BCC models when an output-

oriented approach is used. Apart from the port of Marsaxlokk, all the other ports that achieve effi-

ciency using the input-oriented approach also achieve efficiency when the output-oriented approach 

is used. 

Table 5. CCR and BCC results: Output-Oriented approach (OO). 

Izmir 0.639 0.839 0.321 0.533 0.472 0.621 0.111 0.586 0.172 0.274 0.000 0.002 

Izmit 0.431 0.467 0.378 0.398 0.427 0.436 0.290 0.626 0.459 0.523 0.001 0.002 

Koper 0.562 0.665 0.896 1.000 0.955 1.000 0.207 0.723 0.109 0.132 0.000 0.001 

La Spezia 0.524 0.578 0.597 0.636 0.918 0.943 0.321 0.776 0.338 0.354 0.001 0.003 

Latakia 0.286 0.463 0.223 0.655 0.090 0.174 0.076 0.719 0.241 0.654 0.000 0.003 

Limassol 0.411 0.621 0.271 0.672 0.206 0.353 0.076 0.603 0.075 0.170 0.001 0.005 

Livorno 0.320 0.394 0.230 0.303 0.296 0.339 0.190 0.787 0.224 0.303 0.001 0.003 

Marsaxlokk 0.717 0.744 0.698 0.714 0.728 0.735 0.500 0.767 0.222 0.304 0.850 1.000 

Marseille 0.479 0.530 0.241 0.258 0.156 0.160 0.267 0.659 0.312 0.321 0.001 0.003 

Mersin 0.730 0.781 0.727 0.759 0.527 0.536 0.384 0.754 0.145 0.175 0.002 0.003 

Naples 0.327 0.417 0.326 0.488 0.611 0.754 0.152 0.720 0.061 0.091 0.001 0.004 

Piraeus 0.764 1.000 0.817 1.000 0.921 1.000 0.905 1.000 0.438 1.000 0.007 1.000 

Port Said East 0.804 0.824 0.742 0.754 0.478 0.481 0.606 0.833 0.701 1.000 1.000 1.000 

Port Said West 0.348 0.447 0.387 0.595 0.207 0.260 0.138 0.670 0.100 0.151 0.052 0.250 

Ravenna 0.230 0.448 0.181 0.776 0.156 0.444 0.059 0.826 0.064 0.258 0.000 0.001 

Rijeka 0.402 0.670 0.270 0.842 0.493 1.000 0.067 0.671 0.218 0.630 0.000 0.001 

Tanger 0.817 0.819 0.957 0.959 0.615 0.615 0.833 0.893 0.548 1.000 0.150 0.350 

Thessaloniki 0.592 0.851 0.454 0.988 0.317 0.497 0.117 0.811 0.509 1.000 0.000 0.002 

Trieste 0.595 0.732 0.571 0.751 0.354 0.405 0.137 0.569 0.293 0.396 0.000 0.001 

Tunis 0.301 0.516 0.141 0.466 0.108 0.234 0.094 1.000 0.250 0.773 0.001 0.017 

Vado Ligure 0.041 0.286 0.026 0.444 0.027 0.306 0.010 0.559 0.025 0.405 0.000 0.003 

Valencia 0.717 0.856 0.639 0.729 1.000 1.000 1.000 1.000 0.303 0.662 0.010 0.933 

Venice 0.391 0.517 0.173 0.292 0.250 0.332 0.161 0.865 0.117 0.189 0.000 0.001 

 Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 

DMUs CCR BCC CCR BCC CCR BCC CCR BCC CCR BCC CCR BCC 

Alexandria.-El Dekheila 0.684 0.713 0.643 0.658 0.572 0.576 0.436 0.675 0.210 0.381 0.011 0.348 

Algeciras 1.000 1.000 1.000 1.000 0.946 0.946 0.889 0.927 0.461 0.970 0.400 1.000 

Alicante 0.450 1.000 0.185 1.000 0.204 0.253 0.038 0.051 0.080 0.094 0.001 0.032 

Ambarli 0.431 0.554 0.381 0.550 0.584 0.585 0.588 0.609 0.195 0.550 0.002 0.550 

Ashdod 0.527 0.550 0.440 0.447 0.502 0.507 0.282 0.318 0.391 0.530 0.004 0.261 

Barcelona 0.605 0.638 0.534 0.611 0.464 0.588 0.630 0.652 0.240 0.588 0.004 0.588 

Beirut 0.405 0.418 0.622 0.651 0.512 0.519 0.233 0.241 0.174 0.296 0.002 0.220 

Cagliari 0.114 0.130 0.055 0.057 0.068 0.069 0.030 0.032 0.041 0.056 0.001 0.029 

Damietta 0.563 0.609 0.410 0.421 0.241 0.241 0.223 0.263 0.137 0.241 0.026 0.208 

Genoa 0.397 0.481 0.306 0.466 0.261 0.466 0.549 0.648 0.188 0.466 0.002 0.466 

Gioia Tauro 0.579 0.583 0.414 0.467 0.283 0.447 0.438 0.457 0.371 0.623 0.003 0.448 

Haifa 0.410 0.419 0.470 0.479 0.502 0.507 0.282 0.318 1.000 1.000 0.003 0.257 

Izmir 0.639 0.792 0.321 0.337 0.472 0.488 0.111 0.111 0.172 0.232 0.000 0.107 

Izmit 0.431 0.436 0.378 0.380 0.427 0.429 0.290 0.308 0.459 0.629 0.001 0.304 

Koper 0.562 0.616 0.896 1.000 0.955 1.000 0.207 0.258 0.109 0.199 0.000 0.170 

La Spezia 0.524 0.543 0.597 0.615 0.918 0.941 0.321 0.401 0.338 0.479 0.001 0.264 

Latakia 0.286 0.338 0.223 0.240 0.090 0.090 0.076 0.112 0.241 0.249 0.000 0.058 

Limassol 0.411 0.510 0.271 0.292 0.206 0.210 0.076 0.082 0.075 0.113 0.001 0.071 

Livorno 0.320 0.336 0.230 0.233 0.296 0.299 0.190 0.294 0.224 0.303 0.001 0.140 

Marsaxlokk 0.717 0.728 0.698 0.704 0.728 0.731 0.500 0.500 0.222 0.493 0.850 0.850 
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Table 6 shows mean values of the IO and OO scores, both for CCR and BCC methods. As regard to 

the CCR method, the highest average scores are obtained in Test 1, Test 2 and Test 3, using both the 

IO and OO approach, while, in the case of the BCC, the highest average scores are obtained in Test 

1, Test 2 and Test 4 (only for the IO approach). In both methods, the Distance variable assumes very 

low average values, which indicate that the DMUs are not very efficient with respect to this input 

variable. While the BCC model produces different results when using input- and output- oriented 

approaches, the CCR model produces more robust results both in the case of an input or output ap-

proach, thus resulting more suitable to evaluate the effectiveness of container ports. 

Table 6. Mean values of IO and OO scores, both CCR and BCC methods. 

To validate the CCR results, which identify the QC (Test 1), Berth (Test 2) and Yard (Test 3) varia-

bles as those that most influence the evaluation of efficiency, it was decided to apply the PCA to 

verify that the variables identified are the most representative. The eigenvector components are con-

sidered as weights of the variables. To do this, six principal components were identified (Table 7).  

Table 7. Eigen analysis of the Correlation Matrix. 

The first 

princi-

pal 

component (PC1) is chosen to minimize the perpendicular distance between the variables and their 

projection. For this reason, PC1 reaches the greatest eigenvalue and represents 61% of the sample 

variability. The cumulative value is the cumulative proportion of the sample variability given by 

consecutive PCs. PC2 cumulative, obtained from the sum of PC1 and PC2 proportion, reaches 0.771, 

which means having a representativeness of 77% of the sample variability. The eigenvector’s com-

ponents of the PC1 (Table 8) represent the weight of each corresponding variable in determining the 

Marseille 0.479 0.494 0.241 0.270 0.156 0.257 0.267 0.267 0.312 0.449 0.001 0.257 

Mersin 0.730 0.762 0.727 0.746 0.527 0.529 0.384 0.420 0.145 0.343 0.002 0.343 

Naples 0.327 0.349 0.326 0.340 0.611 0.636 0.152 0.202 0.061 0.129 0.001 0.121 

Piraeus 0.764 1.000 0.817 1.000 0.921 1.000 0.905 1.000 0.438 1.000 0.007 1.000 

Port Said East 0.804 0.814 0.742 0.746 0.478 0.566 0.606 0.628 0.701 1.000 1.000 1.000 

Port Said West 0.348 0.376 0.387 0.409 0.207 0.208 0.138 0.162 0.100 0.166 0.052 0.129 

Ravenna 0.230 0.285 0.181 0.199 0.156 0.161 0.059 0.131 0.064 0.086 0.000 0.039 

Rijeka 0.402 0.538 0.270 0.300 0.493 1.000 0.067 0.087 0.218 0.218 0.000 0.054 

Tanger 0.817 0.906 0.957 0.958 0.615 0.850 0.833 0.869 0.548 1.000 0.150 0.935 

Thessaloniki 0.592 0.792 0.454 0.878 0.317 0.326 0.117 0.224 0.509 1.000 0.000 0.079 

Trieste 0.595 0.680 0.571 0.617 0.354 0.359 0.137 0.143 0.293 0.369 0.000 0.140 

Tunis 0.301 0.373 0.141 0.147 0.108 0.109 0.094 1.000 0.250 0.309 0.001 0.054 

Vado Ligure 0.041 0.047 0.026 0.027 0.027 0.027 0.010 0.010 0.025 0.030 0.000 0.010 

Valencia 0.717 0.963 0.639 0.963 1.000 1.000 1.000 1.000 0.303 0.963 0.010 0.996 

Venice 0.391 0.437 0.173 0.175 0.250 0.253 0.161 0.357 0.117 0.175 0.000 0.105 

 Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 

 CCR BCC CCR BCC CCR BCC CCR BCC CCR BCC CCR BCC 

Mean IO 0.503 0.621 0.449 0.623 0.441 0.531 0.323 0.759 0.269 0.449 0.072 0.164 

Mean OO 0.503 0.578 0.449 0.525 0.441 0.491 0.323 0.393 0.269 0.449 0.072 0.332 

PCs PC1 PC2 PC3 PC4 PC5 PC6 

Eigenvalue 36.661 0.9611 0.6673 0.5086 0.1516 0.0453 

Proportion 0.611 0.160 0.111 0.085 0.025 0.008 

Cumulative 0.611 0.771 0.882 0.967 0.992 1.000 



PC1. The variables that are correlated the most with PC1 are QC (0.499), Berth (0.492), Yard (0.444) 

and Equipment (0.417). By increasing the values of QC, Berth, Yard, Equipment and Depth, PC1 

enhances its value. PC1 is negatively correlated with Distance variable (-0.149).  

Table 8. Principal component PC1 eigenvector. 

The 

varia-

bles with higher eigenvector’s components in absolute value are QC, Berth, and Yard, thus confirm-

ing that they are the most significant in the problem at hand. 

6 Conclusions 

This study applied DEA and PCA for evaluating the factors that most affect the efficiency of 35 

major Mediterranean container ports. In a first step, port productivity was assessed on the basis of 12 

tests, which differ in the method applied (CCR or BCC), in the approach used (input- or output- 

oriented approach) and in the input variable used (one variable selected among QC, Berth, Yard, 

Equipment, Depth, or Distance).  

Among the sample, some ports are more affected than others by the method or the approach ap-

plied. Few ports, such as Piraeus, are fully efficient - or close to efficiency - in a large number of 

tests, demonstrating that their capital and non-capital input variables are correctly sized in relation to 

demand. Other ports, such as Haifa, achieve efficiency only respect to one variable, resulting over-

sized respect to the others. Furthermore, other ports (e.g.  Alicante) achieve high efficiency scores 

only applying the BCC method, thus comparing them with smaller ports. 

In the tests performed by entering QC or Berth or Yard as the input variable, the average score 

settles around 0.5. This means that, with respect to these parameters, the average efficiency of the 

sample as a whole is about 50%. 

The results obtained using Depth or Equipment as input variables are more sensitive to the ap-

proach and to the applied method. In the combinations having Distance as the input variable, the 

mean scores show that ports are very far from the efficient frontier. This could mean either that the 

ports are very far from the main route or that the Distance variable is not significant for the assess-

ment of port efficiency. To confirm these results, the PCA was applied. The variables QC, Bert and 

Yard are the ones characterized by the highest eigenvector’s components in absolute value: they can 

be identified as the most representative of the efficiency of Mediterranean container ports.  

The proposed analysis can help highlight the potential success factors for Mediterranean container 

ports, thus providing decision-makers with useful insights for the implementation of future policies 

and management strategies aimed at strengthening the Mediterranean port context.  

Future studies will have to investigate the correlation of QC, Berth and Yard variables, which are 

resulted to be the most significant in this study, and apply the DEA-CCR to the combination of two 

or more input variables. Furthermore, the role of the distance variable when assessing port efficiency 

should be further investigated. 

 

Variable QC  Berth Yard Equip.  Depth Distance 

PC1 0.499 0.492 0.444 0.417 0.340 -0.149 
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