q

Check for
updates

On the Design of a New Stochastic
Meta-Heuristic for Derivative-Free
Optimization

N. C. Cruz'®®, Juana L. Redondo?®, E. M. Ortigosa'®,
and P. M. Ortigosa?

! Department of Computer Architecture and Technology, University of Granada,
Granada, Spain
{ncalavocruz,ortigosa}@ugr.es
2 Department of Informatics, University of Almeria,
ceiA3 Excellence Agri-food Campus, Almeria, Spain
{jlredondo,ortigosa}@ual.es

Abstract. Optimization problems are frequent in several fields, such as
the different branches of Engineering. In some cases, the objective func-
tion exposes mathematically exploitable properties to find exact solu-
tions. However, when it is not the case, heuristics are appreciated. This
situation occurs when the objective function involves numerical simula-
tions and sophisticated models of reality. Then, population-based meta-
heuristics, such as genetic algorithms, are widely used because of being
independent of the objective function. Unfortunately, they have multi-
ple parameters and generally require numerous function evaluations to
find competitive solutions stably. An attractive alternative is DIRECT,
which handles the objective function as a black box like the previous
meta-heuristics but is almost parameter-free and deterministic. Unfortu-
nately, its rectangle division behavior is rigid, and it may require many
function evaluations for degenerate cases. This work presents an opti-
mizer that combines the lack of parameters and stochasticity for high
exploration capabilities. This method, called Tangram, defines a self-
adapted set of division rules for the search space yet relies on a stochastic
hill-climber to perform local searches. This optimizer is expected to be
effective for low-dimensional problems (less than 20 variables) and few
function evaluations. According to the results achieved, Tangram out-
performs Teaching-Learning-Based Optimization (TLBO), a widespread
population-based method, and a plain multi-start configuration of the
stochastic hill-climber used.

Keywords: Black-box optimization - Direct search - Stochastic
meta-heuristic

1 Introduction

Optimization problems are ubiquitous. They usually arise in fields such as Archi-
tecture, Engineering, and Applied Sciences in general [3,7,19]. Broadly speaking,

© The Author(s) 2022
O. Gervasi et al. (Eds.): ICCSA 2022 Workshops, LNCS 13378, pp. 188-200, 2022.
https://doi.org/10.1007/978-3-031-10562-3_14


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10562-3_14&domain=pdf
http://orcid.org/0000-0002-5839-9451
http://orcid.org/0000-0003-2826-1635
http://orcid.org/0000-0002-3914-9158
http://orcid.org/0000-0001-6514-6543
https://doi.org/10.1007/978-3-031-10562-3_14

A New Stochastic Meta-Heuristic for Derivative-Free Optimization 189

this sort of problem requires finding the extremes (maxima or minima, depending
on the goal) of a function. The latter, called objective function in this context,
involves different variables and models some aspect of interest. For instance, it
can represent the cost of manufacturing a product depending on the providers
selected and the quantities bought. In this situation, the points sought would be
the minima, i.e., the values of the variables resulting in the minimum function
value (cost). Alternatively, if the function modeled the strength of the resulting
product, the points of interest would presumably be the maxima of the corre-
sponding function. One of the applications in which optimization stands out is
model tuning, where the parameters become variables, and the objective func-
tion is the comparison between the achieved and desired output [4,12]. It allows
automating processes that used to rely on experts and might be biased by them.

Depending on the objective function, constraints, and variables (e.g., continu-
ous or discrete), there exist different types of optimization problems and methods
to address them. For example, linear objective functions and constraints with
real bounded variables generally result in problems relatively easy to solve [2,5].
However, this is not always the case, especially when the functions involved do
not exhibit a closed analytical form or do not have exploitable mathematical
properties (such as linearity and convexity). Fortunately, there exist methods
with fewer problem requirements that can even treat it as a black box. They
usually rely on intuitive ideas to obtain acceptable results [10,15]. These strate-
gies are known as heuristics when they are problem-specific approaches and
meta-heuristics of general-purpose. Similarly, the use of randomness serves to
enhance the exploration capabilities at the expense of uncertainty [4].

The formulation of the optimization problem that attracts the attention of
this work is as follows:

minimize  f(x)
€T

(1)

subject to L; <z; <U;, 1=1,...,N.

where f is a N-dimensional objective function, i.e., f : RY — R. The term
x refers to any input in RY belonging to the region [Li,U;] x ... x [Lx,Un],
which is known as the search space. As can be seen, the problem only consists
of the objective function and the bounds of each variable. There is no extra
information about the mathematical properties of f (e.g., convexity, linearity and
smoothness). It can only be evaluated in the N-dimensional domain defined as
the search space. Thus, this problem can be classified as a black-box optimization
one with box constraints [3,7].

There exist numerous population-based meta-heuristics that can be applied
to the problem defined above [1,15]. Traditional genetic algorithms, Differential
Evolution [4,13], and the Universal Evolutionary Global Optimizer (UEGO)
[6,11] are good examples. However, they have multiple parameters, so they
require fine parameter tuning. Teaching-Learning-Based Optimization (TLBO)
[4,14] avoids this problem as a population-based method that only needs
the population size and the number of iterations. Regardless, this sort of
method will generally need numerous function evaluations to converge due to its



190 N. C. Cruz et al.

haphazard exploration strategy. Another option especially conceived for black-
box optimization is DIRECT [7]. In contrast to the previous ones, it is a deter-
ministic method. Furthermore, it only expects the number of function evaluations
allowed and a tolerance factor that usually has little effect on its performance
[8]. However, its rectangle division mechanism is rigid, and it may require an
excessive number of function evaluations for degenerate cases.

This work presents an optimizer that balances the virtual lack of parameters,
the use of randomness, and extensive exploration capabilities. To achieve this, it
takes inspiration from previous optimization algorithms. The resulting method,
called Tangram, defines an exploration procedure that moves from the center of
the search space towards its corners. It keeps track of the best result achieved so
far but uses that reference to divide the search space into smaller regions accord-
ing to a deterministic division scheme. The new zones are ultimately explored
by a local optimizer known as SASS [9], which is stochastic yet has a robust
default configuration. Tangram aims to be effective for low-dimensional prob-
lems (less than 20 variables) and to be compatible with low budgets of function
evaluations.

The rest of the paper is structured as follows: Sect. 2 describes the proposed
method in detail. Section 3 explains the experimentation carried out. Finally,
Sect. 4 shows the conclusions and states the future work.

2 Method Description

For a given optimization problem in the form of Eq. 1, the algorithm Tangram
only expects as input the number of allowed function evaluations. Like DIRECT,
the optimizer sees the search space as an N-dimensional unit hypercube, so it
is first scaled accordingly from R¥ to [0, l]N. This strategy simplifies the imple-
mentation of the method and avoids issues concerning variables of significantly
different scales at local search [16]. This idea is depicted in Fig. 1 for a hypothet-
ical problem in a sub-domain in R3, [10, 20] x [0, 7] x [1, 3]. The space of solutions
remains unaltered.

Normalized 3D search space
1

Real 3D search space

7 —>
0 0
10 20 0 1

(What Tangram sees)

Fig. 1. Normalization of a hypothetical 3D search space.



A New Stochastic Meta-Heuristic for Derivative-Free Optimization 191

Again like DIRECT, Tangram starts by evaluating the center of the search
space, i.e., (0.5,...,0.5) € RY, which becomes the current result. This process
defines its initialization stage, which is shown in Fig. 2a. After that, it compares
the budget of function evaluations to the dimensionality of the search space
and enters into one of two modes, namely, the standard or the incisive one.
Although both keep the same fundamentals, there is a subtle yet significant
difference between them. The standard mode is covered first, as it was the only
one at preliminary design stages. The local solver, which remains the same, is
also explained in detail. Later, the decision criterion and the incisive mode are
described in terms of the potential flaws of the standard one.

2.1 Standard Execution Mode

Algorithm 1 outlines Tangram (omitting the selection between modes). As can
be seen, the initial steps described above (without the mode selection) are in
lines 1 and 2.

Algorithm 1. Tangram optimizer (Standard Mode only)

Input: Function: f : RY — R; Int: evals

1 Point corners[2"] = get_Corners_Of_Hypercube(N);
2 Point result = (0.5,...,0.5) € RY;
3 while evals > 0 do
4 result, = Global_Phase(result); // Change if improved only!
5 Point midpoints[2™V];
6 for corner € corners do
7 | midpoints[corner] = (result + corner) /2;
8 end
9 midpoints = sort(midpoints, order=ascending f);
10 for point € midpoints do
11 | midpoints[point] = Local Phase(point, radius=|corner — point);
12 end
13 result = best_Of(result U midpoints);
14 end

15 return result;

The optimization loop defining the standard mode is between lines 3 and
14. It lasts while there are function evaluations remaining and consists of the
following stages:

Global Phase (line 4): The local search component, SASS, is launched from the
current result to try to improve it. This is the local solver generally used with
the aforementioned memetic algorithm, UEGO, and has been chosen because
of its effectiveness for different problems. The optimizer is configured so that
the maximum step size is equal to the diameter of the search space, i.e., v N.



192

Second dimension

N. C. Cruz et al.

2D search space

First point
considered

2D search space

(0.5,0.5)

Discarded (non-im

»

Initial point

proving) steps

4

Second dimension

Second dimension

First dimension
(a) Initialization phase

2D search space

‘
B
(2
2y
&

&

\\\Improving step

%

Midpoints

Current focus

Midpoints

First dimension

(b) Global phase

[

Secone dimension

f’ Midpoints '

Midpoints I‘\’." / ,”'
) /

First dimension
(c) Division phase

2D search space

First dimension S

--="" 4 |ocal exploration regions

(d) Local phase

Second dimension

o

\ solution

First dimension
(e) Update phase

Fig. 2. Main concepts of Tangram.




A New Stochastic Meta-Heuristic for Derivative-Free Optimization 193

This strategy allows reaching any solution and also comes from the way in
which UEGO handles its initial or first-level species. Figure 2b depicts this
process starting from the initial point, i.e., the center of the search space, for
a hypothetical 2D problem. Notice how SASS attempts several movements,
but the current result only changes when a better point is found.

Division (lines 5 to 9): Tangram computes and evaluates the midpoint between
each corner of the search space and the current result. This part emphasizes
the exploration of the search space. It allows the method to escape from
local optima and identify new promising regions. It is vaguely inspired in
how DIRECT keeps a representing point of every region of the search space.
However, the division does not keep the regions strictly isolated. Figure 2c rep-
resents this stage graphically extending the previous context. It also serves to
explain the name chosen for the proposed optimizer. Namely, if the resulting
regions were colored in different colors, they would look like a Tangram, i.e.,
the widespread Chinese dissection puzzle [18].

Local Phase (lines 10 to 12): Tangram launches its local optimizer, SASS,
from each of the previous midpoints to improve them. Those having a better
value for the objective function are chosen first. By proceeding this way, in
case the number of function evaluations allowed is low, the method ensures
having explored the most promising regions at least. This aspect is relevant
because the optimizer has been conceived for situations in which calling the
objective function is computationally demanding. At this stage, in contrast
to the global phase, SASS is configured not to take steps bigger than the
distance between each starting midpoint and the corner used to define it (line
11). The further the midpoint is from the current global result, the wider
initial region it has. Thus, exploration is automatically enhanced while the
whole search space always remains virtually covered. Figure 2d summarizes
these ideas graphically. Finally, notice that since the local solver updates its
current point every time that it finds a better one, the definition of regions is
dynamic like in UEGO.

Update (line 13): If any of the points found after the division and local searches
outperforms the current solution, that point replaces it. Then, the algorithm
returns to the global phase and starts to repeat the previous process if there
are function evaluations available. This stage is show in Fig. 2e.

After consuming all the function evaluations allowed, Tangram returns the
best solution achieved so far (line 15). However, despite being omitted from
Algorithm 1, notice that the method registers every evaluation of the objective
function. Hence, this situation can be detected at any stage. If that happens,
Tangram assigns an infinite value to any new point and tries to finish as soon as
possible.

2.2 Local Search Component (SASS)

Regarding the local search component, as introduced, it is SASS, which was
initially proposed in [17]. This name is an acronym for Single-Agent Stochastic



194 N. C. Cruz et al.

Search. SASS does not have any special requirement for the objective function
apart from being fully defined in the search space. For this reason, it is especially
suitable for black-box optimization. It was one of the main reasons why it was
chosen for UEGO, and the same criterion has been followed for Tangram.

SASS is a stochastic hill-climber of adaptive step size. It starts at any given
point, which is treated as its current local solution, and randomly decides a
direction to move. The jump size cannot be greater than a given threshold. As
explained, it will be /N for the global phase and the distance between the
midpoint and the corner used to compute it for any local one. However, the
jump size is further scaled depending on the number of improving (accepted)
and non-improving (discarded) movements.

In practical terms, every movement consists in generating a new candidate
solution, z’, according to Eq. (2), where x is the current solution and & is a
normally-distributed random vector (perturbation). The standard deviation, o,
is globally defined between le—5 and 1, starting at the upper bound. Every
component has a specific mean or bias factor that is initially set to 0. They form
the bias vector, b = (by,...,by). If the movement amplitude (the module of the
perturbation), is greater than allowed, £ is rescaled by the maximum step size.

o=+ (2)

SASS then computes the objective function at z’. If it is better than the
current solution, z’ replaces it, the iteration is considered successful, the bias
vector is updated as b = 0.2b + 0.4¢, and a new iteration starts. Otherwise,
the opposite direction is explored by generating and evaluating a new candidate
solution, z” = x — £. If it outperforms the current one, z” replaces it, and the
iteration is also considered successful. In this situation, the bias vector is updated
as b = b—0.4£. However, if neither 2’ nor " are better than the current solution,
the iteration is tagged as failed, and the bias vector is set to b = 0.5b. Figure 3
shows the key aspects of an iteration of SASS in Tangram, which forces any
perturbation vector to be within a delimited (yet moving) region.

f(x") > f(x)

Discarded step

—_— -

Value of the x+¢

Objective Function

f

Initial search region

Moved search region

f(x") < f(x)
Accepted step

Search space

Fig. 3. Depiction of an iteration of SASS.



A New Stochastic Meta-Heuristic for Derivative-Free Optimization 195

The global standard deviation, o, is doubled after five consecutive successful
movements (expansion) or halved after three consecutive discarded ones (con-
traction), which represents the adaptive nature of SASS. This is the recom-
mended configuration, and it is known to perform well. Besides, within Tangram,
SASS will terminate after 32 iterations. This arbitrary threshold is assumed
enough to converge to the nearby optima according to previous knowledge on
the method when used with UEGO. Nevertheless, varying this local budget
would just result in a second parameter to tune.

2.3 Incisive Execution Mode

According to the previous explanation, the first function evaluation is always
for the center of the search space. Then, the loop of the standard execution
mode starts. Every global phase takes 32 evaluations through SASS. After that,
the division requires 2V function evaluations, one for each new midpoint. Let
us think of a problem with N = 20, which is the highest dimensionality for a
problem expected to be addressed with Tangram. It would be approximately
1 x 10% evaluations, which is the recommended budget for a robust execution of
UEGO. Later, the local phase would end the current iteration after consuming
32*%2N evaluations, i.e., 2NV+5.

In this context, if the function evaluation budget is low (less than 33 + 2V),
Tangram will not even be able to reach the local stage. This means that the
local search will have been launched only once. Thus, the candidate solutions
competing with the current result will be a subset of midpoints not sharpened
by SASS. Accordingly, the probability of having identified a competitive point in
the search space is low. The incisive mode of Tangram deals with this problem.

The incisive mode is selected over the standard one when the number of
function evaluations allowed is less than 33 + 2. This mode maintains the
structure of the standard one but has a relevant modification in the division and
local phases, which are merged. Namely, instead of generating and evaluating all
the midpoints before moving to the local exploration phase, Tangram launches
SASS from every new midpoint iteratively. By proceeding this way, the proposed
method avoids the lack of local optimization that results in working with non-
sharpened points at the expense of not prioritizing the most promising regions.

3 Experimentation and Results

The goals of Tangram are to be effective for low-dimensionality problems, with-
out tuning requirements, and with a low budget of function evaluations. These
aims are well aligned with the experimentation described in [3]. Thus, the 20 con-
tinuous box-constrained problems proposed in that work, which feature between
1 and 10 variables, have been addressed with Tangram. As the authors say, they
are challenging for black-box methods not exploiting any analytical information.
The limit of function evaluations has been computed as in the referred paper,



196 N. C. Cruz et al.

i.e., 30(N + 1), which is low and makes the test more challenging. It is also com-
patible with a context where the cost function is computationally demanding
(e.g., simulation-based model tuning).

To have an adequate reference, Tangram has been compared to a pure ran-
dom search (PRS), a plain multi-start configuration of SASS (MSASS), and the
population-based optimizer TLBO. The pure random search is expected to be a
baseline reference, since any optimizer should be more effective than simply gen-
erating and evaluating points. The multi-start SASS is a especially descriptive
comparison: Since Tangram can be seen as a rule-based multi-start component
linked to SASS, it should serve as a better guide for this local solver rather
than simply generating random starts. Finally, TLBO has been included in the
comparison due to its fame of being simple to tune and effective [4]. It is also
relevant to highlight that both TLBO and MSASS achieved very good results in
the model tuning application described in [4], which supports their selection.

All of the optimizers considered have been configured with the same function
evaluation limit. This task is more difficult for TLBO, as it depends on a pop-
ulation size and a number of cycles. For this reason, TLBO takes that limit at
least but slightly exceeds it in some cases. The development environment used is
MATLAB 2020a in Mac OSX (MacBook Pro, Intel i5 2.9 GHz, 8 GB of RAM).
Each method has been executed 200 times for each case to handle stochasticity.

Table 1 contains the results of experimentation. More specifically, the first
column lists the 20 problems addressed including their name with their dimen-
sionality and optimum value below. The other columns show the results obtained
with each optimizer in the form of the average value of the objective function
+ the standard deviation below. The cells in bold highlight the best result of
the row. As can be seen in the results, the average differs from the theoretical
optimum in most cases. Namely, only problems 3, 4, and 5 have a method that
virtually offers the best possible value. This situation confirms the challenging
nature of the testbeds for this kind of method and the evaluation budget allowed.

In this context, Tangram stands out as the best performing solver, as it offers
the best average result for all the instances. In general, the number of function
evaluations allows it to run in the standard mode. However, for problems 11, 14,
and 15, the incisive mode is selected according to the defined criterion (e.g., for
problem 8, the budget is 270, while the threshold is 289, so the incisive mode is
activated). Its role is decisive, as the results of the standard mode for instances
11, 14, and 15 would have been 8003.54550 £ 2889.46980, 332.05440 + 61.81830,
and 246.38150 £ 63.87150, respectively. Hence, the predominant position of the
proposed optimizer would be lost in those degenerate cases. There is another
revealing fact to highlight: MSASS performs worse that Tangram even though
they share the same local solver. Thus, the design of Tangram seems effective.

Regarding the other methods, as expected, PRS is the worst option due
to its complete lack of search orientation. MSASS and TLBO approximately
share the second position, with 12 relative victories for the former and 8 for
the latter. Regardless, the differences are small in general, and both methods
exhibit particularly bad averages in some problems. See for example problems 7
for MSASS and 12 for TLBO, where they are almost equivalent to PRS.



A New Stochastic Meta-Heuristic for Derivative-Free Optimization

197

Table 1. Results of the compared optimizers for the 20 test problems.

Problem PRS MSASS Tangram TLBO

1 |branin (2D: 0.96322 0.88190 0.59423 0.87950
0.3979) +0.56865 +0.56618 +0.28007 40.62720

2 |camel (2D: —0.81055 —0.90562 —0.94933 —-0.90070
-1.0316) +0.17976 +0.16800 +0.14442 40.16960

3 |ex4.1.1 (1D: —6.69670 —7.11600 —7.42420 —7.28160
~7.4873) +1.22100 +1.01150 +0.17009 +0.66860

4 |ex4.12 (1D: —656.42850 —661.33590 —662.86990 —660.71710
—663.4994) +13.03620 +6.22790 +1.51650 +10.67700

5 |ex8.1.1 (2D: -1.86310 —2.02000 —2.02140 —-1.99390
—2.0218) 40.10054 +0.00483 +0.00115 +0.08030

6 |ex8.1.4 (2D: 0) 1.01380 0.81421 0.45123 0.68060

+0.77884 +0.89664 +0.59453 40.79930

7 |goldsteinprice |24.15690 21.46320 12.00310 16.31050
(2D: 3) +20.62910 +25.74360 +14.97650 +17.93680

8 |hartman3 (3D: |—3.63850 —-3.71340 —3.78000 -3.67310
-3.8626) 40.14490 +0.16565 +0.09150 +0.18480

9 |hartman6 (6D: |—2.30300 —2.72140 —2.83540 —2.59240
-3.3224) +0.36590 +0.30703 +0.24749 +0.30490

10 |least (3D: 89426.35870 85657.53800 54380.77930 66667.12100
14085.1398) +48162.68080 |+90868.74070 |+23588.04900 +46139.03410

11 |perm0_8 (8D: 7594.46260 4386.96390 4193.35220 4781.10300
1000) +2814.81180 +2552.2268 +2640.35760 +2837.30440

12 |perm_6 (6D: 2410159.72000 |1348865.22460 |1040601.32000 2010600.02910
1000) +1880505.3559 | +1705484.8604 |£1771209.76700 |+2541900.01131

13 |rbrock (2D: 0) |17.69760 13.49500 4.22410 £5.3311 |7.91002

+27.8399 +60.25080 +13.0823

14 |schoen_10_1 311.78160 194.78420 180.87800 223.21380
(10D: —-1000) +54.87700 +79.80000 +92.37480 +106.12960

15 schoen_10_2 292.26700 117.05820 87.80030 179.37180
(10D: —1000) +43.38010 +96.74010 +104.40370 +110.95960

16 |schoen_6_1 (6D: |162.39550 —45.82550 —300.34410 108.37580
—-1000) +115.7606 +207.03060 +228.3106 +124.07530

17 |schoen_6-2 (6D: |126.52030 -90.22060 —-325.30290 10.06960
—1000) +83.2584 +186.51570 +192.2352 +156.32220

18 | shekel10 (4D: —-1.25000 —-1.86710 —3.20280 -1.87330
-10.5363) 40.51079 +1.03470 +1.34020 +1.09240

19 |shekel5 (4D: —0.88923 —-1.60540 —3.50500 —1.45500
-10.1532) +0.47061 +0.99205 +1.39050 +0.77001

20 | shekel7 (4D: -1.03920 -1.65020 —3.26410 1.73670
-10.4028) +0.41355 +0.90632 +1.45330 +0.78700




198 N. C. Cruz et al.

4 Conclusions and Future Work

In this work, a new algorithm for black-box optimization has been described.
The method is virtually parameter-free, as it only expects the number of allowed
function evaluations, and aims to be effective for low-dimensionality problems
(up to 20 variables). It is expected to be valid for model tuning through numer-
ical optimization. Its name is Tangram, and it combines several ideas from the
literature. More specifically, it works in a unitary hypercube and tries to apply
a deterministic strategy to define regions, like DIRECT. Besides, its behavior
can be self-adapted to adapt the search to best-effort explorations in which the
algorithm detects that it will not be able to execute all its steps appropriately.
The proposal also uses a local optimizer from the literature, SASS, which is the
one usually used within the memetic algorithm UEGO. From this population-
based method, Tangram replicates the scheme of making SASS focus on different
regions by limiting the steps yet keeping one covering the whole search space.
Nevertheless, Tangram avoids the sophisticated management of points as a pop-
ulation in UEGO.

Tangram has been used to address 20 benchmark problems from the litera-
ture in a context of few function evaluations allowed. Its performance has been
compared to a pure random search, a random multi-start configuration of SASS,
and TLBO, a widespread population-based method. Tangram outperforms all
of them. Among the appreciated aspects, one of the most descriptive ones is
the fact that Tangram performs better than SASS in the multi-start configu-
ration, which supports the design of the proposal. Another interesting idea to
highlight from the experimentation is how the adaptive nature of Tangram is
effectively able to anticipate the potential flaws of its standard mode and opts
for the incisive one instead.

For future work, we will study how to automatically detect the local conver-
gence of SASS to save function evaluations that can be reassigned to other parts
of the method. We also intend to increase the number of benchmark problems
and the optimizers compared, possibly starting with DIRECT and UEGO.

Acknowledgements. This work has been supported by the Spanish Ministry
of Science through the projects RTI2018-095993-B-100, financed by MCIN/AEI/
10.13039/501100011033/ and FEDER (“A way to make Europe”), as well as
INTSENSO (MICINN-FEDER-PID2019-109991GB-100), by Junta de Andalucia
through the projects UAL18-TIC-A020-B, CEREBIO (P18-FR-2378) and P18-RT-
1193 by the European Regional Development Fund (ERDF). N.C. Cruz is supported
by the Ministry of Economic Transformation, Industry, Knowledge and Universities
from the Andalusian government.

References

1. Boussaid, I., Lepagnot, J., Siarry, P.: A survey on optimization metaheuristics. Inf.
Sci. 237, 82-117 (2013)

2. Boyd, S., Boyd, S.P., Vandenberghe, L.: Convex optimization. Cambridge Univer-
sity Press (2004)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

A New Stochastic Meta-Heuristic for Derivative-Free Optimization 199

Costa, A., Nannicini, G.: RBFOpt: an open-source library for black-box optimiza-
tion with costly function evaluations. Math. Program. Comput. 10(4), 597629
(2018). https://doi.org/10.1007/s12532-018-0144-7

Cruz, N.C., Marin, M., Redondo, J.L., Ortigosa, E.M., Ortigosa, P.M.: A compar-
ative study of stochastic optimizers for fitting neuron models. application to the
cerebellar granule cell. Informatica 32, 477-498 (2021)

Griva, I., Nash, S.G., Sofer, A.: Linear and nonlinear optimization, vol. 108. Siam
(2009)

Jelasity, M., Ortigosa, P.M., Garcia, I.: Uego, an abstract clustering technique for
multimodal global optimization. J. Heuristics 7(3), 215-233 (2001)

Jones, D.R., Martins, J.R.R.A.: The DIRECT algorithm: 25 years later. J. Global
Optim. 79(3), 521-566 (2021)

Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without
the lipschitz constant. J. Optim. Theory Appl. 79(1), 157-181 (1993)
Lancinskas, A., Ortigosa, P.M., Zilinskas, J.: Multi-objective single agent stochastic
search in non-dominated sorting genetic algorithm. Nonlinear Anal. Model. Control
18(3), 293-313 (2013)

Lindfield, G., Penny, J.: Introduction to nature-inspired optimization. Academic
Press (2017)

Marin, M., Cruz, N.C., Ortigosa, E.M., Sdez-Lara, M.J., Garrido, J.A., Carrillo,
R.R.: On the use of a multimodal optimizer for fitting neuron models. application
to the cerebellar granule cell. Frontiers Neuroinformatics 15, 663797 (2021)
Monterreal, R., Cruz, N.C., Redondo, J.L., Ferndndez-Reche, J., Enrique, R.,
Ortigosa, P.M.: On the optical characterization of heliostats through computa-
tional optimization. In: Proceedings of SolarPACES 2020, pp. 1-8 (2020)

Price, K., Storn, R.M., Lampinen, J.A.: Differential evolution: a practical approach
to global optimization. Springer Science & Business Media (2006)

Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching-learning-based optimization:
an optimization method for continuous non-linear large scale problems. Inf. Sci.
183(1), 1-15 (2012)

Salhi, S.: Heuristic Search. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-49355-8

Snyman, J.A., Wilke, D.N.: Practical Mathematical Optimization. SOIA, vol. 133.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77586-9

Solis, F.J., Wets, R.J.B.: Minimization by random search techniques. Math. Oper.
Res. 6(1), 19-30 (1981)

Wang, F.T., Hsiung, C.C.: A theorem on the Tangram. Am. Math. Mon. 49(9),
596-599 (1942)

Zou, F., Wang, L., Hei, X., Chen, D.: Teaching-learning-based optimization with
learning experience of other learners and its application. Appl. Soft Comput. 37,
725-736 (2015)


https://doi.org/10.1007/s12532-018-0144-7
https://doi.org/10.1007/978-3-319-49355-8
https://doi.org/10.1007/978-3-319-49355-8
https://doi.org/10.1007/978-3-319-77586-9

200 N. C. Cruz et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.


http://creativecommons.org/licenses/by/4.0/

	On the Design of a New Stochastic Meta-Heuristic for Derivative-Free Optimization
	1 Introduction
	2 Method Description
	2.1 Standard Execution Mode
	2.2 Local Search Component (SASS)
	2.3 Incisive Execution Mode

	3 Experimentation and Results
	4 Conclusions and Future Work
	References




