Skip to main content

The Pulcinella Diagnostic Project: Introduction to the Study of the Performances of Close-Range Diagnostics Targeted to a Wooden Physical Twin of a Carnival Historical Mask

  • Conference paper
  • First Online:
Book cover Computational Science and Its Applications – ICCSA 2022 Workshops (ICCSA 2022)

Abstract

The Pulcinella diagnostic project here presented aims at testing a wide range of methodologies, technologies, and instrumentations against the imaging diagnostics of the various natural and artificial features present in the wooden physical model reproducing an archetypical historical artifact and its most common defects and in homogeneities. Due to its experimental purposes, it configures as an open diagnostic protocol – or a protocol of protocols – allowing a scalability to as many tools as wanted and, within this approach, being able to compare standard and innovative diagnostics methods related to historical wooden sculptures. The first round of diagnostic techniques includes Structure from Motion photogrammetry, Multispectral imaging, active Infrared Thermography and Terahertz imaging. The first experimental datasets and their preliminary results are analyzed against their effectiveness and failures in retrieving and characterizing standardized, specific, and known defects and features of the wooden mask investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Piro, S., et al.: Geophysics and cultural heritage: a living field of research for Italian geophysicists. First Break 33(8), 43–54 (2015)

    Article  Google Scholar 

  2. Lillesand, T., Kiefer, R.W., Chipman, J.: Remote Sensing and Image Interpretation. Wiley, Hoboken (2015)

    Google Scholar 

  3. Costanzo, A., Minasi, M., Casula, G., Musacchio, M., Buongiorno, M.F.: Combined use of terrestrial laser scanning and IR thermography applied to a historical building. Sensors 15(1), 194–213 (2015)

    Article  Google Scholar 

  4. Fiorino, D.R., et al.: The management of the restoration site. Diagnostic techniques, problems and perspectives. In: Geores 2019 2nd International Conference on Cultural Heritage: challenges, new perspectives and technology innovation. Springer, Berlin Heidelberg (2019)

    Google Scholar 

  5. Salonia, P., Scolastico, S., Pozzi, A., Marcolongo, A., Messina, T.L.: Multi-scale cultural heritage survey: quick digital photogrammetric systems. J. Cult. Herit. 10, e59–e64 (2009)

    Article  Google Scholar 

  6. Shi, R., Xu, M., Zhu, L.: New techniques of remote sensing in the university of architecture and planning. In: 2009 IEEE International Geoscience and Remote Sensing Symposium, vol. 2, pp. II-642. IEEE (2009)

    Google Scholar 

  7. Xu, Z., Wu, L., Shen, Y., Li, F., Wang, Q., Wang, R.: Tridimensional reconstruction applied to cultural heritage with the use of camera-equipped UAV and terrestrial laser scanner. Remote Sens. 6(11), 10413–10434 (2014)

    Article  Google Scholar 

  8. Yastikli, N.: Documentation of cultural heritage using digital photogrammetry and laser scanning. J. Cult. Herit. 8(4), 423–427 (2007)

    Article  Google Scholar 

  9. Ranieri, G., Trogu, A., Loddo, F., Piroddi, L., Cogoni, M.: Digital museum from integrated 3D aerial photogrammetry, laser scanner and geophysics data. In: 24th European Meeting of Environmental and Engineering Geophysics, pp. 1–5. European Association of Geoscientists & Engineers, Houten, The Netherlands (2018)

    Google Scholar 

  10. Colica, E., et al.: Using unmanned aerial vehicle photogrammetry for digital geological surveys: case study of Selmun promontory, Northern of Malta. Environ. Earth Sci. 80(17), 1–14 (2021). https://doi.org/10.1007/s12665-021-09846-6

    Article  Google Scholar 

  11. D’Amico, S., et al.: Multitechnique diagnostic analysis and 3D surveying prior to the restoration of St. Michael defeating evil painting by Mattia Preti. Environ. Sci. Pollut. Res. 29(20), 29478–29497 (2021). https://doi.org/10.1007/s11356-021-15880-5

    Article  Google Scholar 

  12. D’Amico, S., et al.: Geophysical investigations, digital reconstruction and numerical modeling at the Batia Church in Tortorici (Messina, Sicily): preliminary results. In: Proceedings of the 2020 IMEKO TC-4 International Conference on Metrology for Archaeology and Cultural Heritage, pp. 22–24. Trento, Italy (2020)

    Google Scholar 

  13. Ma, Y., Soatto, S., Jana Košecká, S., Sastry, S.: An Invitation to 3-D Vision. Springer, New York (2004). https://doi.org/10.1007/978-0-387-21779-6

    Book  MATH  Google Scholar 

  14. Maldague, X.P.: Nondestructive Evaluation of Materials by Infrared Thermography. Springer, London (2012). https://doi.org/10.1007/978-1-4471-1995-1

    Book  Google Scholar 

  15. Ibarra-Castanedo, C., Sfarra, S., Ambrosini, D., Paoletti, D., Bendada, B., Maldague, X.: Subsurface defect characterization in artworks by quantitative pulsed phase thermography and holographic interferometry. Quant. InfraRed Thermography J. 5(2), 131–149 (2008)

    Article  Google Scholar 

  16. Cosentino, A.: Terahertz and cultural heritage science: examination of art and archaeology. Technologies 4(1), 6 (2016)

    Article  Google Scholar 

  17. Avdelidis, N.P., Moropoulou, A.: Applications of infrared thermography for the investigation of historic structures. J. Cult. Herit. 5(1), 119–127 (2004)

    Article  Google Scholar 

  18. Carlomagno, G.M., Di Maio, R., Meola, C., Roberti, N.: Infrared thermography and geophysical techniques in cultural heritage conservation. Quant. InfraRed Thermography J. 2(1), 5–24 (2005)

    Article  Google Scholar 

  19. Arndt, R.W.: Square pulse thermography in frequency domain as adaptation of pulsed phase thermography for qualitative and quantitative applications in cultural heritage and civil engineering. Infrared Phys. Technol. 53(4), 246–253 (2010)

    Article  Google Scholar 

  20. Liu, K., Huang, K.L., Sfarra, S., Yang, J., Liu, Y., Yao, Y.: Factor analysis thermography for defect detection of panel paintings. Quant. InfraRed Thermography J. 1-13 (2021)

    Google Scholar 

  21. Tao, N., Wang, C., Zhang, C., Sun, J.: Quantitative measurement of cast metal relics by pulsed thermal imaging. Quant. InfraRed Thermography J. 19(1), 27–40 (2020)

    Article  Google Scholar 

  22. Piroddi, L., Calcina, S., Fiorino, D., Grillo, S., Trogu, A., Vignoli, G.: Geophysical and remote sensing techniques for evaluating historical stratigraphy and assessing the conservation status of defensive structures heritage: preliminary results from the military buildings at San Filippo Bastion, Cagliari, Italy. In: Gervasi, O. (ed.) ICCSA 2020. LNCS, vol. 12255, pp. 944–959. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58820-5_68

    Chapter  Google Scholar 

  23. Mercuri, F., Zammit, U., Orazi, N., Paoloni, S., Marinelli, M., Scudieri, F.: Active infrared thermography applied to the investigation of art and historic artefacts. J. Therm. Anal. Calorim. 104(2), 475 (2011)

    Article  Google Scholar 

  24. Ibarra-Castanedo, C., Sfarra, S., Ambrosini, D., Paoletti, D., Bendada, A., Maldague, X.: Diagnostics of panel paintings using holographic interferometry and pulsed thermography. Quant. InfraRed Thermography J. 7(1), 85–114 (2010)

    Article  Google Scholar 

  25. Orazi, N., et al.: Thermographic analysis of bronze sculptures. Stud. Conserv. 61(4), 236–244 (2016)

    Article  Google Scholar 

  26. Di Tuccio, M.C., Ludwig, N., Gargano, M., Bernardi, A.: Thermographic inspection of cracks in the mixed materials statue: Ratto delle Sabine. Heritage Sci. 3(1), 1–8 (2015). https://doi.org/10.1186/s40494-015-0041-6

    Article  Google Scholar 

  27. Peeters, J., et al.: IR Reflectography and active thermography on artworks: the added value of the 1.5–3 µm band. Appl. Sci. 8(1), 50 (2018)

    Article  Google Scholar 

  28. Wiewel, A., Conyers, L., Piroddi, L., Papadopoulos, N.: An experimental use of ground-penetrating radar to identify human footprints. Revue d’archéométrie 45(1), 143–146 (2021)

    Google Scholar 

  29. Piroddi, L., Calcina, S.V., Trogu, A., Ranieri, G.: Automated Resistivity Profiling (ARP) to explore wide archaeological areas: the prehistoric site of Mont’e Prama, Sardinia Italy. Remote Sens. 12(3), 461 (2020)

    Article  Google Scholar 

  30. Piroddi, L., Vignoli, G., Trogu, A., Deidda, G. P.: Non-destructive diagnostics of architectonic elements in San Giuseppe Calasanzio’s church in cagliari: a test-case for micro-geophysical methods within the framework of holistic/integrated protocols for ARtefact knowledge. In: 2018 IEEE International Conference on Metrology for Archaeology and Cultural Heritage, pp. 17–21, New York, USA. IEEE (2018)

    Google Scholar 

  31. Catapano, I., Soldovieri, F.: THz imaging and data processing: State of the art and perspective. In: Persico, R., Piro, S., Linford, N. (eds.) Innovation in Near-Surface Geophysics, pp. 399–417. Elsevier, Amsterdam, Netherland (2019)

    Chapter  Google Scholar 

  32. Seco-Martorell, C., López-Domínguez, V., Arauz-Garofalo, G., Redo-Sanchez, A., Palacios, J., Tejada, J.: Goya’s artwork imaging with Terahertz waves. Opt. Express 21(15), 17800–17805 (2013)

    Article  Google Scholar 

  33. Stübling, E., Staats, N., Globisch, B., Schell, M., Portsteffen, H.D., Koch, M.: Investigating the layer structure and insect tunneling on a wooden putto using robotic-based THz tomography. IEEE Trans. Terahertz Sci. Technol. 10(4), 343–347 (2020)

    Article  Google Scholar 

  34. Catapano, I., Ludeno, G., Cucci, C., Picollo, M., Stefani, L., Fukunaga, K.: Noninvasive analytical and diagnostic technologies for studying early renaissance wall paintings. Surv. Geophys. 41(3), 669–693 (2020). https://doi.org/10.1007/s10712-019-09545-9

    Article  Google Scholar 

  35. Jones, C., Duffy, C., Gibson, A., Terras, M.: Understanding multispectral imaging of cultural heritage: determining best practice in MSI analysis of historical artefacts. J. Cult. Herit. 45, 339–350 (2020)

    Article  Google Scholar 

  36. Pelagotti, A., Del Mastio, A., De Rosa, A., Piva, A.: Multispectral imaging of paintings. IEEE Sign. Process. Mag. 25(4), 27–36 (2008)

    Article  Google Scholar 

  37. Colantonio, C., Pelosi, C., D’Alessandro, L., Sottile, S., Calabrò, G., Melis, M.: Hypercolorimetric multispectral imaging system for cultural heritage diagnostics: an innovative study for copper painting examination. Eur. Phys. J. Plus 133(12), 1–12 (2018). https://doi.org/10.1140/epjp/i2018-12370-9

    Article  Google Scholar 

  38. Piroddi, L., Ranieri, G., Cogoni, M., Trogu, A., Loddo, F.: Time and spectral multiresolution remote sensing for the study of ancient wall drawings at San Salvatore hypogeum, Italy. In: Proceedings of the 22nd European Meeting of Environmental and Engineering Geophysics, Near Surface Geoscience 2016, Houten, The Netherlands, pp. 1–5. EAGE (2016)

    Google Scholar 

  39. Piroddi, L., Calcina, S.V., Trogu, A., Vignoli, G.: Towards the definition of a low-cost toolbox for qualitative inspection of painted historical vaults by means of modified DSLR cameras, open source programs and signal processing techniques. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12255, pp. 971–991. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58820-5_70

    Chapter  Google Scholar 

  40. Marincola, M.D., Kargère, L.: The Conservation of Medieval Polychrome Wood Sculpture: History, Theory, Practice. Getty Publications, Los Angeles (2020)

    Google Scholar 

  41. Cennini, C.: Illibro dell’arte, o Trattato della pittura. F. LeMonnier, Firenze (1859)

    Google Scholar 

  42. Micasense: RedEdge.MX sensor documentation (Product sheet, Specifications), downloadable at. https://micasense.com/rededge-mx/. Accessed 27 Mar 2022

  43. Piroddi, L.: From high temporal resolution to synthetically enhanced radiometric resolution: insights from Night Thermal Gradient results. Eur. Phys. J. Spec. Topics 230(1), 111–132 (2021). https://doi.org/10.1140/epjst/e2020-000247-x

    Article  Google Scholar 

Download references

Acknowledgements

The authors thanks Antonio Trogu, Luigi Noli, Matteo Baire and Alessandro Fanti (University of Cagliari, DICAAR and DIEE) for their fundamental help in acquisitions of photogrammetric, multispectral, and thermographic datasets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Piroddi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Piroddi, L. et al. (2022). The Pulcinella Diagnostic Project: Introduction to the Study of the Performances of Close-Range Diagnostics Targeted to a Wooden Physical Twin of a Carnival Historical Mask. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds) Computational Science and Its Applications – ICCSA 2022 Workshops. ICCSA 2022. Lecture Notes in Computer Science, vol 13382. Springer, Cham. https://doi.org/10.1007/978-3-031-10592-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10592-0_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10591-3

  • Online ISBN: 978-3-031-10592-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics