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Abstract. We present new results on the application of semantic- and
knowledge-based reasoning techniques to the analysis of cloud deploy-
ments. In particular, to the security of Infrastructure as Code configura-
tion files, encoded as description logic knowledge bases. We introduce an
action language to model mutating actions; that is, actions that change
the structural configuration of a given deployment by adding, modifying,
or deleting resources. We mainly focus on two problems: the problem of
determining whether the execution of an action, no matter the parame-
ters passed to it, will not cause the violation of some security requirement
(static verification), and the problem of finding sequences of actions that
would lead the deployment to a state where (un)desirable properties are
(not) satisfied (plan existence and plan synthesis). For all these problems,
we provide definitions, complexity results, and decision procedures.

1 Introduction

The use of automated reasoning techniques to analyze the properties of cloud
infrastructure is gaining increasing attention [4–7,18]. Despite that, more effort
needs to be put into the modeling and verification of generic security require-
ments over cloud infrastructure pre-deployment. The availability of formal tech-
niques, providing strong security guarantees, would assist complex system-level
analyses such as threat modeling and data flow, which now require considerable
time, manual intervention, and expert domain knowledge.

We continue our research on the application of semantic-based and
knowledge-based reasoning techniques to cloud deployment Infrastructure as
Code configuration files. In [14], we reported on our experience using expressive
description logics to model and reason about Amazon Web Services’ proprietary
Infrastructure as Code framework (AWS CloudFormation). We used the rich
constructs of these logics to encode domain knowledge, simulate closed-world
reasoning, and express mitigations and exposures to security threats. Due to the
high complexity of basic tasks [3,26], we found reasoning in such a framework
to be not efficient at cloud scale. In [15], we introduced core-closed knowledge
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bases—a lightweight description logic combining closed- and open-world rea-
soning that is tailored to model cloud infrastructure and efficiently query its
security properties. Core-closed knowledge bases enable partially-closed predi-
cates whose interpretation is closed over a core part of the knowledge base but
open elsewhere. To encode potential exposure to security threats, we studied the
query satisfiability problem and (together with the usual query entailment prob-
lem) applied it to a new class of conjunctive queries that we called Must/May
queries. We were able to answer such queries over core-closed knowledge bases in
LogSpace in data complexity and NP in combined complexity, improving the
required NExptime complexity for satisfiability over ALCOIQ (used in [14]).

Here, we enhance the quality of the analyses done over pre-deployment arti-
facts, giving users and practitioners additional precise insights on the impact
of potential changes, fixes, and general improvements to their cloud projects.
We enrich core-closed knowledge bases with the notion of core-completeness,
which is needed to ensure that updates are consistent. We define the syntax and
semantics of an action language that is expressive enough to encode mutating
API calls, i.e., operations that change a cloud deployment configuration by cre-
ating, modifying, or deleting existing resources. As part of our effort to improve
the quality of automated analysis, we also provide relevant reasoning tools to
identify and predict the consequences of these changes. To this end, we consider
procedures that determine whether the execution of a mutating action always
preserves given properties (static verification); determine whether there exists a
sequence of operations that would lead a deployment to a configuration meet-
ing certain requirements (plan existence); and find such sequences of operations
(plan synthesis).

The paper is organized as follows. In Sect. 2, we provide background on core-
closed knowledge bases, conjunctive queries, and Must/May queries. In Sect. 3,
we motivate and introduce the notion of core-completeness. In Sect. 4, we define
the action language. In Sect. 5, we describe the static verification problem and
characterize its complexity. In Sect. 6, we address the planning problem and
concentrate on the synthesis of minimal plans satisfying a given requirement
expressed using Must/May queries. We discuss related works in Sect. 7 and
conclude in Sect. 8. Results and proofs that are omitted in this paper are found
in the full version [16].

2 Background

Description logics (DLs) are a family of logics for encoding knowledge in terms of
concepts, roles, and individuals; analogous to first-order logic unary predicates,
binary predicates, and constants, respectively. Standard DL knowledge bases
(KBs) have a set of axioms, called TBox, and a set of assertions, called ABox.
The TBox contains axioms that relate to concepts and roles. The ABox contains
assertions that relate individuals to concepts and pairs of individuals to roles.
KBs are usually interpreted under the open-world assumption, meaning that the
asserted facts are not assumed to be complete.
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Core-Closed Knowledge Bases. In [15], we introduced core-closed knowledge
bases (ccKBs) as a suitable description logic formalism to encode cloud deploy-
ments. The main characteristic of ccKBs is to allow for a combination of open-
and closed-world reasoning that ensures tractability. A DL-LiteF ccKB is the
tuple K = 〈T ,A,S,M〉 built from the standard knowledge base 〈T ,A〉 and the
core system 〈S,M〉. The former encodes incomplete terminological and asser-
tional knowledge. The latter is, in turn, composed of two parts: S (also called
the SBox ), containing axioms that encode the core structural specifications,
and M (also called the MBox ), containing positive concept and role assertions
that encode the core configuration. Syntactically, M is similar to an ABox but,
semantically, is assumed to be complete with respect to the specifications in S.

The ccKB K is defined over the alphabets C (of concepts), R (of roles), and I
(of individuals), all partitioned into an open subset and a partially-closed subset.
That is, the set of concepts is partitioned into the open concepts CK and the
closed (specification) concepts CS ; the set of roles is partitioned into open roles
RK and closed (specification) roles RS ; and the set of individuals is partitioned
into open individuals IK and closed (model) individuals IM. We call CS and RS

core-closed predicates, or partially-closed predicates, as their extension is closed
over the core domain IM and open otherwise. In contrast, we call CK and RK

open predicates. The syntax of concept and role expressions in DL-LiteF [2,8]
is as follows:

B ::= ⊥ | A | ∃p
where A denotes a concept name and p is either a role name r or its inverse r−.
The syntax of axioms provides for the three following axioms:

B1 � B2, B1 � ¬B2, (funct p),

respectively called: positive inclusion axioms, negative inclusion axioms, and
functionality axioms. These axioms are contained in the sets S and T . To pre-
cisely denote the subsets of S and T having only axioms of a given type we use
the notation PIX , NIX , and FX , for X ∈ {S, T }, which respectively contain only
positive inclusion axioms, negative inclusion axioms, and functionality axioms.
From now on, we denote symbols from the alphabet XX with the subscript
X , and symbols from the generic alphabet X with no subscript. In core-closed
knowledge bases, axioms and assertions fall into the scope of a different set
depending on the predicates and individuals that they refer to, according to the
set definitions below.

M ⊆ {AS(aM), RS(aM, a), RS(a, aM)}
A ⊆ {AK(aK), RK(aK, bK), AS(aK), RS(aK, bK)}
S ⊆ {B1

S �B2
S , B1

S �¬B2
S , Func(PS)}

T ⊆ {B1�B2
K, B1�¬B2

K, Func(PK)}

In the above definition of the set M, role assertions link at least one individual
from the core domain IM (denoted as aM) to one individual from the general set
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I (denoted as a). Node a could either be an individual from the open partition IK

or the closed partition IM. When a is an element from the set IK, we refer to it
as a “boundary node”, as it sits at the boundary between the core and the open
parts of the knowledge base. As mentioned earlier, M-assertions are assumed to
be complete and consistent with respect to the terminological knowledge given
in S; whereas the usual open-world assumption is made for A-assertions. The
semantics of a DL-LiteF core-closed KB is given in terms of interpretations I,
consisting of a non-empty domain ΔI and an interpretation function ·I . The
latter assigns to each concept A a subset AI of ΔI , to each role r a subset rI of
ΔI ×ΔI , and to each individual a a node aI in ΔI , and it is extended to concept
expressions in the usual way. An interpretation I is a model of an inclusion axiom
B1 � B2 if BI

1 ⊆ BI
2 . An interpretation I is a model of a membership assertion

A(a), (resp. r(a, b)) if aI ∈ AI (resp. (aI , bI) ∈ rI). We say that I models T ,
S, and A if it models all axioms or assertions contained therein. We say that I
models M, denoted I |=CWA M, when it models an M-assertion f if and only
if f ∈ M. Finally, I models K if it models T , S, A, and M. When K has at
least one model, we say that K is satisfiable.

In the remainder of this paper, we will sometimes refer to the lts interpreta-
tion of M. The lts interpretation of M, denoted lts(M), is the interpretation
(Δlts(M), ·lts(M)) defined only over concept and role names from the set CS and
RS , respectively, and over individual names from IK that appear in the scope
of M-assertions. The interpretation lts(M) is the unique model of M such that
lts(M) |=CWA M.

In the application presented in [14], description logic KBs are used to encode
machine-readable deployment files containing multiple resource declarations.
Every resource declaration has an underlying tree structure, whose leaves can
potentially link to the roots of other resource declarations. Let Ir ⊆ IM be the
set of all resource nodes, we encode their resource declarations in M, and for-
malize the resulting forest structure by partitioning M into multiple subsets
{Mi}i∈Ir , each representing a tree of assertions rooted at a resource node i (we
generally refer to constants in M as nodes). For the purpose of this work, we
will refer to core-closed knowledge bases where M is partitioned as described;
that is, ccKBs such that K = 〈T ,A,S, {Mi}i∈Ir 〉.

Conjunctive Queries. A conjunctive query (CQ) is an existentially-quantified
formula q[�x] of the form ∃�y.conj(�x, �y), where conj is a conjunction of positive
atoms and potentially inequalities. A union of conjunctive queries (UCQ) is a
disjunction of CQs. The variables in �x are called answer variables, those in �y
are the existentially-quantified query variables. A tuple �c of constants appearing
in the knowledge base K is an answer to q if for all interpretations I model
of K we have I |= q[�c]. We call these tuples the certain answers of q over K,
denoted ans(K, q), and the problem of testing whether a tuple is a certain answer
query entailment. A tuple �c of constants appearing in K satisfies q if there exists
an interpretation I model of K such that I |= q[�c]. We call these tuples the sat
answers of q over K, denoted sat−ans(K, q), and the problem of testing whether
a given tuple is a sat answer query satisfiability.



Actions over Core-Closed Knowledge Bases 285

Must/May Queries. A Must/May query ψ [15] is a Boolean combination of
nested UCQs in the scope of a Must or a May operator as follows:

ψ ::= ¬ψ | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | Must ϕ | May ϕ �≈

where ϕ and ϕ �≈ are unions of conjunctive queries potentially containing inequal-
ities. The reasoning needed for answering the nested queries can be decou-
pled from the reasoning needed to answer the higher-level formula: nested
queries Must ϕ are reduced to conjunctive query entailment, and nested queries
May ϕ�≈ are reduced to conjunctive query satisfiability. We denote by ANS(ψ,K)
the answers of a Must/May query ψ over the core-closed knowledge base K.

3 Core-Complete Knowledge Bases

The algorithm Consistent presented in [15] computes satisfiability of DL-LiteF

core-closed knowledge bases relying on the assumption that M is complete and
consistent with respect to S. Such an assumption effectively means that the infor-
mation contained in M is explicitly present and cannot be completed by inference.
The algorithm relies on the existence of a theoretical object, the canonical inter-
pretation, in which missing assertions can always be introduced when they are
logically implied by the positive inclusion axioms. As a matter of fact, positive
inclusion axioms are not even included in the inconsistency formula built for
the satisfiability check, as it is proven that the canonical interpretation always
satisfies them ([15], Lemma 3). When the assumption that M is consistent with
respect to S is dropped, the algorithm Consistent becomes insufficient to check
satisfiability. We illustrate this with an example.

Example 1 (Required Configuration). Let us consider the axioms constraining
the AWS resource type S3::Bucket. In particular, the S-axiom S3::Bucket �
∃loggingConfiguration prescribing that all buckets must have a required log-
ging configuration. For a set M = {S3::Bucket(b)}, according to the partially-
closed semantics of core-closed knowledge bases, the absence of an assertion
loggingConfiguration(b, x), for some x, is interpreted as the assertion being false
in M, which is therefore not consistent with respect to S. However, the algo-
rithm Consistent will check the lts interpretation of M for an empty formula (as
there are no negative inclusion or functionality axioms) and return true.

In essence, the algorithm Consistent does not compute the full satisfiability of the
whole core-closed knowledge base, but only of its open part. Satisfiability of M
with respect to the positive inclusion axioms in S needs to be checked separately.
We introduce a new notion to denote when a set M is complete with respect
to S that is distinct from the notion of consistency. Let K = 〈T ,A,S,M〉 be a
DL-LiteF core-closed knowledge base; we say that K is core-complete when M
models all positive inclusion axioms in S under a closed-world assumption; we
say that K is open-consistent when M and A model all negative inclusion and
functionality axioms in K’s negative inclusion closure. Finally, we say that K is
fully satisfiable when is both core-complete and open-consistent.
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Lemma 1. In order to check full satisfiability of a DL-LiteF core-closed KB,
one simply needs to check if K is core-complete (that is, if M models all positive
axioms in S under a closed-world assumption) and if K is open-consistent (that
is, to run the algorithm Consistent).

Proof. Dropping the assumption that M is consistent w.r.t. S causes Lemma 3
from [15] to fail. In particular, the canonical interpretation of K, can(K), would
still be a model of PIT , A, and M, but may not be a model of PIS . This is
due to the construction of the canonical model that is based on the notion of
applicable axioms. In rules c5-c8 of [15] Definition 1, axioms in PIS are defined
as applicable to assertions involving open nodes aK but not to model nodes
aM in IM. As a result, if the implications of such axioms on model nodes are
not included in M itself, then they will not be included in can(K) either, and
can(K) will not be a model of PIS . On the other hand, one can easily verify
that Lemmas 1,2,4,5,6,7 and Corollary 1 would still hold as they do not rely on
the assumption. However, since it is not guaranteed anymore that M satisfies
all positive inclusion axioms from S, the if direction of [15] Theorem 1 does not
hold anymore: there can be an unsatisfiable ccKB K such that db(A)∪ lts(M) |=
cln(T ∪ S),A,M. For instance, the knowledge base from Example 1. We also
note that the negative inclusion and functionality axioms from S will be checked
anyway by the consistency formula, both on db(A) and on lts(M).

Lemma 2. Checking whether a DL-LiteF core-closed knowledge base is core-
complete can be done in polynomial time in M. As a consequence, checking full
satisfiability is also done in polynomial time in M.

Proof. One can write an algorithm that checks core-completeness by searching
for the existence of a positive inclusion axiom B1

S � B2
S ∈ PIS such that M |=

B1
S(aM) and M �|= B2

S(aM), where the relation |= is defined over DL-LiteF

concept expressions as follows:

M |=⊥(aM) ↔ false
M |=AS(aM) ↔ AS(aM)∈M
M |=∃rS(aM) ↔ ∃b. rS(aM, b)∈M
M |=∃r−S (aM) ↔ ∃b. rS(b, aM)∈M.

The knowledge base is core-complete if such a node cannot be found.

4 Actions

We now introduce a formal language to encode mutating actions. Let us remind
ourselves that, in our application of interest, the execution of a mutating action
modifies the configuration of a deployment by either adding new resource
instances, deleting existing ones, or modifying their settings. Here, we intro-
duce a framework for DL-LiteF core-closed knowledge base updates, triggered
by the execution of an action that enables all the above mentioned effects. The



Actions over Core-Closed Knowledge Bases 287

only component of the core-closed knowledge base that is modified by the action
execution is M; while T , S, and A remain unchanged. As a consequence of
updating M, actions can introduce new individuals and delete old ones, thus
updating the set IM as well. Note that this may force changes outside IM due
to the axioms in T and S. The effects of applying an action over M depend
on a set of input parameters that will be instantiated at execution time, result-
ing in different assertions being added or removed from M. As a consequence
of assertions being added, fresh individuals might be introduced in the active
domain of M, including both model nodes from IM and boundary nodes from
IB. Differently, as a consequence of assertions being removed, individuals might
be removed from the active domain of M, including model nodes from IM but
not including boundary nodes from IB . In fact, boundary nodes are owned by
the open portion of the knowledge base and are known to exist regardless of them
being used in M. We invite the reader to review the set definitions for A- and
M-assertions (Sect. 2) to note that it is indeed possible for a generic boundary
individual a involved in an M-assertion to also be involved in an A-assertion.

4.1 Syntax

An action is defined by a signature and a body. The signature consists of an
action name and a list of formal parameters, which will be replaced with actual
parameters at execution time. The body, or action effect, can include conditional
statements and concatenation of atomic operations over M-assertions. For exam-
ple, let α be the action act(�x) = γ; that is, the action denoted by signature act(�x)
and body γ, with signature name act, signature parameters �x, and body effect γ.
Since it contains unbound parameters, or free variables, action α is ungrounded
and needs to be instantiated with actual values in order to be executed over
a set M. In the following, we assume the existence of a set Var, of variable
names, and consider a generic input parameters substitution �θ : Var → I, which
replaces each variable name by an individual node. For simplicity, we will denote
an ungrounded action by its effect γ, and a grounded action by the composition
of its effect with an input parameter substitution γ�θ. Action effects can either
be complex or basic. The syntax of complex action effects γ and basic effects β
is constrained by the following grammar.

γ ::= ε | β · γ | [ ϕ � β ] · γ

β ::= ⊕x S | �x S | �xnew
S | �x

The complex action effects γ include: the empty effect ( ε ), the execution of
a basic effect followed by a complex one ( β · γ ), and the conditional execution
of a basic effect upon evaluation of a formula ϕ over the set M ( [ ϕ � β ] · γ ).
The basic action effects β include: the addition of a set S of M-assertions to the
subset Mx (⊕xS ), the removal of a set S of M-assertions from the subset Mx

(�xS ), the addition of a fresh subset Mxnew
containing all the M-assertions in

the set S ( �xnew
S ), and the removal of an existing Mx subset in its entirety

( �x ). The set S, the formula ϕ, and the operators ⊕/� might contain free
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variables. These variables are of two types: (1) variables that are replaced by
the grounding of the action input parameters, and (2) variables that are the
answer variables of the formula ϕ and appear in the nested effect β.

Example 2. The following is the definition of the action createBucket from the
API reference of the AWS resource type S3::Bucket. The input parameters are
two: the new bucket name “name” and the canned access control list “acl” (one
of Private, PublicRead, PublicReadWrite, AuthenticatedRead, etc.). The effect of
the action is to add a fresh subset Mx for the newly introduced individual x
containing the two assertions S3::Bucket(x) and accessControl(x, y).

createBucket(x : name, y : acl) = �x{S3::Bucket(x), accessControl(x, y)} · ε

The action needs to be instantiated by a specific parameter assignment, for
example the substitution θ = [ x ← DataBucket, y ← Private ], which binds
the variable x to the node DataBucket and the variable y to the node Private,
both taken from a pool of inactive nodes in I.

Action Query ϕ. The syntax introduced in the previous paragraph allows for
complex actions that conditionally execute a basic effect β depending on the
evaluation of a formula ϕ over M. This is done via the construct [ ϕ � β ] · γ.
The formula ϕ might have a set �y of answer variables that appear free in its body
and are then bound to concrete tuples of nodes during evaluation. The answer
tuples are in turn used to instantiate the free variables in the nested effect β.
We call ϕ the action query since we use it to select all the nodes that will be
involved in the action effect. According to the grammar below, ϕ is a boolean
combination of M-assertions potentially containing free variables.

ϕ ::=AS(t) | RS(t1, t2) | ϕ1 ∧ ϕ2 | ϕ2 ∨ ϕ2 | ¬ϕ

In particular, AS is a symbol from the set CS of partially-closed concepts;
RS is a symbol from the set RS of partially-closed roles; and t, t1, t2 are either
individual or variable names from the set I � Var, chosen in such a way that
the resulting assertion is an M-assertion. Since the formula ϕ can only refer
to M-assertions, which are interpreted under a closed semantics, its evaluation
requires looking at the content of the set M. A formula ϕ with no free variables is
a boolean formula and evaluates to either true or false. A formula ϕ with answer
variables �y and arity ar(ϕ) evaluates to all the tuples �t, of size equal the arity of
ϕ, that make the formula true in M. The free variables of ϕ can only appear in
the action β such that ϕ � β. We denote by ANS(ϕ,M) the set of answers to
the action query ϕ over M. It is easy to see that the maximum number of tuples
that could be returned by the evaluation (that is, the size of the set ANS(ϕ,M))
is bounded by |IM � IB|ar(ϕ), in turn bounded by ( 2|M| )2|ϕ|.

Example 3. The following example shows the encoding of the S3 API opera-
tion called deleteBucketEncryption, which requires as unique input parameter
the name of the bucket whose encryption configuration is to be deleted. Since
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a bucket can have multiple encryption configuration rules (each prescribing dif-
ferent encryption keys and algorithms to be used) we use an action query ϕ to
select all the nodes that match the assertions structure to be removed.

ϕ[y, k, z](x) = S3::Bucket(x) ∧ encrRule(x, y) ∧ SSEKey(y, k) ∧ SSEAlgo(y, z)

The query ϕ is instantiated by the specific bucket instance (which will replace
the variable x) and returns all the triples (y, k, z) of encryption rule, key, and
algorithm, respectively, which identify the assertions corresponding to the dif-
ferent encryption configurations that the bucket has. The answer variables are
then used in the action effect to instantiate the assertions to remove from Mx:

deleteBucketEncryption(x : name)
= [ϕ[y, k, z](x) � �x{encrRule(x, y),SSEKey(y, k),SSEAlgo(y, z)}] · ε

4.2 Semantics

So far, we have described the syntax of our action language and provided two
examples that showcase the encoding of real-world API calls. Now, we define the
semantics of action effects with respect to the changes that they induce over a
knowledge base. Let us recall that given a substitution �θ for the input parameters
of an action γ, we denote by γ�θ the grounded action where all the input variables
are replaced according to what prescribed by �θ. Let us also recall that the effects
of an action apply only to assertions in M and individuals from IM, and cannot
affect nodes and assertions from the open portion of the knowledge base.

The execution of a grounded action γ�θ over a DL-LiteF core-closed knowledge
base K = (T ,A,S,M), defined over the set IM of partially-closed individuals,
generates a new knowledge base Kγ�θ = (T ,A,S,Mγ�θ), defined over an updated
set of partially-closed individuals IMγ�θ

. Let S be a set of M-assertions, γ a com-
plex action, �θ an input parameter substitution, and �ρ a generic substitution that
potentially replaces all free variables in the action γ. Let �ρ1 and �ρ2 be two substi-
tutions with signature Var → I such that dom(�ρ1)∩dom(�ρ2) = ∅; we denote their
composition by �ρ1�ρ2 and define it as the new substitution such that �ρ1�ρ2(x) = a
if �ρ1(x)=a ∨ �ρ2(x)=a, and �ρ1�ρ2(x) = ⊥ if �ρ1(x)=⊥ ∧ �ρ2(x)=⊥. We formalize
the application of the grounded action γ�θ as the transformation Tγ�θ that maps

the pair
〈
M, IM〉

into the new pair
〈
M′, IM′

〉
. We sometimes use the nota-

tion Tγ�θ(M) or Tγ�θ(I
M) to refer to the updated MBox or to the updated set of

model nodes, respectively. The rules for applying the transformation depend on
the structure of the action γ and are reported in Fig. 1. The transformation starts
with an initial generic substitution �ρ = �θ. As the transformation progresses, the
generic substitution �ρ can be updated only as a result of the evaluation of an
action query ϕ over M. Precisely, all the tuples �t1, ..., �tn making ϕ true in M
will be considered and composed with the current substitution �ρ generating n
fresh substitutions �ρt1, ..., �ρtn which are used in the subsequent application of
the nested effect β. Since the core M of the knowledge base K changes at every
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action execution, its domain of model nodes IM changes as well. The execution
of an action γ�θ over the knowledge base K = (T ,A,S,M) with set of model
nodes IM could generate a new Kγ�θ = (T ,A,S,Mγ�θ) with a new set of model
nodes IM′ that is not core-complete or not open-consistent (see Sect. 3 for the
corresponding definitions). We illustrate two examples next.

Fig. 1. Semantic of the action language defined over the MBox M and set IM.

Example 4 (Violation of core-completeness). Consider the case where the gen-
eral specifications of the system require all objects of type bucket to have a log-
ging configuration, and an action that removes the logging configuration from
a bucket. Consider the core-closed knowledge base K where S = {S3::Bucket �
∃loggingConfiguration} and M = {S3::Bucket(b), loggingConfiguration(b, c)} (con-
sistent wrt S) and the action γ defined as

deleteLoggingConfiguration(x : name)
= [(ϕ[y](x) = S3::Bucket(x) ∧ loggingConfiguration(x, y))

� �x{loggingConfiguration(x, y)}] · ε

For the input parameter substitution �θ = [x ← b], it is easy to see that the
transformation Tγ�θ applied to M results in the update Mγ�θ = {S3::Bucket(b)},
which is not core-complete.

Example 5 (Violation of open-consistency). Consider the case where an action
application indirectly affects boundary nodes and their properties, leading to
inconsistencies in the open portion of the knowledge base. For example, when
the knowledge base prescribes that buckets used to store logs cannot be pub-
lic; however, a change in the configuration of a bucket instance causes a sec-
ond bucket (initially known to be public) to also become a log store. In
particular, this happens when the knowledge base K contains the T -axiom
∃loggingDestination− � ¬PublicBucket and the A-assertion PublicBucket(b), and
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we apply an action that introduces a new bucket storing its logs to b, defined as
follows:

createBucketWithLogging(x : name, y : log)
= �x{S3::Bucket(x), loggingDestination(x, y)}

For the input parameter substitution �θ = [x ← newBucket, y ← b], the result
of applying the transformation Tγ�θ is the set M = {S3::Bucket(newBucket),
loggingDestination(newBucket, b)} which, combined with the pre-existing and
unchanged sets T and A, causes the updated Kγ�θ to be not open-consistent.

From a practical point of view, the examples highlight the need to re-evaluate
core-completeness and open-consistency of a core-closed knowledge base after
each action execution. Detecting a violation to core-completeness signals that we
have modeled an action that is inconsistent with respect to the systems specifi-
cations, which most likely means that the action is missing something and needs
to be revised. Detecting a violation to open-consistency signals that our action,
even when consistent with respect to the specifications, introduces a change that
conflicts with other assumptions that we made about the system, and generally
indicates that we should either revise the assumptions or forbid the application
of the action. Both cases are important to consider in the development life cycle
of the core-closed KB and the action definitions.

5 Static Verification

In this section, we investigate the problem of computing whether the execution of
an action, no matter the specific instantiation, always preserves given properties
of core-closed knowledge bases. We focus on properties expressed as Must/May
queries and define the static verification problem as follows.

Definition 1 (Static Verification). Let K be a DL-LiteF core-closed knowl-
edge base, q be a Must/May query, and γ be an action with free variables from
the language presented above. Let �θ be an assignment for the input variables of
γ that transforms γ into the grounded action γ�θ. Let Kγ�θ be the DL-LiteF core-
closed knowledge base resulting from the application of the grounded action γ�θ
onto K. We say that the action γ “preserves q over K” iff for every grounded
instance γ�θ we have that ANS(q,K) = ANS(q,Kγ�θ). The static verification prob-
lem is that of determining whether an action γ is q-preserving over K.

An action γ is not q-preserving over K iff there exists a grounding �θ for
the input variables of γ such that ANS(q,K) �= ANS(q,Kγ�θ); that is, fixed
the grounding �θ there exists a tuple �t for q’s answer variables such that
�t ∈ ANS(q,K) � ANS(q,Kγ�θ) or �t ∈ ANS(q,Kγ�θ) � ANS(q,K).

Theorem 1 (Complexity of the Static Verification Problem). The static
verification problem, i.e.deciding whether an action γ is q-preserving over K, can
be decided in PTime in data complexity and ExpTime in the arities of γ and q.
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Proof. The proof relies on the fact that one could: enumerate all possible assign-
ments �θ; compute the updated knowledge bases Kγ�θ; check whether these are
fully satisfiable; enumerate all tuples �t for the query q; and, finally, check whether
there exists at least one such tuple that satisfies q over K but not Kγ�θ or vice
versa. The number of assignments �θ is bounded by

(
|IM � IK|+ar(γ)

)ar(γ) as it
is sufficient to replace each variable appearing in the action γ either by a known
object from IM � IK or by a fresh one. The computation of the updated Kγ�θ is
done in polynomial time in M (and is exponential in the size of the action γ) as
it may require the evaluation of an internal action query ϕ and the consecutive
re-application of the transformation for a number of tuples that is bounded by a
polynomial over the size of M. As explained in Sect. 3, checking full satisfiability
of the resulting core-closed knowledge base is also polynomial in M. The number
of tuples �t is bounded by

(
|IM � IK| + ar(γ)

)ar(q) as it is enough to consider
all those tuples involving known objects plus the fresh individuals introduced
by the assignment �θ. Checking whether a tuple �t satisfies the query q over a
core-closed knowledge base is decided in LogSpace in the size of M [15] which
is, thus, also polynomial in M.

6 Planning

As discussed throughout the paper, the execution of a mutating action modi-
fies the configuration of a deployment and potentially changes its posture with
respect to a given set of requirements. In the previous two sections, we intro-
duced a language to encode mutating actions and we investigated the problem
of checking whether the application of an action preserves the properties of a
core-closed knowledge base. In this section, we investigate the plan existence
and synthesis problems; that is, the problem of deciding whether there exists
a sequence of grounded actions that leads the knowledge base to a state where
a certain requirement is met, and the problem of finding a set of such plans,
respectively. We start by defining a notion of transition system that is gen-
erated by applying actions to a core-closed knowledge base and then use this
notion to focus on the mentioned planning problems. As in classical planning,
the plan existence problem for plans computed over unbounded domains is unde-
cidable [17,19]. The undecidability proof is done via reduction from the Word
problem. The problem of deciding whether a deterministic Turing machine M
accepts a word w ∈ {0, 1}∗ is reduced to the plan existence problem. Since unde-
cidability holds even for basic action effects, we can show undecidability over an
unbounded domain by using the same encoding of [1].

Transition Systems. In the style of the work done in [10,21], the combination
of a DL-LiteF core-closed knowledge base and a set of actions can be viewed
as the transition system it generates. Intuitively, the states of the transition
system correspond to MBoxes and the transitions between states are labeled by
grounded actions. A DL-LiteF core-closed knowledge base K = (T ,A,S,M0),
defined over the possibly infinite set of individuals I (and model nodes IM

0 ⊆ I)
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and the set Act of ungrounded actions, generates the transition system (TS) ΥK =
(I, T ,A,S, Σ,M0,→) where Σ is a set of fully satisfiable (i.e., core-complete and
open-consistent) MBoxes; M0 is the initial MBox; and →⊆ Σ × LAct × Σ is a
labeled transition relation with LAct the set of all possible grounded actions.
The sets Σ and → are defined by mutual induction as the smallest sets such
that: if Mi ∈ Σ then for every grounded action γ�θ ∈ LAct such that the fresh
MBox Mi+1 resulting from the transformation Tγ�θ is core-complete and open-

consistent, we have that Mi+1 ∈ Σ and (Mi, γ�θ,Mi+1) ∈→.
Since we assume that actions have input parameters that are replaced during

execution by values from I, which contains both known objects from IM � IK

and possibly infinitely many fresh objects, the generated transition system ΥK is
generally infinite. To keep the planning problem decidable, we concentrate on a
known finite subset D ⊂ I containing all the fresh nodes and value assignments to
action variables that are of interest for our application. In the remainder of this
paper, we discuss the plan existence and synthesis problem for finite transition
systems ΥK = (D, T ,A,S, Σ,M0,→), whose states in Σ have a domain that is
also bounded by D.

The Plan Existence Problem. A plan is a sequence of grounded actions whose
execution leads to a state satisfying a given property. Let K = (T ,A,S,M0)
be a DL-LiteF core-closed knowledge base; Act be a set of ungrounded actions;
and let ΥK = (D, T ,A,S, Σ,M0,→) be its generated finite TS. Let π be a finite
sequence γ1�θ1 · · · γn

�θn of grounded actions taken from the set LAct. We call the

sequence π consistent iff there exists a run ρ = M0
γ1�θ1−−−→ M1

γ2�θ2−−−→ · · · γn
�θn−−−→ Mn

in ΥK. Let q be a Must/May query mentioning objects from adom(K) and �t a
tuple from the set adom(K)ar(q). A consistent sequence π of grounded actions
is a plan from K to (�t, q) iff �t ∈ ANS(q,Kn = (T ,A,S,Mn)) with Mn the final
state of the run induced by π.

Definition 2 (Plan Existence). Given a DL-LiteF core-closed knowledge base
K, a tuple �t, and a Must/May query q, the plan existence problem is that of
deciding whether there exists a plan from K to (�t, q).

Example 6. Let us consider the transition system ΥK generated by the core-
closed knowledge base K = (T ,A,S,M0) having the set of partially-closed
assertions M0 defined as

{S3::Bucket(b), KMS::Key(k), bucketEncryptionRule(b, r), bucketKey(r, k),
bucketKeyEnabled(r, true), enableKeyRotation(k, false)}

and the set of action labels Act containing the actions deleteBucket, createBucket,
deleteKey, createKey, enableKeyRotation, putBucketEncryption, and deleteBucke-
tEncryption. Let us assume that we are interested in verifying the existence of a
sequence of grounded actions that when applied onto the knowledge base would
configure the bucket node b to be encrypted with a rotating key. Formally, this
is equivalent to checking the existence of a consistent plan π that when executed
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on the transition system ΥK leads to a state Mn such that the tuple �t = b is in
the set ANS(q,Kn = (T ,A,S,Mn)) for q the query

q[x] = S3::Bucket(x) ∧ Must
(
∃y, z. bucketSSEncryption(x, y) ∧

bucketKey(y, z) ∧ enableKeyRotation(z, true)
)

It is easy to see that the following three sequences of grounded actions are
valid plans from K to (b, q):

π1 = enableKeyRotation(k)
π2 = createKey(k1) · enableKeyRotation(k1) · putBucketEncryption(b, k1)
π3 = deleteBucketEncryption(b, k) · createKey(k1) · enableKeyRotation(k1)·

putBucketEncryption(b, k1)

If, for example, a bucket was only allowed to have one encryption (by means
of a functional axiom in S), then π2 would not be a valid plan, as it would
generate an inconsistent run leading to a state Mi that is not open-consistent
w.r.t. S.

Lemma 3. The plan existence problem for a finite transition system ΥK gener-
ated by a DL-LiteF core-closed knowledge base K and a set of actions Act, over
a finite domain of objects D, reduces to graph reachability over a graph whose
number of states is at most exponential in the size of D.

The Plan Synthesis Problem. We now focus on the problem of finding plans
that satisfy a given condition. As discussed in the previous paragraph, we are
mostly driven by query answering; in particular, by conditions corresponding
to a tuple (of objects from our starting deployment configuration) satisfying a
given requirement expressed as a Must/May query. Clearly, this problem is
meaningful in our application of interest because it corresponds to finding a set
of potential sequences of changes that would allow one to reach a configuration
satisfying (resp., not satisfying) one, or more, security mitigations (resp., vul-
nerabilities). We concentrate on DL-LiteF core-closed knowledge bases and their
generated finite transition systems, where potential fresh objects are drawn from
a fixed set D. We are interested in sequences of grounded actions that are min-
imal and ignore sequences that extend these. We sometimes call such minimal
sequences simple plans. A plan π from an initial core-closed knowledge base K
to a goal condition b is minimal (or simple) iff there does not exist a plan π′

(from the same initial K to the same goal condition b) s.t. π = π′ · σ, for σ a
non-empty suffix of grounded actions.

In Algorithm 1, we present a depth-first search algorithm that, starting from
K, searches for all simple plans that achieve a given target query membership
condition. The transition system ΥK is computed, and stored, on the fly in the
Successors sub-procedure and the graph is explored in a depth-first search traver-
sal fashion.
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Algorithm 1: FindPlans(K,D,Act,
〈
�t, q

〉
)

Inputs : A ccKB K = (T ,A,S,M0), a domain D, a set of actions Act
and a pair

〈
�t, q

〉
of an answer tuple and a Must/May query

Output: A possibly empty set Π of consistent simple plans

1 def FindPlans ( K,D,Act,
〈
�t, q

〉
):

2 Π := ∅;
3 S := ⊥;
4 AllPlanSearch(M0, ε, ∅,K,D,Act,

〈
�t, q

〉
) ;

5 return Π;

6 def AllPlanSearch ( M, π, V,K,D,Act,
〈
�t, q

〉
):

7 if M ∈ V then
8 return;

9 if �t ∈ ANS(q, 〈T ,A,S,M〉) then
10 Π := Π ∪ {π};
11 return;

12 Q := ∅;

13 foreach
〈
γ�θ,M′

〉
∈ Successors(M,Act,D) do

14 Q.push(
〈
γ�θ,M′

〉
);

15 V := V ∪ {M};
16 while Q �= ∅ do

17

〈
γ�θ,M′

〉
= Q.pop();

18 AllPlanSearch(M′, π · γ�θ, V,K,D,Act,
〈
�t, q

〉
);

19 V := V � {M};
20 return;

21 def Successors (M,Act,D):
22 if S[M] is defined then
23 return S[M];

24 N := ∅;
25 foreach γ ∈ Act, �θ ∈ Dar(γ) do
26 M′ := Tγ�θ(M);
27 if M′is fully satisfiable then

28 N := N ∪ {
〈
γ�θ,M′

〉
}

29 S[M] := N ;
30 return N ;

We note that the condition �t ∈ ANS(q, 〈T ,A,S,M〉) (line 9) could be
replaced by any other query satisfiability condition and that one could easily
rewrite the algorithm to be parameterized by a more general boolean goal. For
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example, the condition that a given tuple �t is not an answer to a query q over
the analyzed state, with the query q representing an undesired configuration,
or a boolean formula over multiple query membership assertions. We also note
that Algorithm 1 could be simplified to return only one simple plan, if a plan
exists, or NULL, if a plan does not exist, thus solving the so-called plan generation
problem. We refer the reader to the full version of this paper [16] containing the
plan generation algorithm (full version, Appendix A.1) and the proofs of Theo-
rem 2 and 3 below (full version, Appendices A.2 and A3, respectively).

Theorem 2 (Minimal Plan Synthesis Correctness). Let K be a DL-LiteF

core-closed knowledge base, D be a fixed finite domain, Act be a set of ungrounded
action labels, and

〈
�t, q

〉
be a goal. Then a plan π is returned by the algorithm

FindPlans(K,D,Act,
〈
�t, q

〉
) if and only if π is a minimal plan from K to

〈
�t, q

〉
.

Theorem 3 (Minimal Plan Synthesis Complexity). The FindPlans algo-
rithm runs in polynomial time in the size of M and exponential time in size
of D.

7 Related Work

The syntax of the action language that we presented in this paper is similar to
that of [1,12,13]. Differently from their work, we disallow complex action effects
to be nested inside conditional statements, and we define basic action effects that
consist purely in the addition and deletion of concept and role M-assertions.
Thus, our actions are much less general than those used in their framework.
The semantics of their action language is defined in terms of changes applied to
instances, and the action effects are captured and encoded through a variant of
ALCHOIQ called ALCHOIQbr. In our work, instead, the execution of an action
updates a portion of the core-closed knowledge base K—the core M, which is
interpreted under a close-world assumption and can be seen as a partial assign-
ment for the interpretations that are models of K. Since we directly manipulate
M, the semantics of our actions is more similar to that of [21] and, in general, to
ABox updates [22,23]. Like the frameworks introduced in [9–11,20], our actions
are parameterized and when combined with a core-closed knowledge base gener-
ate a transition system. In [11], the authors focus on a variant of Knowledge and
Action Bases [21] called Explicit-Input KABs (eKABs); in particular, on finite
and on state-bounded eKABs, for which planning existence is decidable. Our
generated transition systems are an adaptation of the work done in Description
Logic based Dynamic Systems, KABs, and eKABs to our setting of core-closed
knowledge bases. In [24], the authors address decidability of the plan existence
problem for logics that are subset of ALCOI. Their action language is similar
to the one presented in this paper; including pre-conditions, in the form of a
set of ABox assertions, post-conditions, in the form of basic addition or removal
of assertions, concatenation, and input parameters. In [11], the plan synthesis
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problem is discussed also for lightweight description logics. Relying on the FOL-
reducibility of DL-LiteA, it is shown that plan synthesis over DL-LiteA can be
compiled into an ADL planning problem [25]. This does not seem possible in our
case, as not all necessary tests over core-closed knowledge bases are known to be
FOL-reducible. In [10] and [9], the authors concentrate on verifying and synthe-
sizing temporal properties expressed in a variant of μ-calculus over description
logic based dynamic systems, both problems are relevant in our application sce-
nario and we will consider them in future works.

8 Conclusion

We focused on the problem of analyzing cloud infrastructure encoded as descrip-
tion logic knowledge bases combining complete and incomplete information.
From a practical standpoint, we concentrated on formalizing and foreseeing the
impact of potential changes pre-deployment. We introduced an action language
to encode mutating actions, whose semantics is given in terms of changes induced
to the complete portion of the knowledge base. We defined the static verifica-
tion problem as the problem of deciding whether the execution of an action, no
matter the specific parameters passed, always preserves a set of properties of
the knowledge base. We characterized the complexity of the problem and pro-
vided procedural steps to solve it. We then focused on three formulations of the
classical AI planning problem: namely, plan existence, generation, and synthesis.
In our setting, the planning problem is formulated with respect to the transi-
tion system arising from the combination of a core-closed knowledge base and
a set of actions; goals are given in terms of one, or more, Must/May conjunc-
tive query membership assertion; and plans of interest are simple sequences of
parameterized actions.
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