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Abstract. Choice logics constitute a family of propositional logics and
are used for the representation of preferences, with especially qualita-
tive choice logic (QCL) being an established formalism with numerous
applications in artificial intelligence. While computational properties and
applications of choice logics have been studied in the literature, only few
results are known about the proof-theoretic aspects of their use. We pro-
pose a sound and complete sequent calculus for preferred model entail-
ment in QCL, where a formula F is entailed by a QCL-theory T if F
is true in all preferred models of T . The calculus is based on labeled
sequent and refutation calculi, and can be easily adapted for different
purposes. For instance, using the calculus as a cornerstone, calculi for
other choice logics such as conjunctive choice logic (CCL) can be obtained
in a straightforward way.

1 Introduction

Choice logics are propositional logics for the representation of alternative options
for problem solutions [4]. These logics add new connectives to classical propo-
sitional logic that allow for the formalization of ranked options. A prominent
example is qualitative choice logic (QCL for short) [7], which adds the con-
nective ordered disjunction #»× to classical propositional logic. Intuitively, A

#»×B
means that if possible A, but if A is not possible than at least B. The semantics
of a choice logic induce a preference ordering over the models of a formula.

As choice logics are well suited for preference handling, they have a multitude
of applications in AI such as logic programming [8], alert correlation [3], or
database querying [13]. But while computational properties and applications of
choice logics have been studied in the literature, only few results are known
about the proof-theoretic aspects of their use. In particular, there is no proof
system capable of deriving valid sentences containing choice operators. In this
paper we propose a sound and complete calculus for preferred model entailment
in QCL that can easily be generalized to other choice logics.

Entailment in choice logics is non-monotonic: conclusions that have been
drawn might not be derivable in light of new information. It is therefore not
surprising that choice logics are related to other non-monotonic formalisms. For
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instance, it is known [7] that QCL can capture propositional circumscription
and that, if additional symbols in the language are admitted, circumscription
can be used to generate models corresponding to the inclusion-preferred QCL
models up to the additional atoms. We do not intend to use this translation of
our choice logic formulas (or sequents) in order to employ an existing calculus
for circumscription, for instance [5].

Instead, we define calculi in sequent format directly for choice logics, which
are different from existing non-monotonic logics in the way non-monotonicity
is introduced. Specifically, the non-standard part of our logics is a new logi-
cal connective which is fully embedded in the logical language. For this reason,
calculi for choice logics also differ from most other calculi for non-monotonic
logics: our calculi do not use non-standard inference rules as in default logic,
modal operators expressing consistency or belief as in autoepistemic logic, or
predicates whose extensions are minimized as in circumscription. However, one
method that can also be applied to choice logics is the use of a refutation calculus
(also known as rejection or antisequent calculus) axiomatising invalid formulas,
i.e., non-theorems. Refutation calculi for non-monotonic logics were used in [5].
Specifically, by combining a refutation calculus with an appropriate sequent cal-
culus, elegant proof systems for the central non-monotonic formalisms of default
logic [16], autoepistemic logic [15], and circumscription [14] were obtained. How-
ever, to apply this idea to choice logics, we have to take another facet of their
semantics into account.

With choice logics, we are working in a setting similar to many-valued log-
ics. Interpretations ascribe a natural number called satisfaction degree to choice
logic formulas. Preferred models of a formula are then those models with the
least degree. There are several kinds of sequent calculus systems for many-valued
logics, where the representation as a hypersequent calculus [1,10] plays a promi-
nent role. However, there are crucial differences between choice logics and many-
valued logics in the usual sense. Firstly, choice logic interpretations are classical,
i.e., they set propositional variables to either true or false. Secondly, non-classical
satisfaction degrees only arise when choice connectives, e.g. ordered disjunction
in QCL, occur in a formula. Thirdly, when applying a choice connective ◦ to two
formulas A and B, the degree of A ◦ B does not only depend on the degrees of
A and B, but also on the maximum degrees that A and B can possibly assume.
Therefore, techniques used in proof systems for conventional many-valued logics
can not be applied directly to choice logics.

In [11] a sequent calculus based system for reasoning with contrary-to-duty
obligations was introduced, where a non-classical connective was defined to cap-
ture the notion of reparational obligation, which is in force only when a violation
of a norm occurs. This is related to the ordered disjunction in QCL, however,
based on the intended use in [11] the system was defined only for the occurrence
of the new connective on the right side of the sequent sign. We aim for a proof
system for reasoning with choice logic operators, and to deduce formulas from
choice logic formulas. Thus, we need a calculus with left and right inference rules.
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To obtain such a calculus we combine the idea of a refutation calculus with
methods developed for multi-valued logics in a novel way. First, we develop a
(monotonic) sequent calculus for reasoning about satisfaction degrees using a
labeled calculus, a method developed for (finite) many-valued logics [2,9,12].
Secondly, we define a labeled refutation calculus for reasoning about invalidity
in terms of satisfaction degrees. Finally, we join both calculi to obtain a sequent
calculus for the non-monotonic entailment of QCL. To this end, we introduce a
new, non-monotonic inference rule that has sequents of the two labeled calculi
as premises and formalizes degree minimization.

The rest of this paper is organized as follows. In the next section we present
the basic notions of choice logics and introduce the most prominent choice logics
QCL and CCL (conjunctive choice logic). In Sect. 3 we develop a labeled sequent
calculus for propositional logic extended by the QCL connective #»×. This calculus
is shown to be sound and complete and already can be used to derive interesting
sentences containing choice operators. In Sect. 4 we extend the previously defined
sequent calculus with an appropriate refutation calculus and non-monotonic rea-
soning, to capture entailment in QCL. The developed methodology for QCL can
be extended to other choice logics as well. In particular we show in Sect. 5 how
the calculi can be adapted for CCL.

2 Choice Logics

First, we formally define the notion of choice logics in accordance with the choice
logic framework of [4] before giving concrete examples in the form of QCL and
CCL. Finally, we define preferred model entailment.

Definition 1. Let U denote the alphabet of propositional variables. The set of
choice connectives CL of a choice logic L is a finite set of symbols such that
CL ∩{¬,∧,∨} = ∅. The set FL of formulas of L is defined inductively as follows:
(i) a ∈ FL for all a ∈ U ; (ii) if F ∈ FL, then (¬F ) ∈ FL; (iii) if F,G ∈ FL,
then (F ◦ G) ∈ FL for ◦ ∈ ({∧,∨} ∪ CL).

For example, CQCL = { #»×} and ((a #»×c) ∧ (b #»×c)) ∈ FQCL. Formulas that do not
contain a choice connective are referred to as classical formulas.

The semantics of a choice logic is given by two functions, satisfaction degree
and optionality. The satisfaction degree of a formula given an interpretation
is either a natural number or ∞. The lower this degree, the more preferable
the interpretation. The optionality of a formula describes the maximum finite
satisfaction degree that this formula can be ascribed, and is used to penalize
non-satisfaction.

Definition 2. The optionality of a choice connective ◦ ∈ CL in a choice logic L
is given by a function opt◦

L : N
2 → N such that opt◦

L(k, �) ≤ (k + 1) · (� + 1) for
all k, � ∈ N. The optionality of an L-formula is given via optL : FL → N with
(i) optL(a) = 1 for every a ∈ U ; (ii) optL(¬F ) = 1; (iii) optL(F∧G) = optL(F∨
G) = max (optL(F ), optL(G)); (iv) optL(F ◦ G) = opt◦

L(optL(F ), optL(G)) for
every choice connective ◦ ∈ CL.
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The optionality of a classical formula is always 1. Note that, for any choice
connective ◦, the optionality of F ◦ G is bounded such that optL(F ◦ G) ≤
(optL(F ) + 1) · (optL(G) + 1). In the following, we write N for (N ∪ {∞}).

Definition 3. The satisfaction degree of a choice connective ◦ ∈ CL in a choice
logic L is given by a function deg◦

L : N
2 × N

2 → N such that deg◦
L(k, �,m, n) ≤

opt◦
L(k, �) or deg◦

L(k, �,m, n) = ∞ for all k, � ∈ N and all m,n ∈ N. The satis-
faction degree of an L-formula under an interpretation I ⊆ U is given via the
function degL : 2U × FL → N with

1. degL(I, a) = 1 if a ∈ I, degL(I, a) = ∞ otherwise for every a ∈ U ;
2. degL(I,¬F ) = 1 if degL(I, F ) = ∞, degL(I,¬F ) = ∞ otherwise;
3. degL(I, F ∧ G) = max (degL(I, F ), degL(I, G));
4. degL(I, F ∨ G) = min(degL(I, F ), degL(I, G));
5. degL(I, F ◦ G) = deg◦

L(optL(F ), optL(G), degL(I, F ), degL(I, G)), ◦ ∈ CL.

We also write I |=L
m F for degL(I, F ) = m. If m < ∞, we say that I satisfies F

(to a finite degree), and if m = ∞, then I does not satisfy F . If F is a classical
formula, then I |=L

1 F ⇐⇒ I |= F and I |=L
∞ F ⇐⇒ I �|= F . The symbols �

and ⊥ are shorthand for the formulas (a∨¬a) and (a∧¬a), where a can be any
variable. We have optL(�) = optL(⊥) = 1, degL(I,�) = 1 and degL(I,⊥) = ∞
for any interpretation I in every choice logic.

Models and preferred models of formulas are defined in the following way:

Definition 4. Let L be a choice logic, I an interpretation, and F an L-
formula. I is a model of F , written as I ∈ ModL(F ), if degL(I, F ) < ∞.
I is a preferred model of F , written as I ∈ Prf L(F ), if I ∈ ModL(F ) and
degL(I, F ) ≤ degL(J , F ) for all other interpretations J .

Moreover, we define the notion of classical counterparts for choice connectives.

Definition 5. Let L be a choice logic. The classical counterpart of a choice
connective ◦ ∈ CL is the classical binary connective � such that, for all atoms
a and b, degL(I, a ◦ b) < ∞ ⇐⇒ I |= a � b. The classical counterpart of an
L-formula F is denoted as cp(F ) and is obtained by replacing all occurrences of
choice connectives in F by their classical counterparts.

A natural property of known choice logics is that choice connectives can be
replaced by their classical counterpart without affecting satisfiability, meaning
that degL(I, F ) < ∞ ⇐⇒ I |= cp(F ) holds for all L-formulas F .

So far we introduced choice logics in a quite abstract way. We now introduce
two particular instantiations, namely QCL, the first and most prominent choice
logic in the literature, and CCL, which introduces a connective #»� called ordered
conjunction in place of QCL’s ordered disjunction.
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Definition 6. QCL is the choice logic such that CQCL = { #»×}, and, if k =
optQCL(F ), � = optQCL(G), m = degQCL(I, F ), and n = degQCL(I, G), then

optQCL(F #»×G) = opt
#»×
QCL(k, �) = k + �, and

degQCL(I, F
#»×G) = deg

#»×
QCL(k, �,m, n) =

⎧
⎪⎨

⎪⎩

m if m < ∞;
n + k if m = ∞, n < ∞;
∞ otherwise.

In the above definition, we can see how optionality is used to penalize non-
satisfaction: given a QCL-formula F

#»×G and an interpretation I, if I satis-
fies F (to some finite degree), then degQCL(I, F

#»×G) = degQCL(I, F ); if I
does not satisfy F , then degQCL(I, F

#»×G) = optQCL(F ) + degQCL(I, G). Since
degQCL(I, F ) ≤ optQCL(F ), interpretations that satisfy F result in a lower
degree, i.e., are more preferable, compared to interpretations that do not sat-
isfy F . Let us take a look at a concrete example:

Example 1. Consider the QCL-formula F = (a #»×c) ∧ (b #»×c). Note that the clas-
sical counterpart of #»× is ∨, i.e., cp(F ) = (a∨ c)∧ (b∨ c). Thus, {c}, {a, b}, {a, c},
{b, c}, {a, b, c} ∈ ModQCL(F ). Of these models, {a, b} and {a, b, c} satisfy F to
a degree of 1 while {c}, {a, c}, and {b, c} satisfy F to a degree of 2. Therefore,
{a, b}, {a, b, c} ∈ Prf QCL(F ).

Next, we define CCL. Note that we follow the revised definition of CCL [4], which
differs from the initial specification1. Intuitively, given a CCL-formula F

#»�G it
is best to satisfy both F and G, but also acceptable to satisfy only F .

Definition 7. CCL is the choice logic such that CCCL = { #»�}, and, if k =
optCCL(F ), � = optCCL(G), m = degCCL(I, F ), and n = degCCL(I, G), then

optCCL(F #»�G) = k + �, and

degCCL(I, F
#»�G) =

⎧
⎪⎨

⎪⎩

n if m = 1, n < ∞;
m + � if m < ∞ and (m > 1 or n = ∞);
∞ otherwise.

Example 2. Consider the CCL-formula G = (a #»�c) ∧ (b #»�c). Note that the clas-
sical counterpart of #»� is the first projection, i.e., cp(G) = a ∧ b. Thus, {a, b},
{a, b, c} ∈ ModCCL(G). Of these models, {a, b, c} satisfies G to a degree of 1
while {a, b} satisfies G to a degree of 2. Therefore, {a, b, c} ∈ Prf CCL(G).

If L is a choice logic, then a set of L-formulas is called an L-theory. An
L-theory T entails a classical formula F , written as T |∼ F , if F is true in
all preferred models of T . However, we first need to define what the preferred
models of a choice logic theory are. There are several approaches for this. In the
original QCL paper [7], a lexicographic and an inclusion-based approach were
introduced.
1 It seems that, under the initial definition of CCL, a

#»�b is always ascribed a degree
of 1 or ∞, i.e., non-classical degrees can not be obtained (cf. Definition 8 in [6]).
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Definition 8. Let L be a choice logic, I an interpretation, and T an L-theory.
I ∈ ModL(T ) if degL(I, F ) < ∞ for all F ∈ T . Ik

L(T ) denotes the set of formulas
in T satisfied to a degree of k by I, i.e., Ik

L(T ) = {F ∈ T | degL(I, F ) = k}.
– I is a lexicographically preferred model of T , written as I ∈ Prf lexL (T ), if

I ∈ ModL(T ) and if there is no J ∈ ModL(T ) such that, for some k ∈ N and
all l < k, |Ik

L(T )| < |J k
L (T )| and |Il

L(T )| = |J l
L(T )| holds.

– I is an inclusion-based preferred model of T , written as I ∈ Prf incL (T ), if
I ∈ ModL(T ) and if there is no J ∈ ModL(T ) such that, for some k ∈ N and
all l < k, Ik

L(T ) ⊂ J k
L (T ) and Il

L(T ) = J l
L(T ) holds.

In our calculus for preferred model entailment we focus on the lexicographic
approach, but it will become clear how it can be adapted to other preferred model
semantics (see Sect. 4). We now formally define preferred model entailment:

Definition 9. Let L be a choice logic, T an L-theory, S a classical theory, and
σ ∈ {lex , inc}. T |∼σ

L S if for all I ∈ Prf σ
L(T ) there is F ∈ S such that I |= F .

Example 3. Consider the QCL-theory T = {¬(a∧b), a #»×c, b
#»×c}. Then {c}, {a, c},

{b, c} ∈ ModQCL(T ). Note that, because of ¬(a∧b), a model of T can not satisfy
both a

#»×c and b
#»×c to a degree of 1. Specifically,

{a, c}1QCL(T ) = {¬(a ∧ b), a #»×c} and {a, c}2QCL(T ) = {b
#»×c},

{b, c}1QCL(T ) = {¬(a ∧ b), b #»×c} and {b, c}2QCL(T ) = {a
#»×c},

{c}1QCL(T ) = {¬(a ∧ b)} and {c}2QCL(T ) = {a
#»×c, b

#»×c}.

Thus, {a, c}, {b, c} ∈ Prf lexQCL(T ) but {c} �∈ Prf lexQCL(T ). It can be concluded that
T |∼lex

QCL c ∧ (a ∨ b). However, T �|∼ lex
QCLa and T �|∼ lex

QCLb.

It is easy to see that preferred model entailment is non-monotonic. For example,
{a

#»×b} |∼lex
QCL a but {a

#»×b,¬a} �|∼ lex
QCLa.

3 The Sequent Calculus L[QCL]

As a first step towards a calculus for preferred model entailment, we propose a
labeled calculus [2,12] for reasoning about the satisfaction degrees of QCL formu-
las in sequent format and prove its soundness and completeness. One advantage
of the sequent calculus format is having symmetrical left and right rules for all
connectives, in particular for the choice connectives. This is in contrast to the
representation of ordered disjunction in the calculus for deontic logic [11], in
which only right-hand side rules are considered.

As the calculus will be concerned with satisfaction degrees rather than pre-
ferred models, we need to define entailment in terms of satisfaction degrees. To
this end, the formulas occurring in the sequents of our calculus are labeled with
natural numbers, i.e., they are of the form (A)k, where A is a choice logic formula
and k ∈ N. (A)k is satisfied by those interpretations that satisfy A to a degree of
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k. Instead of labeling formulas with degree ∞ we use the negated formula, i.e.,
instead of (A)∞ we use (¬A)1. We observe that (A)k for optL(A) > k can never
have a model. We will deal with such formulas by replacing them with (⊥)1. For
classical formulas, we may write A for (A)1.

Definition 10. Let (A1)k1 , . . . , (Am)km
and (B1)l1 , . . . , (Bn)ln be labeled QCL-

formulas. (A1)k1 , . . . , (Am)km
� (B1)l1 , . . . , (Bn)ln is a labeled QCL-sequent.

Γ � Δ is valid iff every interpretation that satisfies all labeled formulas in Γ
to the degree specified by the label also satisfies at least one labeled formula in Δ
to the degree specified by the label.

Note that entailment in terms of satisfaction degrees, as defined above, is mon-
tonic. Frequently we will write (A)<k as shorthand for (A)1, . . . , (A)k−1 and
(A)>k for (A)k+1, . . . , (A)optQCL(A), (¬A)1. Moreover, 〈Γ, (A)i � Δ〉i<k denotes
the sequence of sequents

Γ, (A)1 � Δ . . . Γ, (A)k−1 � Δ.

Analogously, 〈Γ, (A)i � Δ〉i>k stands for the sequence of sequents Γ, (A)k+1 �
Δ . . . Γ, (A)optQCL(A) � Δ Γ, (¬A)1 � Δ.

We define the sequent calculus L[QCL] over labeled sequents below. In addi-
tion to introducing inference rules for #»× we have to modify the inference rules
for conjunction and disjunction of propositional LK. The idea behind the ∨-left
rule is that a model M of (A)k is only a model of (A ∨ B)k if there is no l < k
s.t. M is a model of (B)l. Therefore, every model of (A∨B)k is a model of Δ iff

– every model of (A)k is a model of Δ or of some (B)l with l < k,
– every model of (B)k is a model of Δ or of some (A)l with l < k.

Essentially the same idea works for ∧-left but with l > k. For the ∨-right rule,
in order for every model of Γ to be a model of (A ∨ B)k, every model of Γ must
either be a model of (A)k or of (B)k and no model of Γ can be a model of (A)l

for l < k, i.e., Γ, (A)l � ⊥. Similarly for ∧-right.

Definition 11 (L[QCL]). The axioms of L[QCL] are of the form (p)1 � (p)1 for
propositional variables p. The inference rules are given below. For the structural
and logical rules, whenever a labeled formula (F )k appears in the conclusion of
an inference rule it holds that k ≤ optL(F ).

The structural rules are:
Γ � Δ

wl
Γ, (A)k � Δ

Γ � Δ wr
Γ � (A)k,Δ

Γ, (A)k, (A)k � Δ
cl

Γ, (A)k � Δ

Γ � (A)k, (A)k,Δ
cr

Γ � (A)k,Δ

The logical rules are:
Γ � (cp(A))1,Δ ¬l
Γ, (¬A)1 � Δ

Γ, (cp(A))1 � Δ ¬r
Γ � (¬A)1,Δ

Γ, (A)k � (B)<k,Δ Γ, (B)k � (A)<k,Δ ∨l
Γ, (A ∨ B)k � Δ

〈Γ, (A)i � Δ〉i<k 〈Γ, (B)i � Δ〉i<k Γ � (A)k, (B)k,Δ ∨r
Γ � (A ∨ B)k,Δ
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Γ, (A)k � (B)>k,Δ Γ, (B)k � (A)>k,Δ ∧l
Γ, (A ∧ B)k � Δ

〈Γ, (A)i � Δ〉i>k 〈Γ, (B)i � Δ〉i>k Γ � (A)k, (B)k,Δ ∧r
Γ � (A ∧ B)k,Δ

The rules for ordered disjunction, with k ≤ optL(A) and l ≤ optL(B), are:

Γ, (A)k � Δ
#»×l1

Γ, (A #»×B)k � Δ

Γ, (B)l, (¬A)1 � Δ
#»×l2

Γ, (A #»×B)optQCL(A)+l � Δ

Γ � (A)k,Δ
#»×r1

Γ � (A #»×B)k,Δ

Γ � (¬A)1,Δ Γ � (B)l,Δ #»×r2
Γ � (A #»×B)optQCL(A)+l,Δ

The degree overflow rules2, with k ∈ N, are:
Γ,⊥ � Δ

dol
Γ, (A)optQCL(A)+k � Δ

Γ � Δ dor
Γ � (A)optQCL(A)+k,Δ

Observe that the modified ∧ and ∨ inference rules correspond to the ∧ and ∨
inference rules of propositional LK in case we are dealing only with classical
formulas. Our ∧-left rule splits the proof-tree unnecessarily for classical theories,
and the ∧-right rule adds an unnecessary third condition Γ � A,B,Δ. These
additional conditions are necessary when dealing with non-classical formulas.

The intuition behind the degree overflow rules is that we sometimes need to
fix invalid sequences, i.e., sequences in which a formula F is assigned a label k
with optQCL(F ) < k < ∞.

Example 4. The following is an L[QCL]-proof of a valid sequent.3

...

b ∨ c, ¬a, b � a ∧ b, a ∧ c, b #»×l2
b ∨ c, (a

#»×b)2 � a ∧ b, a ∧ c, b ¬r
(a

#»×b)2 � ¬(b
#»×c), a ∧ b, a ∧ c, b

...

a ∨ b, ¬b, c � a ∧ b, a ∧ c, b #»×l2
a ∨ b, (b

#»×c)2 � a ∧ b, a ∧ c, b ¬r
(b
#»×c)2 � ¬(a

#»×b), a ∧ b, a ∧ c, b ∧l
((a

#»×b) ∧ (b
#»×c))2 � a ∧ b, a ∧ c, b ¬l¬(a ∧ b), ((a
#»×b) ∧ (b

#»×c))2 � a ∧ c, b

Example 5. The following proof shows how the ∧r-rule can introduce more than
three premises. Note that we make use of the dol-rule in the leftmost branch.

...
a, b,⊥ �

dol
a, b, (a)2 �

...
a, b,¬a �

...
a, b, c,¬b � #»×l2

a, b, (b #»×c)2 �

...
a, b � b ∨ c ¬l

a, b,¬(b #»×c) �

...
a, b � a, b #»×r1

a, b � a, (b #»×c)1 ∧r
a, b � (a ∧ (b #»×c))1

We now show soundness and completeness of L[QCL].
2 dol/dor stands for degree overflow left/right.
3 Note that, once we reach sequents containing only classical formulas, we do not

continue the proof. However, it can be verified that the classical sequents on the left
and right branch are provable in this case. Moreover, given a formula (A)1 with a
label of 1, the label is often omitted for readability.
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Proposition 1. L[QCL] is sound.

Proof. We show for all rules that they are sound.

– For (ax) and the structural rules this is clearly the case.
– (¬r) and (¬l): follows from the fact that degQCL(I, F ) < ∞ ⇐⇒ I |= cp(F )

for all QCL-formulas F .
– (∨l): Assume that the conclusion of the rule is not valid, i.e., there is a model

M of Γ and (A ∨ B)k that is not a model of Δ. Then, M satisfies either A or
B to degree k and neither to a degree smaller than k. Assume M satisfies A
to a degree of k, the other case is symmetric. Then M is a model of Γ and
(A)k but, by assumption, neither of Δ nor of (B)j for any j < k. Hence at
least one of the premises is not valid. Analogously for (∧l).

– (∨r): Assume there is a model M of Γ that is not a model of Δ or of (A∨B)k.
There are two possible cases why M is not a model of (A∨B)k: (1) M satisfies
neither A nor B to degree k. But then the premise Γ � (A)k, (B)k,Δ is not
valid as M is also not a model of Δ by assumption. (2) M satisfies either A or
B to a degree smaller than k. Assume that M satisfies A to degree j < k (the
other case is symmetric). Then the premise Γ, (A)j � Δ is not valid. Indeed,
M is a model of Γ and (A)j but not of Δ. Analogously for (∧r).

– ( #»×l1) and ( #»×r1): follows from the fact that (A)k has the same models as
(A #»×B)k for k ≤ optL(A).

– ( #»×l2): Assume the conclusion of the rule is not valid and let M be the model
witnessing this. Then M is a model of (A #»×B)optQCL(A)+l. By definition, M
satisfies B to degree l and is not a model of A. However, then it is also a
model of Γ , (B)l and (¬A)1, which means that the premise is not valid.

– ( #»×r2). Assume that both premises are valid, i.e., every model of Γ is either a
model of Δ or of (¬A)1 and (B)l with l ≤ optL(B). Now, by definition, any
model that is not a model of A (and hence a model of (¬A)1) and of (B)l

satisfies A
#»×B to degree optQCL(A)+ l. Therefore, every model of Γ is either

a model of Δ or of (A #»×B)optQCL(A)+l, which means that the conclusion of
the rule is valid.

– (dol): Γ,⊥ has no models, i.e., the premise Γ,⊥ � Δ is valid. Crucially, the
sequent Γ, (A)optQCL(A)+k has no models as well since A cannot be satisfied
to a degree m with optL(A) < m < ∞. (dor) is clearly sound. ��

Proposition 2. L[QCL] is complete.

Proof. We show this by induction over the (aggregated) formula complexity of
the non-classical formulas.

– For the base case, we observed that if all formulas are classical and labeled
with 1, then all our rules reduce to the classical sequent calculus, which is
known to be complete. Moreover, we observe that (A)1 is equivalent to A.
Hence, we can turn labeled atoms into classical atoms.

– Assume that a sequent of the form Γ, (A)optQCL(A)+k � Δ with k ∈ N is valid.
Since Γ,⊥ has no models, Γ,⊥ � Δ is valid and, by the induction hypothesis,
provable. Thus, Γ, (A)optQCL(A)+k � Δ is provable using the (dol) rule.
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– Assume that a sequent Γ � (A)optQCL(A)+k,Δ is valid. (A)optQCL(A)+k can not
be satisfied, i.e., Γ � Δ is valid and, by the induction hypothesis, provable.
Therefore, Γ � (A)optQCL(A)+k,Δ is provable using the (dor) rule.

– Assume that a sequent of the form Γ � (¬A)1,Δ is valid. Then every model
of Γ is either a model of (¬A)1 or of Δ. In other words, every model of Γ that
is not a model of (¬A)1 (i.e., is model of cp(A)) is a model of Δ. Therefore,
every interpretation that is a model of both Γ and cp(A) must be a model
of Δ. It follows that Γ, cp(A) � Δ is valid and, by the induction hypothesis,
provable. Thus, Γ � (¬A)1,Δ is provable using the (¬r) rule. Similarly for
Γ, (¬A)1 � Δ.

– Assume that a sequent of the form Γ, (A∨B)k � Δ is valid, with k ≤ optL(A∨
B). We claim that then both Γ, (A)k � (B)<k,Δ and Γ, (B)k � (A)<k,Δ are
valid. Assume to the contrary that Γ, (A)k � (B)<k,Δ is not valid (the other
case is symmetric). Then, there is a model M of Γ and (A)k that is neither
a model of (B)<k nor of Δ. But then M is also a model of Γ and (A ∨ B)k,
but not of Δ, which contradicts the assumption that Γ, (A∨B)k � Δ is valid.
Therefore, both Γ, (A)k � (B)<k,Δ and Γ, (B)k � (A)<k,Δ are valid and,
by the induction hypothesis, provable. This means that Γ, (A ∨ B)k � Δ is
provable by (∨l). Similarly for a sequent of the form Γ, (A ∧ B)k � Δ.

– Assume that a sequent of the form Γ � (A ∨ B)k,Δ is valid, with k ≤
optL(A ∨ B). We claim that then for all i < k the sequents Γ, (A)i � Δ and
Γ, (B)i � Δ and Γ � (A)k, (B)k,Δ are valid. Assume by contradiction that
there is an i < k s.t. Γ, (A)i � Δ is not valid. Then, there is a model M of
Γ and (A)i that is not a model of Δ. However, then M is a model of Γ but
neither of Δ nor of (A ∨ B)k (as M satisfies A ∨ B to degree i �= k), which
contradicts our assumption that Γ � (A∨B)k,Δ is valid. The case that there
is an i < k s.t. Γ, (B)i � Δ is not valid is symmetric. Finally, we assume that
Γ � (A)k, (B)k,Δ is not valid. Then, there is a model M of Γ that is not a
model of (A)k, (B)k or Δ. Then, M is model of Γ but neither of Δ nor of
(A ∨ B)k, contradicting our assumption. Therefore, all sequents listed above
must be valid, and, by the induction hypothesis, Γ � (A∨B)k,Δ is provable.
Similarly for a sequent of the form Γ � (A ∧ B)k,Δ.

– Assume that a sequent of the form Γ, (A #»×B)k � Δ with k ≤ optQCL(A) is
valid. Then Γ, (A)k � Δ is also valid since (A #»×B)k and (A)k have the same
models if k ≤ optQCL(A). By the induction hypothesis Γ, (A #»×B)k � Δ is
provable. Analogously for sequents of the form Γ � (A #»×B)k,Δ.

– Assume that a sequent of the form Γ, (A #»×B)optQCL(A)+l � Δ is valid, with
l ≤ optL(B). We claim that the sequent Γ, (B)l,¬A � Δ is then also valid.
Indeed, if M is a model of Γ , (B)l and ¬A, then it is also a model of Γ and
(A #»×B)optQCL(A)+l. Hence, by assumption, M must be a model of Δ. From
this, we can conclude as before that Γ, (A #»×B)optQCL(A)+l � Δ is provable.

– Assume that a sequent of the form Γ � (A #»×B)optQCL(A)+l,Δ is valid, with
l ≤ optL(B). We claim that then also the sequents Γ � ¬A,Δ and Γ �
(B)l,Δ are valid. Assume by contradiction that the first sequent is not valid.
This means that there is a model M of Γ that is not a model of either ¬A
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nor of Δ. However, then M is a model of A and therefore satisfies A
#»×B

to a degree smaller than optQCL(A). This contradicts our assumption that
Γ � (A #»×B)optQCL(A)+l,Δ is valid. Assume now that the second sequent is
not valid, i.e., that there is a model M of Γ that is neither a model of (B)l

nor of Δ. Then, M cannot be a model of (A #»×B)optQCL(A)+l and we again
have a contradiction to our assumption. As before, it follows by the induction
hypothesis that Γ � (A #»×B)optQCL(A)+l,Δ is provable. ��

So far we have not introduced a cut rule, and as we have shown our calculus
is complete without such a rule. However, it is easy to see that we have cut-
admissibility, i.e., L[QCL] can be extended by:

Γ � (A)k, Δ Γ ′, (A)k � Δ′
cut

Γ, Γ ′ � Δ, Δ′

Another aspect of our calculus that should be mentioned is that, although
L[QCL] is cut-free, we do not have the subformula property. This is especially
obvious when looking at the rules for negation, where we use the classical coun-
terpart cp(A) of QCL-formulas. For example, ¬(a #»×b) in the conclusion of the
¬-left rule becomes cp(a #»×b) = a ∨ b in the premise.

While we believe that L[QCL] is interesting in its own right, the question
of how we can use it to obtain a calculus for preferred model entailment arises.
Essentially, we have to add a rule that allows us to go from standard to pre-
ferred model inferences. As a first approach we consider theories Γ ∪{A} with Γ
consisting only of classical formulas and A being a QCL-formula. In this simple
case, preferred models of Γ ∪ {A} are those models of Γ ∪ {A} that satisfy A to
the smallest possible degree. One might add the following rule to L[QCL]:

〈Γ, (A)i � ⊥〉i<k Γ, (A)k � Δ |∼naive
Γ, A |∼lex

QCL Δ

Intuitively, the above rule states that, if there are no interpretations that sat-
isfy Γ while also satisfying A to a degree lower than k, and if Δ follows from
all models of Γ, (A)k, then Δ is entailed by the preferred models of Γ ∪ {A}.
However, the obtained calculus L[QCL] + |∼naive derives invalid sequents.

Example 6. The invalid entailment ¬a, a
#»×b |∼lex

QCL a can be derived via |∼naive .

a � a
wl¬a, a � a #»×l1¬a, (a

#»×b)1 � a |∼naive¬a, a
#»×b |∼lex

QCL a

What is missing is an assertion that Γ, (A)k is satisfiable. Unfortunately, this
can not be formulated in L[QCL]. A way of addressing this problem is to define
a refutation calculus, as has been done for other non-monotonic logics [5].
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4 Calculus for Preferred Model Entailment

We now introduce a calculus for preferred model entailment. However, as argued
above, we first need to introduce the refutation calculus L[QCL]−. In the liter-
ature, a rejection method for first-order logic with equality was first introduced
in [17] and proved complete w.r.t. finite model theory. Our refutation calculus
is based on a simpler rejection method for propositional logic defined in [5].
Using the refutation calculus, we prove that (A)k is satisfiable by deriving the
antisequent (A)k � ⊥.

Definition 12. A labeled QCL-antisequent is denoted by Γ � Δ and it is valid
if and only if the corresponding labeled QCL-sequent Γ � Δ is not valid, i.e., if
at least one model that satisfies all formulas in Γ to the degree specified by the
label satisfies no formula in Δ to the degree specified by the label.

Below we give a definition of the refutation calculus L[QCL]−. Note that most
rules coincide with their counterparts in L[QCL]. Binary rules are translated
into two rules; one inference rule per premise. (∨r) and (∧l) in L[QCL] have an
unbounded number of premises, but due to their structure they can be translated
into three inference rules. For (∧r) we need to introduce two extra rules for the
case that either A or B is not satisfied.

Definition 13 (L[QCL]−). The axioms of L[QCL]− are of the form Γ � Δ,
where Γ and Δ are disjoint sets of atoms and ⊥ �∈ Γ . The inference rules of
L[QCL]− are given below. Whenever a labeled formula (F )k appears in the con-
clusion of an inference rule it holds that k ≤ optL(F ).

The logical rules are:
Γ, (cp(A))1 � Δ

� ¬r
Γ � (¬A)1,Δ

Γ � (cp(A))1,Δ
� ¬l

Γ, (¬A)1 � Δ

Γ, (A)k � (B)<k,Δ
� ∨l1

Γ, (A ∨ B)k � Δ

Γ, (B)k � (A)<k,Δ
� ∨l2

Γ, (A ∨ B)k � Δ

Γ, (A)i � Δ
� ∨r1

Γ � (A ∨ B)k,Δ

Γ, (B)i � Δ
� ∨r2

Γ � (A ∨ B)k,Δ

Γ � (A)k, (B)k,Δ
� ∨r3

Γ � (A ∨ B)k,Δ

where i < k.
Γ, (A)k � (B)>k,Δ

� ∧l1
Γ, (A ∧ B)k � Δ

Γ, (B)k � (A)>k,Δ
� ∧l2

Γ, (A ∧ B)k � Δ

Γ, (A)i � Δ
� ∧r1

Γ � (A ∧ B)k,Δ

Γ, (¬A)1 � Δ
� ∧r2

Γ � (A ∧ B)k,Δ

Γ, (B)i � Δ
� ∧r3

Γ � (A ∧ B)k,Δ

Γ, (¬B)1 � Δ
� ∧r4

Γ � (A ∧ B)k,Δ

Γ � (A)k, (B)k,Δ
� ∧r5

Γ � (A ∧ B)k,Δ

where i > k.

The rules for ordered disjunction, with k ≤ optL(A) and l ≤ optL(B), are:

Γ, (A)k � Δ
�
#»×l1

Γ, (A #»×B)k � Δ

Γ, (B)l, (¬A)1 � Δ
�
#»×l2

Γ, (A #»×B)optQCL(A)+l � Δ

Γ � (A)k,Δ
�
#»×r1

Γ � (A #»×B)k,Δ

Γ � (¬A)1,Δ
�
#»×r2

Γ � (A #»×B)optQCL(A)+l,Δ

Γ � (B)l,Δ
�
#»×r3

Γ � (A #»×B)optQCL(A)+l,Δ
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The degree overflow rules, with k ∈ N, are:
Γ,⊥ � Δ

� dol
Γ, (A)optQCL(A)+k � Δ

Γ � Δ
� dor

Γ � (A)optQCL(A)+k,Δ

Example 7. The following is related to Example 4 and shows that the sequent
¬(a ∧ b), ((a #»×b) ∧ (b #»×c))2 is satisfiable.

...

(a ∨ b), c, ¬b � a ∧ b, ⊥
�

#»×l2
(a ∨ b), (b

#»×c)2 � a ∧ b, ⊥
� ¬r

(b
#»×c)2 � ¬(a

#»×b), a ∧ b, ⊥
� ∧l2

((a
#»×b) ∧ (b

#»×c))2 � a ∧ b, ⊥
� ¬l¬(a ∧ b), ((a

#»×b) ∧ (b
#»×c))2 � ⊥

Note that the interpretation {a, c} witnesses (a ∨ b), c,¬b � a ∧ b,⊥.

Proposition 3. L[QCL]− is sound.

Proof. The soundness of the negation rules is straightforward. The soundness of
the rules ( #»×l1), ( #»×l2) and ( #»×r1) follows by the same argument as for L[QCL].
For the remaining rules, it is easy to check that the same model witnessing the
validity of the premise also witnesses the validity of the conclusion. ��
Proposition 4. L[QCL]− is complete.

Proof. We show completeness by an induction over the (aggregated) formula
complexity. Assume Γ � Δ is valid, i.e. Γ � Δ is not valid. Now, there must be a
rule in L[QCL] for which Γ � Δ is the conclusion. By the soundness of L[QCL],
this implies that at least one of the premises Γ ∗ � Δ∗ is not valid. However, then
Γ ∗

� Δ∗ is valid and, by induction, also provable. Now, by the construction of
L[QCL]−, there is a rule that allows us to derive Γ � Δ from Γ ∗

� Δ∗. ��
So far no cut-rule has been introduced for L[QCL]−, and indeed, a counterpart of
the cut rule would not be sound. One possibility is to introduce a contrapositive
of cut as described by Bonatti and Olivetti [5]. Again, it is easy to see that this
rule is admissible in our calculus:

Γ � Δ Γ, (A)k � Δ
cut2

Γ � (A)k, Δ

We are now ready to combine L[QCL] and L[QCL]− by defining an inference rule
that allows us to go from labeled sequents to non-monotonic inferences. Again,
we first consider the case where Γ is classical and A is a choice logic formula.
The preferred model inference rule is:

〈Γ, (A)i � ⊥〉i<k Γ, (A)k � ⊥ Γ, (A)k � Δ |∼simple
Γ, A |∼lex

QCL Δ
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Intuitively, the premises 〈Γ, (A)i � ⊥〉i<k along with Γ, (A)k � ⊥ ensure that
models satisfying A to a degree of k are preferred, while the premise Γ, (A)k � Δ
ensures that Δ is entailed by those preferred models.

Example 8. The valid entailment ¬(a∧b), (a #»×b)∧(b #»×c) |∼lex
QCL a∧c, b is provable

by choosing k = 2:

(ϕ1)

Γ, ((a
#»×b) ∧ (b

#»×c))1 � ⊥
(ϕ2)

Γ, ((a
#»×b) ∧ (b

#»×c))2 � ⊥
(ϕ3)

Γ, ((a
#»×b) ∧ (b

#»×c))2 � Δ |∼simple
Γ, (a

#»×b) ∧ (b
#»×c) |∼lex

QCL Δ

with Γ = ¬(a∧ b) and Δ = a∧ c, b. ϕ3 is the L[QCL]-proof from Example 4 and
ϕ2 is the L[QCL]−-proof from Example 7. ϕ1 is not shown explicitly, but it can
be verified that the corresponding sequent is provable.

We extend |∼simple to the more general case, where more than one non-classical
formula may be present, to obtain a calculus for preferred model entailment. An
additional rule |∼unsat is needed in case a theory is classically unsatisfiable.

Definition 14 (L[QCL]lex|∼ ). Let ≤l be the order on vectors in N
k defined by

– v <l w if there is some n ∈ N such that v has more entries of value n and
for all 1 ≤ m < n both vectors have the same number of entries of value m.

– v =l w if, for all n ∈ N, v and w have the same number of entries of value n.

L[QCL]lex|∼ consists of the axioms and rules of L[QCL] and L[QCL]− plus the
following rules, where v,w ∈ N

k, Γ consists of only classical formulas, and
every Ai with 1 ≤ i ≤ k is a QCL-formula:

〈Γ, (A1)w1 , . . . , (Ak)wk
� ⊥〉w <v Γ, (A1)v1 , . . . , (Ak)vk

� ⊥ 〈Γ, (A1)w1 , . . . , (Ak)wk
� Δ〉w =v

|∼lex
Γ, A1, . . . , Ak |∼lex

QCL Δ

Γ, cp(A1), . . . , cp(Ak) � ⊥
|∼unsat

Γ, A1, . . . , Ak |∼lex
QCL Δ

We first provide a small example and then show soundness and completeness.

Example 9. Consider the valid entailment ¬(a ∧ b), (a #»×b), (b #»×c) |∼lex
QCL a ∧ c, b

similar to Example 8, but with the information that we require (a #»×b) and (b #»×c)
encoded as separate formulas. It is not possible to satisfy all formulas on the left
to a degree of 1. Rather, it is optimal to either satisfy (¬(a∧b))1, (a

#»×b)1, (b
#»×c)2

or, alternatively, (¬(a ∧ b))1, (a
#»×b)2, (b

#»×c)1. We choose v = (1, 1, 2), with w =
(1, 1, 1) being the only vector w s.t. w < v. Thus, we get

.

.

.

Γ, (a
#»×b)1, (b

#»×c)1 � ⊥

.

.

.

Γ, (a
#»×b)1, (b

#»×c)2 � ⊥

.

.

.

Γ, (a
#»×b)1, (b

#»×c)2 � Δ

.

.

.

Γ, (a
#»×b)2, (b

#»×c)1 � Δ
|∼lex

Γ, (a
#»×b), (b

#»×c) |∼lex
QCL Δ

with Γ = ¬(a ∧ b) and Δ = a ∧ c, b. It can be verified that indeed all branches
are provable, but we do not show this explicitly here.
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Proposition 5. L[QCL]lex|∼ is sound.

Proof. Consider first the |∼lex -rule and assume that all premises are derivable.
By the soundness of L[QCL] and L[QCL]− they are also valid. From the first
set of premises 〈Γ, (A1)w1 , . . . , (Ak)wk

� ⊥〉w<v we can conclude that if there is
some model M of Γ that satisfies Ai to a degree of vi for all 1 ≤ i ≤ k, then
M ∈ Prf lexQCL(Γ ∪ {A1, . . . , Ak}). The premise Γ, (A1)v1 , . . . , (Ak)vk

� ⊥ ensures
that there is such a model M . By the last set of premises 〈Γ, (A1)w1 , . . . , (Ak)wk

�
Δ〉w=v , we can conclude that all models of Γ ∪ {A1, . . . , Ak} that are equally
as preferred as M , i.e., all M ′ ∈ Prf lexQCL(Γ ∪ {A1, . . . , Ak}), satisfy at least one
formula in Δ. Therefore, Γ,A1, . . . , Ak |∼lex

QCL Δ is valid.
Now consider the |∼unsat -rule and assume that Γ, cp(A1), . . . , cp(Ak) � ⊥ is

derivable and therefore valid. Thus, Γ∪{A1, . . . , Ak} has no models and therefore
also no preferred models. Then Γ,A1, . . . , Ak |∼lex

QCL Δ is valid. ��

Proposition 6. L[QCL]lex|∼ is complete.

Proof. Assume that Γ,A1, . . . , Ak |∼lex
QCL Δ is valid. If Γ ∪{A1, . . . , Ak} is unsat-

isfiable then Γ, cp(A1), . . . , cp(Ak) � ⊥ is valid, i.e., we can apply the |∼unsat -
rule. Now consider the case that Γ ∪{A1, . . . , Ak} is satisfiable and assume that
some preferred model M of Γ ∪ {A1, . . . , Ak} satisfies Ai to a degree of vi for
all 1 ≤ i ≤ k. Then, we claim that all premises of the rule are valid and, by the
completeness of L[QCL] and L[QCL]−, also derivable.

Assume by contradiction that one of the premises is not valid. First, consider
the case that Γ, (A1)w1 , . . . , (Ak)wk

� ⊥ is not valid for some w < w. Then there
is a model M ′ of Γ that satisfies Ai to a degree of wi for all 1 ≤ i ≤ k. However,
this contradicts the assumption that M is a preferred model of Γ ∪{A1, . . . , Ak}.

Next, assume that Γ, (A1)v1 , . . . , (Ak)vk
� ⊥ is not valid. However, M satisfies

Γ, (A1)v1 , . . . , (Ak)vk
and does not satisfy ⊥. Contradiction.

Finally, we assume that Γ, (A1)w1 , . . . , (Ak)wk
� Δ is not valid for some

w = v. Then, there is a model M ′ of Γ that satisfies Ai to a degree of wi for all
1 ≤ i ≤ k but does not satisfy any formula in Δ. But M ′ is a preferred model of
Γ ∪ {A1, . . . , Ak}, which contradicts Γ,A1, . . . , Ak |∼lex

QCL Δ being valid. ��
In this paper, we focused on the lexicographic semantics for preferred models of
choice logic theories. However, rules for other semantics, e.g. a rule |∼inc for the
inclusion based approach (cf. Definition 8), can be obtained by simply adapting
the way in which vectors over N

k are compared (cf. Definition 14).

5 Beyond QCL

QCL was the first choice logic to be described [7], and applications concerned
with QCL and ordered disjunction have been discussed in the literature [3,8,13].
For this reason, the main focus in this paper lies with QCL. However, as we
have seen in Sect. 2, CCL and its ordered conjunction show that interesting
logics similar to QCL exist. We will now demonstrate that L[QCL] can easily be
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adapted for other choice logics. In particular, we introduce L[CCL] in which the
rules of L[QCL] for the classical connectives can be retained. All that is needed is
to replace the #»×-rules by appropriate rules for the choice connective #»� of CCL.

Definition 15 (L[CCL]). L[CCL] is L[QCL], except that the #»×-rules are
replaced by the following #»�-rules:

Γ, (A)1, (B)k � Δ
#»�l1

Γ, (A #»�B)k � Δ

Γ, (A)l, (¬B)1 � Δ
#»�l2

Γ, (A #»�B)optCCL(B)+l � Δ

Γ, (A)m � Δ
#»�l3

Γ, (A #»�B)optCCL(B)+m � Δ

Γ � (A)1,Δ Γ � (B)k,Δ
#»�r1

Γ � (A #»�B)k,Δ

Γ � (A)l,Δ Γ � (¬B)1,Δ #»�r2
Γ � (A #»�B)optCCL(B)+l,Δ

Γ � (A)m,Δ
#»�r3

Γ � (A #»�B)optCCL(B)+m,Δ

where k ≤ optCCL(B), l ≤ optCCL(A), and 1 < m ≤ optCCL(A).

Note that, given Γ, (A #»�B)optCCL(B)+m � Δ with 1 < m ≤ optCCL(A), we need
to guess whether #»�l2 or #»�l3 has to be applied. We do not define L[CCL]− here,
but the necessary rules for #»� can be inferred from the #»�-rules of L[CCL] in a
similar way to how L[QCL]− was derived from L[QCL].

Proposition 7. L[CCL] is sound.

Proof. We consider the newly introduced rules.

– For #»�l1,
#»�l2, and #»�l3 this follows directly from the definition of CCL.

– ( #»�r1). Assume both premises are valid, i.e., every model of Γ is a model of Δ
or of (A)1 and (B)k with k ≤ optL(B). By definition, any model that satisfies
(A)1 and (B)k satisfies A

#»�B to degree k. Thus, every model of Γ is a model
of Δ or of (A #»�B)k, which means the conclusion of the rule is valid.

– ( #»�r2). Assume both premises are valid, i.e., every model of Γ is either a
model of Δ or of (A)l and (¬B)1 with l ≤ optCCL(A). By definition, any
model that satisfies (A)l and does not satisfy B (and hence satisfies (¬B)1)
satisfies A

#»�B to degree optCCL(B) + l.
– ( #»�r3). Assume that the premise is valid, i.e., every model of Γ is either

a model of Δ or of (A)m with 1 < m ≤ optCCL(A). By definition, any
model that satisfies (A)m, regardless of what degree this model ascribes to
B, satisfies A

#»�B to degree optCCL(B) + m. ��
Proposition 8. L[CCL] is complete.

Proof. We adapt the induction of the proof of Proposition 2:

– Assume that a sequent of the form Γ, (A #»�B)k � Δ is valid, with k ≤ optL(B).
All models that satisfy (A #»�B)k must satisfy A to a degree of 1 and B to a
degree of k. Thus, Γ, (A)1, (B)k � Δ is valid, and, by the induction hypothesis,
Γ, (A #»�B)k � Δ is provable. Similarly for the cases Γ, (A #»�B)optCCL(B)+l � Δ

with l ≤ optCCL(A), and Γ, (A #»�B)optCCL(B)+m � Δ with 1 < m ≤
optCCL(A).
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– Assume that a sequent of the form Γ � (A #»�B)k,Δ is valid, with k ≤ optL(B).
We claim that then Γ � (A)1,Δ and Γ � (B)k,Δ are valid. Assume, for the
sake of a contradiction, that the first sequent is not valid. This means that
there is a model M of Γ that is neither a model of (A)1 nor of Δ. However,
then M satisfies A

#»�B to a degree higher than optCCL(B). This contradicts
the assumption that Γ � (A #»�B)k,Δ is valid. Assume now that the second
sequent is not valid, i.e., that there is a model M of Γ that is neither a model
of (B)k nor of Δ. Then M cannot be a model of (A #»�B)k, contradicting
the assumption. As before, it follows by the induction hypothesis that Γ �
(A #»�B)k,Δ is provable. Similarly for the cases Γ � (A #»�B)optCCL(B)+l,Δ with
l ≤ optCCL(A), and Γ � (A #»�B)optCCL(B)+m,Δ with 1 < m ≤ optCCL(A). ��

We are confident that our methods can be adapted not only for QCL and CCL,
but for numerous other instantiations of the choice logic framework defined in
Sect. 2. We mention here lexicographic choice logic (LCL) [4], in which A #»� B
expresses that it is best to satisfy A and B, second best to satisfy only A, third
best to satisfy only B, and unacceptable to satisfy neither.

Moreover, note that the inference rules |∼lex and |∼unsat (cf. Definition 14) do
not depend on any specific choice logic. Thus, once labeled calculi are developed
for a choice logic, a calculus for preferred model entailment follows immediately.

6 Conclusion

In this paper we introduce a sound and complete sequent calculus for preferred
model entailment in QCL. This non-monotonic calculus is built on two calculi:
a monotonic labeled sequent calculus and a corresponding refutation calculus.

Our systems are modular and can easily be adapted: on the one hand, calculi
for choice logics other than QCL can be obtained by introducing suitable rules for
the choice connectives of the new logic, as exemplified with our calculus for CCL;
on the other hand, a non-monotonic calculus for preferred model semantics other
than the lexicographic semantics can be obtained by adapting the inference rule
|∼lex which transitions from preferred model entailment to the labeled calculi.

Our work contributes to the line of research on non-monotonic sequent calculi
that make use of refutation systems [5]. Our system is the first proof calculus
for choice logics, which have been studied mainly from the viewpoint of their
computational properties [4] and their potential applications [3,8,13] so far.

Regarding future work, we aim to investigate the proof complexity of our
calculi, and how this complexity might depend on which choice logic or preferred
model semantics is considered. Also, calculi for other choice logics such as LCL
could be explicitly defined, as was done with CCL in Sect. 5.
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