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Abstract. Adding multi-modalities (called subexponentials) to linear logic
enhances its power as a logical framework, which has been extensively used in
the specification of e.g. proof systems, programming languages and bigraphs. Ini-
tially, subexponentials allowed for classical, linear, affine or relevant behaviors.
Recently, this framework was enhanced so to allow for commutativity as well.
In this work, we close the cycle by considering associativity. We show that the
resulting system (acLLΣ) admits the (multi)cut rule, and we prove two undecid-
ability results for fragments/variations of acLLΣ .

1 Introduction

Resource aware logics have been object of passionate study for quite some time now.
The motivations for this passion vary: resource consciousness are adequate for mod-
eling steps of computation; logics have interesting algebraic semantics; calculi have
nice proof theoretic properties; multi-modalities allow for the specification of several
behaviors; there are many interesting applications in linguistics, etc.

With this variety of subjects, applications and views, it is not surprising that dif-
ferent groups developed different systems based on different principles. For example,
the Lambek calculus (L) [29] was introduced for mathematical modeling of natural lan-
guage syntax, and it extends a basic categorial grammar [3,4] by a concatenation oper-
ator. Linear logic (LL) [16], originally discovered by Girard from a semantical analysis
of the models of polymorphic λ-calculus, turned out to be a refinement of classical and
intuitionistic logic, having the dualities of the former and constructive properties of the
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latter. The key point is the presence of the modalities !, ?, called exponentials in LL. In
the intuitionistic version of LL, denoted by ILL, only the ! exponential is present.

L and LL were compared in [2], when Abrusci showed that Lambek cal-
culus coincides with a variant of the non-commutative, multiplicative version of
ILL [41]. This correspondence can be lifted for considering also the additive connec-
tives: Full (multiplicative-additive) Lambek calculus FL relates to non-commutative
multiplicative-additive version of ILL, here denoted by cLL.

In this paper we propose the sequent based system acLLΣ , a conservative extension
of cLL, where associativity is allowed only for formulas marked with a special kind of
modality, determined by a subexponential signature Σ. The notation adopted is mod-
ular, uniform and scalable, in the sense that many well known systems will appear as
fragments or special cases of acLLΣ , by only modifying the signature Σ. The core frag-
ment of acLLΣ (i.e., without the subexponentials) corresponds to the non-associative
version of full Lambek calculus, FNL [8].1

The language of acLLΣ consists of a denumerable infinite set of propositional vari-
ables {p, q, r, . . .}, the unities {1,�}, the binary connectives for additive conjunc-
tion and disjunction {&,⊕}, the non-commutative multiplicative conjunction ⊗, the
non-commutative linear implications {→,←}, and the unary subexponentials !i, with i
belonging to a pre-ordered set of labels (I,�).

Roughly speaking, subexponentials [13] are substructural multi-modalities. In LL,
!A indicates that the linear formula A behaves classically, that is, it can be contracted
and weakened. Labeling ! with indices allows moving one step further: The set I can
be partitioned so that, in !iA, A can be contracted and/or weakened. This allows for
two other types of behavior (other than classical or linear): affine (only weakening) or
relevant (only contraction). Pre-ordering the labels (together with an upward closeness
requirement) guarantees cut-elimination [42]. But then, why consider only weakening
and contraction? Why not also take into account other structural properties, like com-
mutativity or associativity? In [20,21] commutativity was added to the picture, so that
in !iA, A can be contracted, weakened, classical or linear, but it may also commute with
the neighbor formula. In this work we consider the last missing part: Associativity.

Smoothly extending cLL to allow consideration of the non-associative case is
non trivial. This requires a structural recasting/reframing of sequents: we pass from
sets/multisets to lists in the non-commutative case, onto trees in the case of non-
associativity [28]. As a consequence, the inference rules should act deeply over formu-
las in tree-structured sequents, which can be tricky in the presence of modalities [17].

On the other side, the multi-modal Lambek calculus introduced in [35,45] and
extended/compiled/implemented in [18,36–38]2 use different families of connectives
and contexts, distinguished by means of indices, or modes. Contexts are indexed binary
trees, with formulas built from the indexed adjoint connectives {→i,←i} and ⊗i (e.g.

1 The multiplicative fragment of acLLΣ is the non-associative version of Lambek’s calculus,NL,
introduced by Lambek himself in [30]. Both the associative calculus L and the non-associative
calculus NL have their advantages and disadvantages for the analysis of natural language syn-
tax, as we discuss in more detail in Sect. 2.2.

2 The Grail family of theorem provers [37] works with a variety of modern type-logical frame-
works, including multimodal type-logical grammars.
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(A →i B, (C ⊗j D,H)k)i). Each mode has its own set of logical rules (following
the same rule scheme), and different structural features can be combined via the mode
information on the formulas. This gives to the resulting system a multi-modal flavor,
but it also results in a language of binary connectives, determined by the modes. This
forces an unfortunate second level synchronization between implications and tensor,
and modalities act over whole sequents, not on single formulas.

In order to attribute particular resource management properties to individual
resources, in [27,33] explicit (classical) multi-modalities �i,�i were proposed. While
such unary modalities were inspired in LL exponentials, the resemblance stops there.
First of all, the logical connectives come together with structural constructors for con-
texts, which turns �i,�i into truncated forms of product and implication.

Second, �i,�i have a temporal behavior, in the sense that ��F ⇒ F and F ⇒��F , which are not provable in LL using the “natural interpretation” � = ?, � = !.
In this paper, multi-modality is totally local, given by the subexponentials. The

signatureΣ contains the pre-ordered set of labels, together with a function stating which
axioms, among weakening, contraction, exchange and associativity, are assumed for
each label. Sequents will have a nested structure, corresponding to trees of formulas.
And rules will be applied deeply in such structures. This not only gives the LL based
system a more modern presentation (based on nested systems, like e.g. in [10,15]),
but it also brings the notation closer to the one adopted by the Lambek community,
like in [25]. Finally, it also uniformly extends several LL based systems present in the
literature, as Example 8 in the next section shows.

Designing a good system serves more than simple pure proof-theoretic interests:
Well behaved, neat proof systems can be used in order to approach several impor-
tant problems, such as interpolation, complexity and decidability. And decidability of
extensions/variants/fragments of L and LL is a fascinating subject of study, since the
presence or absence of substructural properties/connectives may completely change the
outcome. Indeed, it is well known that LL is undecidable [32], but adding weakening
(affine LL) turns the system decidable [24], while removing the additives (MELL –
multiplicative, exponential LL) reaches the border of knowledge: It is a long standing
open problem [50]. Non-associativity also alters decidability and complexity: L is NP-
complete [47], while NL is decidable in polynomial time [1,6]. Finally, the number of
subexponentials also plays a role in decision problems:MELLwith two subexponentials
is undecidable [9].

In this work, we will present two undecidability results, all orbiting (but not encom-
passing) MELL/FNL. First, we show that acLLΣ containing the multiplicatives ⊗,→,
the additive ⊕ and one classical subexponential (allowing contraction and weakening)
is undecidable. This is a refinement of the unpublished result by Tanaka [51], which
states that FNL plus one fully-powered subexponential is undecidable.

In the second undecidability result, we keep two subexponentials, but with a min-
imalist configuration: the implicational fragment of the logic plus two subexponen-
tials: the “main” one allowing for contraction, exchange, and associativity (weakening
is optional), and an “auxiliary” one allowing only associativity. This is a variation of
Chaudhuri’s result (in the non-associative, non-commutative case), making use of fewer
connectives (tensor is not needed) and less powerful subexponentials.
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Table 1. Acronyms/decidability of systems mentioned in the paper.

Acronym System Decidable?

L Lambek calculus ✓

LL (propositional) linear logic ✗

ILL intuitionistic LL ✗

MALL multiplicative-additive LL ✓

iMALL intuitionisticMALL ✓

FL full (multiplicative-additive) L ✓

cLL non-commutative iMALL ✓

acLLΣ non-commutative, non-associative ILL with subexponentials –

NL non-associative L ✓

FNL full (multiplicative-additive) NL ✓

MELL multiplicative-exponential LL unknown

SDML simply dependent multimodal linear logics –

SMALCΣ FL with subexponentials –

The rest of the paper is organized as follows: Sect. 2 presents the system acLLΣ ,
showing that it has the cut-elimination property and presenting an example in linguis-
tics; Sect. 3 shows the undecidability results; and Sect. 4 concludes the paper.

We have placed, in Table 1, the acronyms for and decidability of all considered
systems. Decidability for the cases marked with “−” depends on the signature Σ.

2 A Nested System for Non-associativity

Similar to modal connectives, the exponential ! in ILL is not canonical [13], in the sense
that if i 	= j then !iF 	≡ !jF . Intuitively, this means that we can mark the exponential
with labels taken from a set I organized in a pre-order � (i.e., reflexive and transitive),
obtaining (possibly infinitely-many) exponentials (!i for i ∈ I). Also as in multi-modal
systems, the pre-order determines the provability relation: for a general formula F , !bF
implies !aF iff a � b.

The algebraic structure of subexponentials, combined with their intrinsic structural
property allow for the proposal of rich linear logic based frameworks. This opened a
venue for proposing different multi-modal substructural logical systems, that encoun-
tered a number of different applications. Originally [42], subexponentials could assume
only weakening and contraction axioms:

C : !iF → !iF ⊗ !iF W : !iF → 1

This allows the specification of systems with multiple contexts, which may be repre-
sented by sets or multisets of formulas [44], as well as the specification and verification
of concurrent systems [43], and biological systems [46]. In [20,21], non-commutative
systems allowing commutative subexponentials were presented:

E : (!iF ) ⊗ G ≡ G ⊗ (!iF )
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and this has many applications, e.g., in linguistics [21].
In this work, we will present a non-commutative, non-associative linear logic based

system, and add the possibility of assuming associativity3

A1 : !iF ⊗ (G ⊗ H) ≡ (!iF ⊗ G)⊗ H A2 : (G ⊗ H)⊗ !iF ≡ G ⊗ (H ⊗ !iF )

as well as commutativity and other structural properties.
We start by presenting an adaption of simply dependent multimodal linear logics

(SDML) appearing in [31] to the non-associative/commutative case.
The language of non-commutative SDML is that of (propositional intuitionistic)

linear logic with subexponentials [21] supplied with the left residual; or similarly, that
of FLwith subexponentials. Non-associative contexts will be organized via binary trees,
here called structures.

Definition 1 (Structured sequents). Structures are formulas or pairs containing
structures:

Γ,Δ := F | (Γ, Γ )

where the constructors may be empty but never a singleton.

An n-ary context Γ
{

1
}

. . .
{

n
}
is a context that contains n pairwise distinct num-

bered holes { } wherever a formula may otherwise occur. Given n contexts Γ1, . . . , Γn,

we write Γ{Γ1} · · · {Γn} for the context where the k-th hole in Γ
{

1
}

. . .
{

n
}
has been

replaced by Γk (for 1 ≤ k ≤ n). If Γk = ∅ the hole is removed.
A structured sequent (or simply sequent) has the form Γ ⇒ F where Γ is a structure

and F is a formula.

Example 2. Structures are binary trees, with formulas as leaves and commas as nodes.
The structure !iA, (B,C) represents the tree below left, while (!iA,B), C represents
the tree below right

,

!iA ,

B C

,

,

!iA B

C

Definition 3 (SDML). LetA be a set of axioms. A (non-associative/commutative) sim-
ply dependent multimodal logical system (SDML) is given by a triple Σ = (I,�, f),
where I is a set of indices, (I,�) is a pre-order, and f is a mapping from I to 2A.

If Σ is a SDML, then the logic described by Σ has the modality !i for every i ∈ I ,
with the rules of FNL depicted in Fig. 1, together with rules for the axioms f(i) and
the interaction axioms !jA → !iA for every i, j ∈ I with i � j. Finally, every SDML
is assumed to be upwardly closed w.r.t. �, that is, if i � j then f(i) ⊆ f(j) for all
i, j ∈ I .

3 Note that the implemented rules in Fig. 2 reflect the left to right direction of such axioms only.
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Figure 2 presents the structured system acLLΣ , for the logic described by the SDML
determined by Σ, with A = {C,W,A1,A2,E} where, in the subexponential rule for
S ∈ A, the respective s ∈ I is such that S ∈ f(s) (e.g. the subexponential symbol e
indicates that E ∈ f(e)). We will denote by !AxΔ the fact that the structure Δ contains
only banged formulas as leaves, each of them assuming the axiom Ax.

As an economic notation, we will write ↑ i for the upset of the index i, i.e., the set
{j ∈ I : i � j}. We extend this notation to structures in the following way. Let Γ
be a structure containing only banged formulas as leaves. If such formulas admit the
multiset partition

{!jF ∈ Γ : i � j} ∪ {!kF ∈ Γ : i 	� k and W ∈ f(k)}
then Γ ↑i is the structure obtained from Γ by easing the formulas in the second com-
ponent of the partition (equivalently, the substructure of Γ formed with all and only
formulas of the first component of the partition). Otherwise, Γ ↑i is undefined.

Example 4. Let Γ = (!iA, (!jB, !kC)) be represented below left, i � j but i 	� k, and
W ∈ f(k). Then Γ ↑i = (!iA, !jB) is depicted below right

,

!iA ,

!jB !kC

,

!iA !jB

Observe that, if W /∈ f(k), then Γ ↑i cannot be built. In this case, any derivation of
Γ ⇒ !i(A ⊗ B) cannot start with an application of the promotion rule !iR (similarly to
how promotion in ILL cannot be applied in the presence of non-classical contexts). In
this case, if A,B are atomic, this sequent would not be provable.

Example 5. The use of subexponentials to deal with associativity can be illustrated by
the prefixing sequent A → B ⇒ (C → A) → (C → B): It is not provable for an
arbitrary formula C, but if C = !aC ′, then

!aC ′ ⇒ !aC ′ init
A ⇒ A

init
B ⇒ B

init

(A,A → B) ⇒ B
→ L

((!aC ′, (!aC ′ → A)), (A → B)) ⇒ B
→ L

(!aC ′, ((!aC ′ → A), (A → B))) ⇒ B
A1

((!aC ′ → A), (A → B)) ⇒ !aC ′ → B
→ R

A → B ⇒ (!aC ′ → A) → (!aC ′ → B)
→ R

2.1 Cut-Elimination

When it comes to the proof of cut-elimination for acLLΣ , the cut reductions for the
propositional connectives follow the standard steps for similar systems such as, e.g.,
Moot and Retoré’s system NL� in [38, Chapter 5.2.2]. The case of structural rules, on
the other hand, should be treated with care.
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Fig. 1. Structured system FNL for non-associative, full Lambek calculus.

Fig. 2. Structured system acLLΣ for the logic described by Σ.

Theorem 6. If the sequent Γ ⇒ F is provable in acLLΣ , then it has a proof with no
instances of the rule mcut.

Proof. The most representative cases of cut reductions involving subexponentials are
detailed next. In order to simplify the notation, when possible, themcut rule is presented
in its simple form, with an 1-ary context.

Case !a: Suppose that

π1

Δ↑a
1 ⇒ F

Δ1 ⇒ !aF
!aR

π2

Γ{(!aF,Δ2),Δ3)} ⇒ G

Γ{(!aF, (Δ2,Δ3))} ⇒ G
A1

Γ{(Δ1, (Δ2,Δ3))} ⇒ G
mcut

Since axioms are upwardly closed w.r.t. �, it must be the case that Δ↑a
1 con-

tains only formulas marked with subexponentials allowing associativity. All



456 E. Blaisdell et al.

the other formulas in Δ1 can be weakened; this is guaranteed by the applica-
tion of the rule !aR in π1. Hence the derivation above reduces to

π1

Δ↑a
1 ⇒ F

Δ↑a
1 ⇒ !aF

!aR π2

Γ{(!aF,Δ2),Δ3)} ⇒ G

Γ
{
((Δ↑a

1 ,Δ2),Δ3)
}

⇒ G
mcut

Γ
{
(Δ↑a

1 , (Δ2,Δ3))
}

⇒ G
A1

Γ{(Δ1, (Δ2,Δ3))} ⇒ G
W

Case !c: Suppose that

π1

Δ↑c ⇒ F
Δ ⇒ !cF !cR

π2

Γ{!cF} . . . {!cF} . . . {!cF} ⇒ G

Γ{ } . . . {!cF} . . . { } ⇒ G
C

Γ{ } . . . {Δ} . . . { } ⇒ G
mcut

Since Δ↑c contains only formulas marked with subexponentials allowing con-
traction, the derivation above reduces to

π1

Δ↑c ⇒ F

Δ↑c ⇒ !cF
!cR π2

Γ{!cF} . . . {!cF} . . . {!cF} ⇒ G

Γ
{
Δ↑c} . . . {Δ↑c} . . . {Δ↑c} ⇒ G

mcut

Γ{ } . . . {Δ↑c} . . . { } ⇒ G
C

Γ{ } . . . {Δ} . . . { } ⇒ G
W

Observe that here, as usual, the multicut rule is needed in order to reduce the
cut complexity.

Case !iR: Suppose that

π1

Δ↑i ⇒ F

Δ ⇒ !iF
!iR

π2(
Γ
{
!iF

})↑j ⇒ G

Γ
{
!iF

} ⇒ !jG
!jR

Γ{Δ} ⇒ !jG
mcut

If j 	� i, then it should be the case that W ∈ f(i) and
(
Γ
{
!iF

})↑j
=

Γ{ }↑j , since !iF will be weakened in the application of rule !jR. Hence, all
formulas in Δ can be weakened as well and the reduction is

π2

Γ{ }↑j ⇒ G

Γ{ } ⇒ !jG
!jR

Γ{Δ} ⇒ !jG
W
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On the other hand, if j � i, by transitivity all the formulas in Δ↑i also have
this property (implying that Δ↑i is a substructure of Δ↑j), and the rest of
formulas of Δ can be weakened. Hence the derivation above reduces to

π1

Δ↑i ⇒ F

Δ↑j ⇒ !iF
!iR

π2(
Γ
{
!iF

})↑j ⇒ G

(Γ{Δ})↑j ⇒ G

Γ{Δ} ⇒ !jG
!jR

The other cases for subexponentials are similar or simpler. ��
The next examples illustrate what we mean by acLLΣ being a “conservative exten-

sion” of subsystems and variants. Indeed, although we remove structural properties of
the core LL, subexponentials allow them to be added back, either locally or globally.

Example 7 (Structural variants of iMALL). Adding combinations of contraction C and
/ or weakening W for arbitrary formulas to additive-multiplicative intuitionistic linear
logic (iMALL) yields, respectively, propositional intuitionistic logic ILP = iMALL +
{C,W}, and the intuitionistic versions of affine linear logic aLL = iMALL + W and
relevant logic R = iMALL + C. For the sake of presentation we overload the notation
and use the connectives of linear logic also for these logics. In order to embed the
logics above into acLLΣ , let α ∈ {ILP, aLL,R} and consider modalities !α with f(α) =
{E,A1,A2} ∪ A where A ⊆ {C,W} is the set of axioms whose corresponding rules
are in α. The translation τα prefixes every subformula with the modality !α. For L ∈
{ILP, aLL,R} it is then straightforward to show that a structured sequent S is cut-free
derivable in L iff its translation τα(S) is cut-free derivable in the logic described by
({α},�, f) with � the obvious relation, and f as given above.

Example 8 (Structural variants of FNL). Following the same script as above and start-
ing from FNL:

– considering f(α) = A ⊆ {E,A1,A2};
• IfA = {A1,A2}, then we obtain the system FL;
• IfA = {E,A1,A2} then the resulting system corresponds to iMALL.
• Adding C,W as options to A will result the affine/relevant versions of the sys-
tems above.

– in a pre-order (I,�), if f(i) = {A1,A2}∪Ai whereAi ⊆ {E,C,W} for each i ∈ I ,
then the resulting system corresponds to SMALCΣ in [21] (that is, the extension of
FL with subexponentials).

2.2 An Example in Linguistics

Since its inception, Lambek calculus [29] has been applied to the modeling of natu-
ral language syntax by means of categorial grammars. In a categorial grammar, each
word is assigned one or several Lambek formulas, which serve as syntactic categories.
For a simple example, John and Mary are assigned np (“noun phrase”) and loves gets
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(np → s) ← np. Here s stands for “sentence”, and loves is a transitive verb, which
lacks noun phrases on both sides to become a sentence. Grammatical validity of “John
loves Mary” is supported by derivability of the sequent np, (np → s) ← np, np ⇒ s.
Notice that this derivability keeps valid also in the non-associative setting, if the correct
nested structure is provided: (np, ((np → s) ← np, np)) ⇒ s.

The original Lambek calculus L is associative. In some cases, however, associativity
leads to over-generation, i.e., validation of grammatically incorrect sentences. Lambek
himself realized this and proposed the non-associative calculus NL in [30]. We will
illustrate this issue with the example given in [38, Sect. 4.2.2]. The syntactic category
assignment is as follows (where n stands for “noun”):

Words Types
the np ← n

Hulk n
is (np → s) ← (n ← n)

green, incredible n ← n

With this assignment, sentences “The Hulk is green” and “The Hulk is incredible”
are correctly marked as valid, by deriving the sequent

(np ← n, n), ((np → s) ← (n ← n), n ← n) ⇒ s

However, in the associative setting the sequent for the phrase “The Hulk is green
incredible,” which is grammatically incorrect, also becomes derivable:

np ← n, n, (np → s) ← (n ← n), n ← n, n ← n ⇒ s,

essentially due to derivability of n ← n, n ← n ⇒ n ← n.
In other situations, however, associativity is useful. Standard examples include han-

dling of dependent clauses, e.g., “the girl whom John loves,” which is validated as a
noun phrase by the following derivable sequent:

np ← n, n, (n → n) ← (s ← np), np, (np → s) ← np ⇒ np

Here (n → n) ← (s ← np) is the syntactic category for who.
Our subexponential extension of NL, however, handles this case using local asso-

ciativity instead of the global one. Namely, the category for whom now becomes
(n → n) ← (s ← !anp), where !a is a subexponential which allows the A2 rule,
and the following sequent is happily derivable:

np ← n, (n, ((n → n) ← (s ← !anp), (np, (np → s) ← np))) ⇒ np

The necessity of this more fine-grained control of associativity, instead of a global
associativity rule, is seen via a combination of these examples. Namely, we talk about
sentences like “The superhero whom Hawkeye killed was incredible” and “... was
green”. With !a, each of them is handled in the same way as the previous examples:

(np ← n, (n, ((n → n) ← (s ← !anp), (np, (np → s) ← np)))),

((np → s) ← (n ← n), n ← n) ⇒ s.
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On one hand, without !a this sequent cannot be derived in the non-associative sys-
tem. On the other hand, if we make the system globally associative, it would validate
incorrect sentences like “The superhero whom Hawkeye killed was green incredible.”

3 Some Undecidability Results

Non-associativity makes a significant difference in decidability and complexity matters.
For example, while L is NP-complete [47], NL is decidable in polynomial time [1,14].

For our system acLLΣ , its decidability or undecidability depends on its signature
Σ. In fact, we have a family of different systems acLLΣ , with Σ as a parameter. Recall
that the subexponential signature Σ controls not just the number of subexponentials
and the preorder among them. More importantly, it dictates, for each subexponential,
which structural rules this subexponential licenses. If for every i ∈ I we have C /∈ f(s),
that is, no subexponential allows contraction, then acLLΣ is clearly decidable, since the
cut-free proof search space is finite. Therefore, for undecidability it is necessary to have
at least one subexponential which allows contraction.

For a non-associative system with only one fully-powered exponential modality
s (that is, f(s) = {E,C,W,A1,A2}), undecidability was proven in a preprint by
Tanaka [51], based on Chvalovský’s [11] result on undecidability of the finitary con-
sequence relation in FNL.

In this section, we prove two undecidability results. The first one is a refinement
of Tanaka’s result: We establish undecidability with at least one subexponential which
allows contraction and weakening (commutativity/associativity are optional), in a sub-
system containing only the additive connective ⊕ and the multiplicatives ⊗ and →.

The second undecidability result is for the minimalistic, purely multiplicative frag-
ment, which includes only → (not even ⊗). As a trade-off, however, it requires two
subexponentials: the “main” one, which allows contraction, exchange, and associativity
(weakening is optional), and an “auxiliary” one, which allows only associativity.

It should be noted that this undecidability result is orthogonal to Tanaka’s [51],
and the proof technique is essentially different. Indeed, Chvalovský’s undecidability
theorem does not hold for the non-associative Lambek calculus without additives, where
the consequence relation is decidable [7].

Finally, we observe that if the intersection of these systems is decidable (which
is still an open question), then our two undecidability results are incomparable: we
have two undecidable fragments of acLLΣ , but their common part, which includes only
divisions and one exponential, would be decidable.

3.1 Undecidability with Additives and One Subexponential

We are going to derive the next theorem from undecidability of the finitary consequence
relation in FNL [11]. Recall that FNL is, in fact, the fragment of acLLΣ without subex-
ponentials (that is, with an empty I).

Theorem 9. If there exists such s ∈ I that f(s) ⊇ {C,W}, then the derivability prob-
lem in acLLΣ is undecidable. Moreover, this holds for the fragment with only ⊗, →,
⊕, !s.



460 E. Blaisdell et al.

In fact, using C and W, one can also derive A1, A2, E1, and E2. Therefore, if
f(s) ⊇ {C,W}, then !s is actually a full-power exponential modality. (In the proof
of Theorem 9 below, we use only W and C rules, in order to avoid confusion.) How-
ever, Theorem 9 does not directly follow from undecidability of propositional linear
logic [32], because here the basic system is non-associative and non-commutative,
while linear logic is both associative and commutative. Thus, we need a different encod-
ing for undecidability.

Let Φ be a finite set of FNL sequents. By FNL(Φ) let us denote FNL extended by
adding sequents from Φ as additional (non-logical) axioms. In general, FNL(Φ) does
not enjoy cut-elimination, so mcut is kept as a rule of inference in FNL(Φ). A sequent
Γ ⇒ F is called a consequence of Φ if this sequent is derivable in FNL(Φ).

Theorem 10 (Chvalovský [11]). The consequence relation in FNL is undecidable, that
is, there exists no algorithm which, given Φ and Γ ⇒ F , determines whether Γ ⇒ F
is a consequence of Φ. Moreover, undecidability keeps valid when Φ and Γ ⇒ F are
built from variables using only ⊗ and ⊕.

Now, in order to prove Theorem 9, we internalize Φ into the sequent using !s,
assuming f(s) ⊇ {C,W}.

First we notice that we may suppose, without loss of generality, that all sequents in
Φ are of the form ⇒ A, that is, have empty antecedents. Namely, each sequent of the
form Π ⇒ B can be replaced by ⇒ (

⊗
Π) → B, where

⊗
Π is obtained from Π by

replacing each comma with ⊗. Indeed, these sequents are derivable from one another:
from Π ⇒ B to ⇒ (

⊗
Π) → B we apply a sequence of ⊗L followed by → R, and

for the other direction we apply a series of cuts, first with (
⊗

Π, (
⊗

Π) → B) ⇒ B,
and then with (F,G) ⇒ F ⊗ G several times, for the corresponding subformulas of⊗

Π . The following embedding lemma (“modalized deduction theorem”) holds.

Lemma 11. The sequent Γ ⇒ F is a consequence of Φ = { ⇒ A1, . . . , ⇒ An} if
and only if the sequent

(
(. . . ((!sA1, !sA2), !sA3), . . . , !sAn), Γ

) ⇒ F is derivable in
acLLΣ .

Proof. Let us denote (. . . ((!sA1, !sA2), !sA3), . . . , !sAn) by !Φ. Notice that C and W
can be applied to !Φ as a whole; this is easily proven by induction on n.

For the “only if” direction let us take the derivation of Γ ⇒ F in FNL(Φ) (with
cuts) and replace each sequent of the form Δ ⇒ G in it with (!Φ,Δ) ⇒ G, and each
sequent of the form ⇒ G with !Φ ⇒ G. The translations of non-logical axioms from Φ
are derived as follows:

Ai ⇒ Ai
init

!sAi ⇒ Ai
der

!Φ ⇒ Ai
W, n − 1 times

Translations of axioms init and 1R are derived from the corresponding original
axioms byW, n times; �R remains valid.
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Rules ⊗L, ⊕L, ⊕Ri,&Li,&R, and 1L remain valid. For → L, ← L, andmcut we
contract !Φ as a whole:

(!Φ, Δ) ⇒ F (!Φ, Γ{G}) ⇒ H

(!Φ, Γ{((!Φ, Δ), F → G)}) ⇒ H
→ L

(!Φ, Γ{(Δ, F → G)}) ⇒ H
C

(!Φ, Δ) ⇒ F (!Φ, Γ{F} . . . {F}) ⇒ C

(!Φ, Γ{(!Φ, Δ)} . . . {(!Φ, Δ)}) ⇒ C
mcut

(!Φ, Γ{Δ} . . . {Δ}) ⇒ C
C

For ⊗R, → R, and ← R, we combine contraction and weakening:

(!Φ, Γ1) ⇒ F (!Φ, Γ2) ⇒ G

((!Φ, Γ1), (!Φ, Γ2)) ⇒ F ⊗ G
⊗R

(!Φ, ((!Φ, Γ1), (!Φ, Γ2))) ⇒ F ⊗ G
W

(!Φ, (Γ1, Γ2)) ⇒ F ⊗ G
C

(!Φ, (F, Γ )) ⇒ G

(!Φ, (F, (!Φ, Γ )) ⇒ G
W

(F, (!Φ, Γ )) ⇒ G
C

(!Φ, Γ ) ⇒ F → G
→ R

Notice that our original derivation was in FNL(Φ), so it does not include rules
operating subexponentials.

For the “if” direction we take a cut-free proof of (!Φ, Γ ) ⇒ F in acLLΣ and erase
all formulas which include the subexponential. In the resulting derivation tree all rules
and axioms, except those which operate !s, remain valid. Structural rules for !s trivialize
(since the !-formula was erased). The !sR rule could not have been used, since we do
not have positive occurrences of !sF , and our proof is cut-free.

Finally, der translates into
Γ{Ai} ⇒ G

Γ{} ⇒ G

This is modeled by cut with one of the sequents from Φ:

⇒ Ai Γ{Ai} ⇒ G

Γ{} ⇒ G
mcut

Thus, we get a correct derivation in FNL(Φ). ��
Theorem 10 and Lemma 11 immediately yield Theorem 9.

3.2 Undecidability Without Additives and with Two Subexponentials

Theorem 12. If there are a, c ∈ I such that f(a) = {A1,A2} and f(c) ⊇
{C,E,A1,A2}, then the derivability problem in acLLΣ is undecidable. Moreover, this
holds for the fragment with only →, !a, and !c.

Remember from Example 8 that SMALCΣ [21] denotes the extension of FLwith subex-
ponentials. The undecidability theorem above is proved by encoding the one-division
fragment of SMALCΣ containing one exponential c such that f(c) ⊇ {C,E}. It turns
out that that such a system is undecidable.

Theorem 13 (Kanovich et al. [22,23]). If there exists such c ∈ I that f(c) ⊇ {C,E},
then the derivability problem in SMALCΣ is undecidable. Moreover, this holds for the
fragment with only → and !c.
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Observe that SMALCΣ can be obtained from acLLΣ by adding “global” associativ-
ity rules:

Γ{((Δ1,Δ2),Δ3)} ⇒ G

Γ{(Δ1, (Δ2,Δ3))} ⇒ G

Γ{(Δ1, (Δ2,Δ3))} ⇒ G

Γ{((Δ1,Δ2),Δ3)} ⇒ G

The usual formulation of SMALCΣ , of course, uses sequences of formulas instead
of nested structures as antecedents. The alternative formulation, however, would be
more convenient for us now. It will be also convenient for us to regard all subexponen-
tials in SMALCΣ to be associative, that is, f(s) ⊇ {A1,A2} for each s ∈ I .

In order to embed SMALCΣ into acLLΣ , we define two translations, A!− and A!+,
by mutual recursion:

z!− = !az z!+ = z where z is a variable,1, or �
(A → B)!− = !a(A!+ → B!−) (A → B)!+ = A!− → B!+

(B ← A)!− = !a(B!− ← A!+) (B ← A)!+ = B!+ ← A!−

(A � B)!− = !a(A!− � B!−) (A � B)!+ = A!+ � B!+ where � ∈ {⊗, ⊕,&}
(!sA)!− = !s(A!−) (!sA)!+ = !s(A!+)

Informally, our translation adds a !a over any formula (not only over atoms) of
negative polarity, unless this formula was already marked with a !s. Thus, all formulae
in antecedents would begin with either the new subexponential !a or one of the old
subexponentials !s, and all these subexponentials allow associativity rules A1 and A2.

Lemma 14. A sequent A1, . . . , An ⇒ B is derivable in SMALCΣ if and only if its
translation (. . . (A!−

1 , A!−
2 ), . . . , A!−

n ) ⇒ B!+ is derivable in acLLΣ .

Proof. For the “only if” part, let us first note that each formula A!−
i is of the form !sF

and A1,A2 ∈ f(s). Indeed, either s is an “old” subexponential label (for which we
added A1,A2) or s = a. Thus brackets can be freely rearranged in the antecedent.

Now we take a cut-free proof of A1, . . . , An ⇒ B in SMALCΣ and replace each
sequent in it with its translation. Right rules for connectives other than subexponentials,
i.e.,⊗R,⊕Ri,&R,→ R, and← R, remain valid as they are, up to rearranging brackets
in antecedents. For !iR, we notice that the translation of a formula of the form !jF ,
where j � i, is also a formula of the form !jF ′. Thus, this rule also remains valid.
The same holds for the dereliction rule der, because (!iF )!− is exactly !i(F !−). Finally,
the “old” structural rules (exchange, contraction, weakening) also remain valid (up to
rearranging of brackets), since !iF gets translated into !i(F !−), which enjoys the same
structural rules.

For the other left rules, we need to derelict !a first, and then perform the corre-
sponding rule application. Rearrangement of brackets, if needed, is performed below
dereliction or above the application of the rule in question.

The “if” part is easier. Given a derivation of (. . . (A!−
1 , A!−

2 ), . . . , A!−
n ) ⇒ B!+ in

acLLΣ , we erase !a everywhere, and consider it as a derivation in SMALCΣ . Associa-
tivity rules for the erased !a (which are the only structural rules for this subexponential)
keep valid, because now associativity is global. Dereliction and right introduction for
!a trivialize. All other rules, which do not operate !a, remain as they are. Thus, we get
a derivation of A1, . . . , An ⇒ B in SMALCΣ , since erasing !a makes our translations
just identical. ��
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4 Related Work and Conclusion

In this paper, we have presented acLLΣ , a sequent-based system for non-associative,
non-commutative linear logic with subexponentials. Starting form FNL, we modu-
larly and uniformly added rules for exchange, associativity, weakening and contraction,
which can be applied with the subexponentials having with the respective features. This
allows for the application of structural rules locally, and it conservatively extends well
known systems in the literature, continuing the path of controlling structural properties
started by Girard himself [16].

Another approach to combining associative and non-associative behavior in
Lambek-style grammars is the framework of the Lambek calculus with brackets by
Morrill [39,40] and Moortgat [34]. The bracket approach is dual to ours: there the
base system is associative, and brackets, which are controlled by bracket modalities,
introduce local non-associativity. Both the associative Lambek calculus and the non-
associative Lambek calculus can be embedded into the Lambek calculus with brackets:
the former is just by design of the system and the latter was shown by Kurtonina [26]
by constructing a translation.

From the point of view of generative power, however, the (associative) Lambek
calculus with brackets is weaker than the non-associative system with subexponentials,
which is presented in this paper. Namely, as shown by Kanazawa [19], grammars based
on the Lambek calculus with brackets can generate only context-free languages. In
contrast, grammars based on our system with subexponentials go beyond context-free
languages, even when no subexponential allows contraction (subexponentials allowing
contraction may lead to undecidability, as shown in the last section).

As a quick example, let us consider a subexponential !ae which allows both asso-
ciativity (A1 and A2) and exchange (E). If we put this subexponential over any
(sub)formula, the system becomes associative and commutative. Using this system, one
can describe the non context-free language MIX3, which contains all non-empty words
over {a, b, c}, in which the numbers of a, b, and c are equal. Indeed, MIX3 is the per-
mutation closure of the language {(abc)n | n ≥ 1}. The latter is regular, therefore
context-free, and therefore definable by a Lambek grammar. The ability of our system
to go beyond context-free languages is important from the point of view of applications,
since there are known linguistic phenomena which are essentially non-context-free [49].

Regarding decidability, let us compare our results with the more well-known asso-
ciative non-commutative and associative commutative cases.

In the associative and commutative case the situation is as follows. In the pres-
ence of additives, the system is known to be undecidable with one exponential modal-
ity [32]. Without additives, we getMELL, the (un)decidability of which is a well-known
open problem [50]. However, with two subexponentialsMELL again becomes undecid-
able [9]. Thus, we have the same trade-off as in our non-associative non-commutative
case: for undecidability one needs either additives, or two subexponentials.

Our results help to shed some light in the (un)decidability problem for the spectrum
of logical systems surrounding MELL/FNL, allowing for a fine-grained analysis of the
problem, specially the trade-offs on connectives and subexponentials for guaranteeing
(un)decidability.
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There is a lot to be done from now on. First of all, we would like to analyze better
the minimalist fragment of acLLΣ containing only implication and one fully-powered
subexponential, as it seems to be crucial for understanding the lower bound of unde-
cidability (or the upper bound of decidability). Second, one should definitely explore
more the use of acLLΣ in modeling natural language syntax. The examples in Sect. 2.2
show how to locally combine sentences with different grammatical characteristics, and
the MIX3 example above illustrates how that can be of importance. That is, it would
be interesting to have a formal study about acLLΣ and categorial grammars. Third, we
plan to investigate the connections between our work and Adjoint logic [48] as well as
with Display calculus [5,12]. Finally, we intend to study proof-theoretic properties of
acLLΣ , such as normalization of proofs (e.g. via focusing) and interpolation.
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