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Abstract. The long run behaviour of linear dynamical systems is often
studied by looking at eventual properties of matrices and recurrences that
underlie the system. A basic problem in this setting is as follows: given
a set of pairs of rational weights and matrices {(w1, A1), . . . , (wm, Am)},
does there exist an integer N s.t for all n ≥ N ,

∑m
i=1 wi · An

i ≥ 0 (resp.
> 0). We study this problem, its applications and its connections to linear
recurrence sequences. Our first result is that for m ≥ 2, the problem is
as hard as the ultimate positivity of linear recurrences, a long standing
open question (known to be coNP-hard). Our second result is that for any
m ≥ 1, the problem reduces to ultimate positivity of linear recurrences.
This yields upper bounds for several subclasses of matrices by exploiting
known results on linear recurrence sequences. Our third result is a general
reduction technique for a large class of problems (including the above)
from diagonalizable case to the case where the matrices are simple (have
non-repeated eigenvalues). This immediately gives a decision procedure
for our problem for diagonalizable matrices.

Keywords: Eventual properties of matrices · Ultimate Positivity ·
linear recurrence sequences

1 Introduction

The study of eventual or asymptotic properties of discrete-time linear dynam-
ical systems has long been of interest to both theoreticians and practitioners.
Questions pertaining to (un)-decidability and/or computational complexity of
predicting the long-term behaviour of such systems have been extensively stud-
ied over the last few decades. Despite significant advances, however, there remain
simple-to-state questions that have eluded answers so far. In this work, we inves-
tigate one such problem, explore its significance and links with other known
problems, and study its complexity and computability landscape.
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The time-evolution of linear dynamical systems is often modeled using lin-
ear recurrence sequences, or using sequences of powers of matrices. Asymptotic
properties of powers of matrices are therefore of central interest in the study of
linear differential systems, dynamic control theory, analysis of linear loop pro-
grams etc. (see e.g. [26,32,36,37]). The literature contains a rich body of work
on the decidability and/or computational complexity of problems related to the
long-term behaviour of such systems (see, e.g. [15,19,27,29,36,37]). A question
of significant interest in this context is whether the powers of a given matrix of
rational numbers eventually have only non-negative (resp. positive) entries. Such
matrices, also called eventually non-negative (resp. eventually positive) matri-
ces, enjoy beautiful algebraic properties ([13,16,25,38]), and have been studied
by mathematicians, control theorists and computer scientists, among others.
For example, the work of [26] investigates reachability and holdability of non-
negative states for linear differential systems – a problem in which eventually
non-negative matrices play a central role. Similarly, eventual non-negativity (or
positivity) of a matrix modeling a linear dynamical system makes it possible
to apply the elegant Perron-Frobenius theory [24,34] to analyze the long-term
behaviour of the system beyond an initial number of time steps. Another level of
complexity is added if the dynamics is controlled by a set of matrices rather than
a single one. For instance, each matrix may model a mode of the linear dynami-
cal system [23]. In a partial observation setting [22,39], we may not know which
mode the system has been started in, and hence have to reason about eventual
properties of this multi-modal system. This reduces to analyzing the sum of
powers of the per-mode matrices, as we will see.

Motivated by the above considerations, we study the problem of determining
whether a given matrix of rationals is eventually non-negative or eventually
positive and also a generalized version of this problem, wherein we ask if the
weighted sum of powers of a given set of matrices of rationals is eventually
non-negative (resp. positive). Let us formalize the general problem statement.
Given a set A = {(w1, A1), . . . (wm, Am)}, where each wi is a rational
number and each Ai is a k×k matrix of rationals, we wish to determine
if

∑m
i=1 wi · An

i has only non-negative (resp. positive) entries for all
sufficiently large values of n. We call this problem Eventually Non-Negative
(resp. Positive) Weighted Sum of Matrix Powers problem, or ENNSoM (resp.
EPSoM) for short. The eventual non-negativity (resp. positivity) of powers of a
single matrix is a special case of the above problem, where A = {(1, A)}. We call
this special case the Eventually Non-Negative (resp. Positive) Matrix problem,
or ENNMat (resp. EPMat) for short.

Given the simplicity of the ENNSoM and EPSoM problem statements, one may
be tempted to think that there ought to be simple algebraic characterizations
that tell us whether

∑m
i=1 wi · An

i is eventually non-negative or positive. But
in fact, the landscape is significantly nuanced. On one hand, a solution to the
general ENNSoM or EPSoM problem would resolve long-standing open questions
in mathematics and computer science. On the other hand, efficient algorithms
can indeed be obtained under certain well-motivated conditions. This paper is a
study of both these aspects of the problem. Our primary contributions can be
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summarized as follows. Below, we use A = {(w1, A1), . . . (wm, Am)} to define an
instance of ENNSoM or EPSoM.

1. If |A| ≥ 2, we show that both ENNSoM and EPSoM are as hard as the ultimate
non-negativity problem for linear recurrence sequences (UNNLRS, for short).
The decidability of UNNLRS is closely related to Diophantine approximations,
and remains unresolved despite extensive research (see e.g. [31]).
Since UNNLRS is coNP-hard (in fact, as hard as the decision problem for
universal theory of reals), so is ENNSoM and EPSoM, when |A| ≥ 2. Thus,
unless P = NP, we cannot hope for polynomial-time algorithms, and any
algorithm would also resolve long-standing open problems.

2. On the other hand, regardless of |A|, we show a reduction in the other direc-
tion from ENNSoM (resp. EPSoM) to UNNLRS (resp. UPLRS, the strict version
of UNNLRS). As a consequence, we get decidability and complexity bounds for
special cases of ENNSoM and EPSoM, by exploiting recent results on recurrence
sequences [30,31,35]. For example, if each matrix Ai in A is simple, i.e. has
all distinct eigenvalues, we obtain PSPACE algorithms.

3. Finally, we consider the case where Ai is diagonalizable (also called non-
defective or inhomogenous dilation map) for each (wi, Ai) ∈ A. This is a
practically useful class of matrices and strictly subsumes simple matrices. We
present a novel reduction technique for a large family of problems (includ-
ing eventual non-negativity/positivity, everywhere non-negativity/positivity
etc.) over diagonalizable matrices to the corresponding problem over simple
matrices. This yields effective decision procedures for EPSoM and ENNSoM for
diagonalizable matrices. Our reduction makes use of a novel perturbation
analysis that also has other interesting consequences.

As mentioned earlier, the eventual non-negativity and positivity problem for
single rational matrices are well-motivated in the literature, and EPMat (or EPSoM

with |A| = 1) is known to be in PTIME [25]. But for ENNMat, no decidability
results are known to the best of our knowledge. From our work, we obtain two
new results about ENNMat: (i) in general ENNMat reduces to UNNLRS and (ii) for
diagonalizable matrices, we can decide ENNMat. What is surprising (see Sect. 5)
is that the latter decidability result goes via ENNSoM, i.e. the multiple matrices
case. Thus, reasoning about sums of powers of matrices, viz. ENNSoM, is useful
even when reasoning about powers of a single matrix, viz. ENNMat.

Potential Applications of ENNSoM and EPSoM. A prime motivation for defin-
ing the generalized problem statement ENNSoM is that it is useful even when
reasoning about the single matrix case ENNMat. However and unsurprisingly,
ENNSoM and EPSoM are also well-motivated independently. Indeed, for every
application involving a linear dynamical system that reduces to ENNMat/EPMat,
there is a naturally defined aggregated version of the application involving multi-
ple independent linear dynamical systems that reduces to ENNSoM/EPSoM (e.g.,
the swarm of robots example in [3]).

Beyond this, ENNSoM/EPSoM arise naturally and directly when solving prob-
lems in different practical scenarios. Due to lack of space, we detail two applica-
tions here and describe more in the longer version of the paper [3].
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Partially Observable Multi-modal Systems. Our first example comes from
the domain of cyber-physical systems in a partially observable setting. Consider
a system (e.g. a robot) with m modes of operation, where the ith mode dynamics
is given by a linear transformation encoded as a k×k matrix of rationals, say Ai.
Thus, if the system state at (discrete) time t is represented by a k-dimensional
rational (row) vector ut, the state at time t + 1, when operating in mode i, is
given by utAi. Suppose the system chooses to operate in one of its various modes
at time 0, and then sticks to this mode at all subsequent time. Further, the initial
choice of mode is not observable, and we are only given a probability distribution
over modes for the initial choice. This is natural, for instance, if our robot (multi-
modal system) knows the terrain map and can make an initial choice of which
path (mode) to take, but cannot change its path once it has chosen. If pi is a
rational number denoting the probability of choosing mode i initially, then the
expected state at time n is given by

∑m
i=1 pi · u0A

n
i = u0

( ∑m
i=1 pi · An

i

)
. A

safety question in this context is whether starting from a state u0 with all non-
negative (resp. positive) components, the system is expected to eventually stay
locked in states that have all non-negative (resp. positive) components. In other
words, does u0

( ∑m
i=1 pi · An

i

)
have all non-negative (resp. positive) entries for

all sufficiently large n? Clearly, a sufficient condition for an affirmative answer
to this question is to have

∑n
i=1 pi · An

i eventually non-negative (resp. positive),
which is an instance of ENNSoM (resp. EPSoM).

Commodity Flow Networks. Consider a flow network where m different
commodities {c1, . . . , cm} use the same flow infrastructure spanning k nodes,
but have different loss/regeneration rates along different links. For every pair
of nodes i, j ∈ {1, . . . , k} and for every commodity c ∈ {c1, . . . , cm}, suppose
Ac[i, j] gives the fraction of the flow of commodity c starting from i that reaches
j through the link connecting i and j (if it exists). In general, Ac[i, j] is the
product of the fraction of the flow of commodity c starting at i that is sent along
the link to j, and the loss/regeneration rate of c as it flows in the link from i to
j. Note that Ac[i, j] can be 0 if commodity c is never sent directly from i to j, or
the commodity is lost or destroyed in flowing along the link from i to j. It can be
shown that An

c [i, j] gives the fraction of the flow of c starting from i that reaches
j after n hops through the network. If commodities keep circulating through the
network ad-infinitum, we wish to find if the network gets saturated, i.e., for all
sufficiently long enough hops through the network, there is a non-zero fraction
of some commodity that flows from i to j for every pair i, j. This is equivalent
to asking if there exists N ∈ N such that

∑m
�=1 An

c�
> 0. If different commodities

have different weights (or costs) associated, with commodity ci having the weight
wi, the above formulation asks if

∑m
�=1 w�.A

n
c�

is eventually positive, which is
effectively the EPSoM problem.

Other Related Work. Our problems of interest are different from other well-
studied problems that arise if the system is allowed to choose its mode inde-
pendently at each time step (e.g. as in Markov decision processes [5,21]). The
crucial difference stems from the fact that we require that the mode be chosen
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once initially, and subsequently, the system must follow the same mode for-
ever. Thus, our problems are prima facie different from those related to general
probabilistic or weighted finite automata, where reachability of states and ques-
tions pertaining to long-run behaviour are either known to be undecidable or
have remained open for long ([6,12,17]). Even in the case of unary probabilis-
tic/weighted finite automata [1,4,8,11], reachability is known in general to be
as hard as the Skolem problem on linear recurrences – a long-standing open
problem, with decidability only known in very restricted cases. The difference
sometimes manifests itself in the simplicity/hardness of solutions. For example,
EPMat (or EPSoM with |A| = 1) is known to be in PTIME [25] (not so for ENNMat

however), whereas it is still open whether the reachability problem for unary
probabilistic/weighted automata is decidable. It is also worth remarking that
instead of the sum of powers of matrices, if we considered the product of their
powers, we would effectively be solving problems akin to the mortality problem
[9,10] (which asks whether the all-0 matrix can be reached by multiplying with
repetition from a set of matrices) – a notoriously difficult problem. The diago-
nalizable matrix restriction is a common feature in in the context of linear loop
programs (see, e.g., [7,28]), where matrices are used for updates. Finally, logics
to reason about temporal properties of linear loops have been studied, although
decidability is known only in restricted settings, e.g. when each predicate defines
a semi-algebraic set contained in some 3-dimensional subspace, or has intrinsic
dimension 1 [20].

2 Preliminaries

The symbols Q,R, A and C denote the set of rational, real, algebraic and com-
plex numbers respectively. Recall that an algebraic number is a root of a non-zero
polynomial in one variable with rational coefficients. An algebraic number can
be real or complex. We use RA to denote the set of real algebraic numbers (which
includes all rationals). The sum, difference and product of two (real) algebraic
numbers is again (real) algebraic. Furthermore, every root of a polynomial equa-
tion with (real) algebraic coefficients is again (real) algebraic. We call matrices
with all rational (resp. real algebraic or real) entries rational (resp. real algebraic
or real) matrices. We use A ∈ Q

k×l (resp. A ∈ R
k×l and A ∈ RA

k×l) to denote
that A is a k×l rational (resp. real and real algebraic) matrix, with rows indexed
1 through k, and columns indexed 1 through l. The entry in the ith row and jth

column of a matrix A is denoted A[i, j]. If A is a column vector (i.e. l = 1),
we often use boldface letters, viz. A, to refer to it. In such cases, we use A[i]
to denote the ith component of A, i.e. A[i, 1]. The transpose of a k × l matrix
A, denoted AT, is the l × k matrix obtained by letting AT[i, j] = A[j, i] for all
i ∈ {1, . . . l} and j ∈ {1, . . . k}. Matrix A is said to be non-negative (resp. posi-
tive) if all entries of A are non-negative (resp. positive) real numbers. Given a set
A = {(w1, A1), . . . (wm, Am)} of (weight, matrix) pairs, where each Ai ∈ Q

k×k

(resp. ∈ RA
k×k) and each wi ∈ Q, we use

∑
An to denote the weighted matrix

sum
∑m

i=1 wi · An
i , for every natural number n > 0. Note that

∑
An is itself a

matrix in Q
k×k (resp. RAk×k).
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Definition 1. We say that A is eventually non-negative (resp. positive) iff there
is a positive integer N s.t.,

∑
An is non-negative (resp. positive) for all n ≥ N .

The ENNSoM (resp. EPSoM) problem, described in Sect. 1, can now be re-phrased
as: Given a set A of pairs of rational weights and rational k × k matrices, is A
eventually non-negative (resp. positive)? As mentioned in Sect. 1, if A = {(1, A)},
the ENNSoM (resp. EPSoM) problem is also called ENNMat (resp. EPMat). We note
that the study of ENNSoM and EPSoM with |A| = 1 is effectively the study of
ENNMat and EPMat i.e., wlog we can assume w = 1.

The characteristic polynomial of a matrix A ∈ RA
k×k is given by det(A−λI),

where I denotes the k×k identity matrix. Note that this is a degree k polynomial
in λ. The roots of the characteristic polynomial are called the eigenvalues of A.
The non-zero vector solution of the equation Ax = λix, where λi is an eigenvalue
of A, is called an eigenvector of A. Although A ∈ RA

k×k, in general it can
have eigenvalues λ ∈ C which are all algebraic numbers. An eigenvector is said
to be positive (resp. non-negative) if each component of the eigenvector is a
positive (resp. non-negative) rational number. A matrix is called simple if all
its eigenvalues are distinct. Further, a matrix A is called diagonalizable if there
exists an invertible matrix S and diagonal matrix D such that SDS−1 = A.

The study of weighted sum of powers of matrices is intimately related to the
study of linear recurrence sequences (LRS), as we shall see. We now present some
definitions and useful properties of LRS. For more details on LRS, the reader is
referred to the work of Everest et al. [14]. A sequence of rational numbers 〈u〉
= 〈un〉∞

n=0 is called an LRS of order k (> 0) if the nth term of the sequence,
for all n ≥ k, can be expressed using the recurrence: un = ak−1un−1 + . . . +
a1un−k−1 + a0un−k. Here, a0 (�= 0), a1, . . . , ak−1 ∈ Q are called the coefficients
of the LRS, and u0, u1, . . . , uk−1 ∈ Q are called the initial values of the LRS.
Given the coefficients and initial values, an LRS is uniquely defined. However,
the same LRS may be defined by multiple sets of coefficients and corresponding
initial values. An LRS 〈u〉 is said to be periodic with period ρ if it can be
defined by the recurrence un = un−ρ for all n ≥ ρ. Given an LRS 〈u〉, its
characteristic polynomial is p〈u〉(x) = xk − ∑k−1

i=0 aix
i. We can factorize the

characteristic polynomial as p〈u〉(x) =
∏d

j=1(x−λj)ρj , where λj is a root, called
a characteristic root of algebraic multiplicity ρj . An LRS is called simple if
ρj = 1 for all j, i.e. all characteristic roots are distinct. Let {λ1, λ2, . . . , λd}
be distinct roots of p〈u〉(x) with multiplicities ρ1, ρ2, . . . , ρd respectively. Then
the nth term of the LRS, denoted un, can be expressed as un =

∑d
j=1 qj(n)λn

j ,
where qj(x) ∈ C(x) are univariate polynomials of degree at most ρj − 1 with
complex coefficients such that

∑d
j=1 ρj = k. This representation of an LRS is

known as the exponential polynomial solution representation. It is well known
that scaling an LRS by a constant gives another LRS, and the sum and product
of two LRSs is also an LRS (Theorem 4.1 in [14]). Given an LRS 〈u〉 defined
by un = ak−1un−1 + . . . + a1un−k−1 + a0un−k, we define its companion matrix
M〈u〉 to be the k × k matrix shown in Fig. 1.
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M u =

⎢
⎢
⎢
⎢

ak−1 1 . . . 0 0
...

...
. . .

...
...

a2 0 . . . 1 0
a1 0 . . . 0 1
a0 0 . . . 0 0

⎥
⎥
⎥
⎥

Fig. 1. Companion matrix

When 〈u〉 is clear from the context, we often
omit the subscript for clarity of notation, and use
M for M〈u〉. Let u = (uk−1, . . . , u0) be a row vec-
tor containing the k initial values of the recurrence,
and let ek = (0, 0, . . . 1)T be a column vector of k
dimensions with the last element equal to 1 and the
rest set to 0s. It is easy to see that for all n ≥ 1,
uMnek gives un. Note that the eigenvalues of the
matrix M are exactly the roots of the characteristic
polynomial of the LRS 〈u〉.

For u = (uk−1, . . . , u0), we call the matrix G〈u〉 =
[

0 u
0T M〈u〉

]

the generator

matrix of the LRS 〈u〉, where 0 is a k-dimensional vector of all 0s. We omit the
subscript and use G instead of G〈u〉, when the LRS 〈u〉 is clear from the context.
It is easy to show from the above that un = Gn+1[1, k + 1] for all n ≥ 0.

We say that an LRS 〈u〉 is ultimately non-negative (resp. ultimately posi-
tive) iff there exists N > 0, such that ∀n ≥ N , un ≥ 0 (resp. un > 0)1. The
problem of determining whether a given LRS is ultimately non-negative (resp.
ultimately positive) is called the Ultimate Non-negativity (resp. Ultimate Posi-
tivity) problem for LRS. We use UNNLRS (resp. UPLRS) to refer to this problem.
It is known [19] that UNNLRS and UPLRS are polynomially inter-reducible, and
these problems have been widely studied in the literature (e.g., [27,31,32]). A
closely related problem is the Skolem problem, wherein we are given an LRS
〈u〉 and we are required to determine if there exists n ≥ 0 such that un = 0.
The relation between the Skolem problem and UNNLRS (resp. UPLRS) has been
extensively studied in the literature (e.g., [18,19,33]).

3 Hardness of Eventual Non-negativity and Positivity

In this section, we show that UNNLRS (resp. UPLRS) polynomially reduces to
ENNSoM (resp. EPSoM) when |A| ≥ 2. Since UNNLRS and UPLRS are known to be
coNP-hard (in fact, as hard as the decision problem for the universal theory of
reals Theorem 5.3 [31]), we conclude that ENNSoM and EPSoM are also coNP-hard
and at least as hard as the decision problem for the universal theory of reals,
when |A| ≥ 2. Thus, unless P = NP, there is no hope of finding polynomial-time
solutions to these problems.

Theorem 1. UNNLRS reduces to ENNSoM with |A| ≥ 2 in polynomial time.

Proof. Given an LRS 〈u〉 of order k defined by the recurrence un = ak−1un−1 +
. . . + a1un−k−1 + a0un−k and initial values u0, u1, . . . , uk−1, construct two

1 Ultimately non-negative (resp. ultimately positive) LRS, as defined by us, have also
been called ultimately positive (resp. strictly positive) LRS elsewhere in the literature
[31]. However, we choose to use terminology that is consistent across matrices and
LRS, to avoid notational confusion.
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matrices A1 and A2 such that 〈u〉 is ultimately non-negative iff (An
1 + An

2 ) is

eventually non-negative. Consider A1 =
[

0 u
0T M

]

, the generator matrix of 〈u〉

and A2 =
[

0 0
0T P

]

, where P ∈ Q
k×k is constructed such that : P [i, j] ≥ |M [i, j]|.

For example P can be constructed as: P [i, j] = M [i, j] for all j ∈ [2, k] and
i ∈ [1, k] and P [i, j] = max(|a0|, |a1|, . . . , |ak−1|) + 1 for j = 1. Now consider
the sequence of matrices defined by An

1 + An
2 , for all n ≥ 1. By properties of the

generator matrix, it is easily verified that An
1 =

[
0 uMn−1

0T Mn

]

. Similarly, we get

An
2 =

[
0 0
0T Pn

]

. Therefore, An
1 + An

2 =
[

0 uMn−1

0T Pn + Mn

]

, for all n ≥ 1. Now, we

can observe that Pn + Mn is always non-negative, since P [i, j] ≥ |M [i, j]| ≥ 0
for all i, j ∈ {1, . . . k} and hence Pn[i, j] + Mn[i, j] ≥ 0 for all i, j ∈ {1, . . . k}
and n ≥ 1. Thus we conclude that A(n) = An

1 + An
2 ≥ 0 (n ≥ 1) iff 〈u〉 is

ultimately non-negative, since the elements A(n)[1, 1] . . . , A(n)[1, k + 1] consists
of (un+k−2 . . . , un, un−1) and the rest of the elements are non-negative. �	

Observe that the same reduction technique works if we are required to
use more than 2 matrices in ENNSoM. Indeed, we can construct matrices
A3, A4, . . . , Am similar to the construction of A2 in the reduction above, by
having the k × k matrix in the bottom right (see definition of A2) to have pos-
itive values greater than the maximum absolute value of every element in the
companion matrix.

A simple modification of the above proof setting A2 =
[

1 0
1T P

]

, where 1

denotes the k-dimensional vector of all 1’s gives us the corresponding hardness
result for EPSoM (see [3] for details).

Theorem 2. UPLRS reduces to EPSoM with |A| ≥ 2 in polynomial time.

We remark that for the reduction technique used in Theorems 1 and 2 to
work, we need at least two (weight, matrix) pairs in A. For explanation of why
this reduction doesn’t work when |A| = 1, we refer the reader to [3]. Having
shown the hardness of ENNSoM and EPSoM when |A| ≥ 2, we now proceed to
establish upper bounds on the computational complexity of these problems.

4 Upper Bounds on Eventual Non-negativity
and Positivity

In this section, we show that ENNSoM (resp. EPSoM) is polynomially reducible to
UNNLRS (resp. UPLRS), regardless of |A|.
Theorem 3. ENNSoM, reduces to UNNLRS in polynomial time.

The proof is in two parts. First, we show that for a single matrix A, we
can construct a linear recurrence 〈a〉 such that A is eventually non-negative iff
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〈a〉 is ultimately non-negative. Then, we show that starting from such a linear
recurrence for each matrix in A, we can construct a new LRS, say 〈a�〉, with
the property that the weighted sum of powers of the matrices in A is eventually
non-negative iff 〈a�〉 is ultimately non-negative. Our proof makes crucial use of
the following property of matrices.

Lemma 1 Adapted from Lemma 1.1 of [19]). Let A ∈ Q
k×k be a rational

matrix with characteristic polynomial pA(λ) = det(A − λI). Suppose we define
the sequence 〈aij〉 for every 1 ≤ i, j ≤ k as follows: ai,j

n = An+1[i, j], for all
n ≥ 0. Then 〈ai,j〉 is an LRS of order k with characteristic polynomial pA(x)
and initial values given by aij

0 = A1[i, j], . . . aij
k−1 = Ak[i, j].

This follows from the Cayley-Hamilton Theorem and the reader is referred to [19]
for further details. From Lemma 1, it is easy to see that the LRS 〈ai,j〉 for
all 1 ≤ i, j ≤ k share the same order and characteristic polynomial (hence
the defining recurrence) and differ only in their initial values. For notational
convenience, we say that the LRS 〈ai,j〉 is generated by A[i, j].

Proposition 1. A matrix A ∈ Q
k×k is eventually non-negative iff all LRS 〈ai,j〉

generated by A[i, j] for all 1 ≤ i, j ≤ k are ultimately non-negative.

The proof follows from the definition of eventually non-negative matrices and
the definition of 〈aij〉. Next we define the notion of interleaving of LRS.

Definition 2. Consider a set S = {〈ui〉 : 0 ≤ i < t} of t LRSes, each having
order k and the same characteristic polynomial. An LRS 〈v〉 is said to be the
LRS-interleaving of S iff vtn+s = us

n for all n ∈ N and 0 ≤ s < t.

Observe that, the order of 〈v〉 is tk and its initial values are given by the
interleaving of the k initial values of the LRSes 〈ui〉. Formally, the initial values
are vtj+i = ui

j for 0 ≤ i < t and 0 ≤ j < k. The characteristic polynomial p〈v〉(s)
is equal to p〈ui〉(xt).

Proposition 2. The LRS-interleaving 〈v〉 of a set of LRSes S = {〈ui〉 : 0 ≤ i <
t} is ultimately non-negative iff each LRS 〈ui〉 in S is ultimately non-negative.

Now, from the definitions of LRSes 〈ai,j〉, 〈ui〉 and 〈v〉, and from Proposi-
tions 1 and 2, we obtain the following crucial lemma.

Lemma 2. Given a matrix A ∈ Q
k×k, let S = {〈ui〉 | ui

n = apq
n , where p =

�i/k� + 1, q = i mod k + 1, 0 ≤ i < k2} be the set of k2 LRSes mentioned in
Lemma 1. The LRS 〈v〉 generated by LRS-interleaving of S satisfies the following:

1. A is eventually non-negative iff 〈v〉 is ultimately non-negative.
2. p〈v〉(x) =

∏k
i=1(x

k2 − λi), where λ1, . . . λk are the (possibly repeated) eigen-
values of A.

3. vrk2+sk+t = usk+t
r = as+1,t+1

r = Ar+1[s + 1, t + 1] for all r ∈ N, 0 ≤ s, t < k.

We lift this argument from a single matrix to a weighted sum of matrices.



680 S. Akshay et al.

Lemma 3. Given A = {(w1, A1), . . . , (wm, Am)}, there exists a linear recur-
rence 〈a�〉, such that

∑m
i=1 wiA

n
i is eventually non-negative iff 〈a�〉 is ultimately

non-negative.

Proof. For each matrix Ai in A, let 〈vi〉 be the interleaved LRS as constructed
in Lemma 2. Let wi〈vi〉 denote the scaled LRS whose nth entry is wiv

i
n for all

n ≥ 0. The LRS 〈a�〉 is obtained by adding the scaled LRSes w1〈v1〉, w2〈v2〉, . . .
wm〈vm〉. Clearly, a�

n is non-negative iff
∑m

i=1 wiv
i
n is non-negative. From the

definition of vi (see Lemma 2), we also know that for all n ≥ 0, vi
n = Ar+1

i [s +
1, t + 1], where r = �n/k2�, s = �(n mod k2)/k� and t = n mod k. Therefore,
a�

n is non-negative iff
∑m

i=1 wiA
r+1
i [s + 1, t + 1] is non-negative. It follows that

〈a�〉 is ultimately non-negative iff
∑m

i=1 wiA
n
i is eventually non-negative. �	

From Lemma 3, we can conclude the main result of this section, i.e., proof
of Theorem 3. The following corollary can be shown mutatis mutandis.

Corollary 1. EPSoM reduces to UPLRS in polynomial time.

We note that it is also possible to argue about the eventual non-negativity
(positivity) of only certain indices of the matrix using a similar argument as
above. By interleaving only the LRS’s corresponding to certain indices of the
matrices in A, we can show this problem’s equivalence with UNNLRS (UPLRS).

5 Decision Procedures for Special Cases

Since there are no known algorithms for solving UNNLRS in general, the results
of the previous section present a bleak picture for deciding ENNSoM and EPSoM.
We now show that these problems can be solved in some important special cases.

5.1 Simple Matrices and Matrices with Real Algebraic Eigenvalues

Our first positive result follows from known results for special classes of LRSes.

Theorem 4. ENNSoM and EPSoM are decidable for A = {(w1, A1), . . . (wm, Am)}
if one of the following conditions holds for all i ∈ {1, . . . m}.
1. All Ai are simple. In this case, ENNSoM and EPSoM are in PSPACE. Addition-

ally, if the rank k of all Ai is fixed, ENNSoM and EPSoM are in PTIME.
2. All eigenvalues of Ai are roots of real algebraic numbers. In this case, ENNSoM

and EPSoM are in coNPPosSLP (a complexity class in the Counting Hierarchy,
contained in PSPACE).

Proof. Suppose each Ai ∈ Q
k×k, and let λi,1, . . . λi,k be the (possibly repeated)

eigenvalues of Ai. The characteristic polynomial of Ai is pAi
(x) =

∏k
j=1(x −

λi,j). Denote the LRS obtained from Ai by LRS interleaving as in Lemma 2
as 〈ai〉. By Lemma 2, we have (i) ai

rk2+sk+t = Ar+1
i [s + 1, t + 1] for all r ∈ N

and 0 ≤ s, t < k, and (ii) p〈ai〉(x) =
∏k

j=1

(
xk2 − λi,j

)
. We now define the
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scaled LRS {〈bi〉, where | bi
n = wi ai

n for all n ∈ N. Since scaling does not
change the characteristic polynomial of an LRS (refer [3] for a simple proof),
we have p〈bi〉(x) =

∏k
j=1

(
xk2 −λi,j

)
. Once the LRSes 〈b1〉, . . . 〈bm〉 are obtained

as above, we sum them to obtain the LRS 〈b�〉. Thus, for all n ∈ N, we have
b�
n =

∑m
i=1 bi

n =
∑m

i=1 wi ai
n =

∑m
i=1 wi Ar

i [s, t], where n = rk2 + sk + t, r ∈ N

and 0 ≤ s, t < k. Hence, ENNSoM (resp. EPSoM) for {(w1, A1), . . . (wm, Am)}
polynomially reduces to UNNLRS (resp. UPLRS) for 〈b�〉.

By [14], we know that the characteristic polynomial p〈b�〉(x) is the LCM of
the characteristic polynomials p〈bi〉(x) for 1 ≤ i ≤ m. If Ai are simple, there
are no repeated roots of p〈bi〉(x). If this holds for all i ∈ {1, . . . m}, there are no
repeated roots of the LCM of p〈b1〉(x), . . . p〈bm〉(x) as well. Hence, p〈b�〉(x) has
no repeated roots. Similarly, if all eigenvalues of Ai are roots of real algebraic
numbers, so are all roots of p〈bi〉(x). It follows that all roots of the LCM of
p〈b1〉(x), . . . p〈bm〉(x), i.e. p〈b�〉(x), are also roots of real algebraic numbers.

The theorem now follows from the following two known results about LRS.

1. UNNLRS (resp. UPLRS) for simple LRS is in PSPACE. Furthermore, if the LRS
is of bounded order, UNNLRS (resp. UPLRS) is in PTIME [31].

2. UNNLRS (resp. UPLRS) for LRS in which all roots of characteristic polynomial
are roots of real algebraic numbers is in coNPPosSLP [2]. �	

Remark: The technique used in [31] to decide UNNLRS (resp. UPLRS) for simple
rational LRS also works for simple LRS with real algebraic coefficients and initial
values. This allows us to generalize Theorem 4(1) to the case where all Ai’s and
wi’s are real algebraic matrices and weights respectively.

5.2 Diagonalizable Matrices

We now ask if ENNSoM and EPSoM can be decided if each matrix Ai is diagonal-
izable. Since diagonalizable matrices strictly generalize simple matrices, Theo-
rem 4(1) cannot answer this question directly, unless one perhaps looks under the
hood of the (highly non-trivial) proof of decidability of non-negativity/positivity
of simple LRSes. The main contribution of this section is a reduction that allows
us to decide ENNSoM and EPSoM for diagonalizable matrices using a black-box
decision procedure (i.e. without knowing operational details of the procedure
or details of its proof of correctness) for the corresponding problem for simple
real-algebraic matrices.

Before we proceed further, let us consider an example of a non-simple matrix
(i.e. one with repeated eigenvalues) that is diagonalizable.

A =
5 12 −6
−3 −10 6
3 12 8

Fig. 2. Diagonalizable matrix

Specifically, matrix A in Fig. 2 has eigenval-
ues 2, 2 and −1, and can be written as SDS−1,
where D is the 3 × 3 diagonal matrix with
D[1, 1] = D[2, 2] = 2 and D[3, 3] = −1, and
S is the 3 × 3 matrix with columns (−4, 1, 0)T,
(2, 0, 1)T and (−1, 1, 1)T.
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Interestingly, the reduction technique we develop applies to properties much
more general than ENNSoM and EPSoM. Formally, given a sequence of matrices
Bn defined by

∑m
i=1 wiA

n
i , we say that a property P of the sequence is positive

scaling invariant if it stays unchanged even if we scale all Ais by the same positive
real. Examples of such properties include ENNSoM, EPSoM, non-negativity and
positivity of Bn (i.e. is Bn[i, j] ≥ 0 or < 0, as the case may be, for all n ≥ 1 and
for all 1 ≤ i, j ≤ k), existence of zero (i.e. is Bn equal to the all 0-matrix for
some n ≥ 1), existence of a zero element (i.e. is Bn[i, j] = 0 for some n ≥ 1 and
some i, j ∈ {1, . . . k}), variants of the r-non-negativity (resp. r-positivity and
r-zero) problem, i.e. does there exist at least/exactly/at most r non-negative
(resp. positive/zero) elements in Bn for all n ≥ 1, for a given r ∈ [1, k]) etc. The
main result of this section is a reduction for deciding such properties, formalized
in the following theorem.

Theorem 5. The decision problem for every positive scaling invariant property
on rational diagonalizable matrices effectively reduces to the decision problem for
the property on real algebraic simple matrices.

While we defer the proof of this theorem to later in the section, an immediate
consequence of Theorem 5 and Theorem 4(1) (read with the note at the end of
Sect. 5.1) is the following result.

Corollary 2. ENNSoM and EPSoM are decidable for A = {(w1, A1), . . .
(wm, Am)} if all Ais are rational diagonalizable matrices and all wis are rational.

It is important to note that Theorem 5 yields a decision procedure for checking
any positive scaling invariant property of diagonalizable matrices from a corre-
sponding decision procedure for real algebraic simple matrices without making
any assumptions about the inner working of the latter decision procedure. Given
any black-box decision procedure for checking any positive scaling property for
a set of weighted simple matrices, our reduction tells us how a corresponding
decision procedure for checking the same property for a set of weighted diago-
nalizable matrices can be constructed. Interestingly, since diagonalizable matri-
ces have an exponential form solution with constant coefficients for exponential
terms, we can use an algorithm that exploits this specific property of the expo-
nential form (like Ouaknine and Worrell’s algorithm [31], originally proposed for
checking ultimate positivity of simple LRS) to deal with diagonalizable matrices.
However, our reduction technique is neither specific to this algorithm nor does
it rely on any special property the exponential form of the solution.

The proof of Theorem 5 crucially relies on the notion of perturbation of
diagonalizable matrices, which we introduce first. Let A be a k × k real diago-
nalizable matrix. Then, there exists an invertible k × k matrix S and a diagonal
k × k matrix D such that A = SDS−1, where S and D may have complex
entries. It follows from basic linear algebra that for every i ∈ {1, . . . k}, D[i, i] is
an eigenvalue of A and if α is an eigenvalue of A with algebraic multiplicity ρ,
then α appears exactly ρ times along the diagonal of D. Furthermore, for every
i ∈ {1, . . . k}, the ith column of S (resp. ith row of S−1) is an eigenvector of
A (resp. of AT) corresponding to the eigenvalue D[i, i], and the columns of S
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(resp. rows of S−1) form a basis of the vector space C
k. Let α1, . . . αm be the

eigenvalues of A with algebraic multiplicities ρ1, . . . ρm respectively. Wlog, we
assume that ρ1 ≥ . . . ≥ ρm and the diagonal of D is partitioned into segments
as follows: the first ρ1 entries along the diagonal are α1, the next ρ2 entries are
α2, and so on. We refer to these segments as the α1-segment, α2-segment and so
on, of diagonal of D. Formally, if κi denotes

∑i−1
j=1 ρj , the αi-segment of diagonal

of D consists of entries D[κi +1, κi +1], . . . D[κi +ρi, κi +ρi], all of which are αi.
Since A is a real matrix, its characteristic polynomial has all real coeffi-

cients and for every eigenvalue α of A (and hence of AT), its complex conjugate,
denoted α, is also an eigenvalue of A (and hence of AT) with the same algebraic
multiplicity. This allows us to define a bijection hD from {1, . . . , k} to {1, . . . k}
as follows. If D[i, i] is real, then hD(i) = i. Otherwise, let D[i, i] = α ∈ C and let
D[i, i] be the lth element in the α-segment of the diagonal of D. Then hD(i) = j,
where D[j, j] is the lth element in the α-segment of the diagonal of D. The
matrix A being real also implies that for every real eigenvalue α of A (resp. of
AT), there exists a basis of real eigenvectors of the corresponding eigenspace.
Additionally, for every non-real eigenvalue α and for every set of eigenvectors
of A (resp. of AT) that forms a basis of the eigenspace corresponding to α, the
component-wise complex conjugates of these basis vectors serve as eigenvectors
of A (resp. of AT) and form a basis of the eigenspace corresponding to α.

Using the above notation, we choose matrix S−1 (and hence S) such that
A = SDS−1 as follows. Suppose α is an eigenvalue of A (and hence of AT) with
algebraic multiplicity ρ. Let {i + 1, . . . i + ρ} be the set of indices j for which
D[j, j] = α. If α is real (resp. complex), the i + 1st, . . . i + ρth rows of S−1 are
chosen to be real (resp. complex) eigenvectors of AT that form a basis of the
eigenspace corresponding to α. Moreover, if α is complex, the hD(i + s)th row
of S−1 is chosen to be the component-wise complex conjugate of the i + sth row
of S−1, for all s ∈ {1, . . . ρ}.

Definition 3. Let A = SDS−1 be a k×k real diagonalizable matrix. We say that
E = (ε1, . . . εk) ∈ R

k is a perturbation w.r.t. D if εi �= 0 and εi = εhD(i) for all
i ∈ {1, . . . k}. Further, the E-perturbed variant of A is the matrix A′ = SD′S−1,
where D′ is the k×k diagonal matrix with D′[i, i] = εiD[i, i] for all i ∈ {1, . . . k}.
In the following, we omit ”w.r.t. D” and simply say ”E is a perturbation”, when
D is clear from the context. Clearly, A′ as defined above is a diagonalizable
matrix and its eigenvalues are given by the diagonal elements of D′.

Recall that the diagonal of D is partitioned into αi-segments, where each αi is
an eigenvalue of A = SDS−1 with algebraic multiplicity ρi. We now use a similar
idea to segment a perturbation E w.r.t. D. Specifically, the first ρ1 elements of
E constitute the α1-segment of E , the next ρ2 elements of E constitute the α2-
segment of E and so on.

Definition 4. A perturbation E = (ε1, . . . εk) is said to be segmented if the jth

element (whenever present) in every segment of E has the same value, for all
1 ≤ j ≤ ρ1. Formally, if i =

∑l−1
s=1 ρs + j and 1 ≤ j ≤ ρl ≤ ρ1, then εi = εj.
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Clearly, the first ρ1 elements of a segmented perturbation E define the whole
of E . As an example, suppose (α1, α1, α1, α2, α2, α2, α2, α3) is the diagonal of D,
where α1, α2, α2 and α3 are distinct eigenvalues of A. There are four segments
of the diagonal of D (and of E) of lengths 3, 2, 2 and 1 respectively.

Example segmented perturbations in this case are (ε1, ε2, ε3, ε1, ε2, ε1, ε2, ε1)
and (ε3, ε1, ε2, ε3, ε1, ε3, ε1, ε3). If ε1 �= ε2 or ε2 �= ε3, a perturbation that is not
segmented is Ẽ = (ε1, ε2, ε3, ε2, ε3, ε2, ε3, ε1).

Definition 5. Given a segmented perturbation E = (ε1, . . . εk) w.r.t. D, a rota-
tion of E, denoted τD(E), is the segmented perturbation E ′ = (ε′

1, . . . ε
′
k) in which

ε′
(i mod ρ1)+1 = εi for i ∈ {1, . . . ρ1}, and all other ε′

is are as in Definition 4.

Continuing with our example, if E = (ε1, ε2, ε3, ε1, ε2, ε1, ε2, ε1), then τD(E) =
(ε3, ε1, ε2, ε3, ε1, ε3, ε1, ε3), τ2

D(E) = (ε2, ε3, ε1, ε2, ε3, ε2, ε3, ε2) and τ3
D(E) = E .

Lemma 4. Let A = SDS−1 be a k × k real diagonalizable matrix with eigen-
values αi of algebraic multiplicity ρi. Let E = (ε1, . . . εk) be a segmented per-
turbation w.r.t. D such that all εjs have the same sign, and let Au denote
the τu

D(E)-perturbed variant of A for 0 ≤ u < ρ1, where τ0(E) = E. Then
An = 1(∑ρ1

j=1 εn
j

)
∑ρ1−1

u=0 An
u, for all n ≥ 1.

Proof. Let Eu denote τu
D(E) for 0 ≤ u < ρ1, and let Eu[i] denote the ith element of

Eu for 1 ≤ i ≤ k. It follows from Definitions 4 and 5 that for each i, j ∈ {1, . . . ρ1},
there is a unique u ∈ {0, . . . ρ1 − 1} such that Eu[i] = εj . Specifically, u = i − j
if i ≥ j, and u = (ρ1 − j) + i if i < j. Furthermore, Definition 4 ensures that the
above property holds not only for i ∈ {1, . . . ρ1}, but for all i ∈ {1, . . . k}.

Let Du denote the diagonal matrix with Du[i, i] = Eu[i]D[i, i] for 0 ≤ i < ρ1.
Then Dn

u is the diagonal matrix with Dn
u [i, i] =

(Eu[i]D[i, i]
)n for all n ≥ 1.

It follows from the definition of Au that An
u = S Dn

u S−1 for 0 ≤ u < ρ

and n ≥ 1. Therefore,
∑ρ1−1

u=0 An
u = S

( ∑ρ1−1
u=0 Dn

u

)
S−1. Now,

∑ρ1−1
u=0 Dn

u is
a diagonal matrix whose ith element along the diagonal is

∑ρ1−1
u=0

(Eu[i]D[i, i]
)n

=
( ∑ρ1−1

u=0 En
u [i]

)
Dn[i, i]. By virtue of the property mentioned in the previous

paragraph,
∑ρ1−1

u=0 En
u [i] =

∑ρ1
j=1 εn

j for 1 ≤ i ≤ k. Therefore,
∑ρ1−1

u=0 Dn
u =

( ∑ρ1
j=1 εn

j

)
Dn, and hence,

∑ρ1−1
u=0 An

u =
( ∑ρ1

j=1 εn
j

)
S Dn S−1 =

(∑ρ1
j=1 εn

j

)
An.

Since all εjs have the same sign and are non-zero,
( ∑ρ1

j=1 εn
j

)
is non-zero for all

n ≥ 1. It follows that An = 1(∑ρ1
j=1 εn

j

)
∑ρ1−1

u=0 An
u. �	

We are now in a position to present the proof of the main result of this
section, i.e. of Theorem 5. Our proof uses a variation of the idea used in the
proof of Lemma 4 above.

Proof of Theorem 5. Consider a set {(w1, A1), . . . (wi, Ai)} of (weight, matrix)
pairs, where each matrix Ai is in Q

k×k and each wi ∈ Q. Suppose further that
each Ai = SiDiS

−1
i , where Di is a diagonal matrix with segments along the

diagonal arranged in descending order of algebraic multiplicities of the corre-
sponding eigenvalues. Let νi be the number of distinct eigenvalues of Ai, and
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let these eigenvalues be αi,1, . . . αi,νi
. Let μi be the largest algebraic multiplic-

ity among those of all eigenvalues of Ai, and let μ = lcm(μ1, . . . μm). We now
choose positive rationals ε1, . . . εμ such that (i) all εjs are distinct, and (ii) for
every i ∈ {1, . . . m}, for every distinct j, l ∈ {1, . . . νi} and for every distinct
p, q ∈ {1, . . . μ}, we have εp

εq
�= |αi,j

αi,l |. Since Q is a dense set, such a choice of
ε1, . . . εμ can always be made once all |αi,j

αi,l
|s are known, even if within finite

precision bounds.
For 1 ≤ i ≤ m, let ηi denote μ/μi. We now define ηi distinct and segmented

perturbations w.r.t. Di as follows, and denote these as Ei,1, . . . Ei,ηi
. For 1 ≤ j ≤

ηi, the first μi elements (i.e. the first segment) of Ei,j are ε(j−1)μi+1, . . . εjμi
(as

chosen in the previous paragraph), and all other elements of Ei,j are defined as in
Definition 4. For each Ei,j thus obtained, we also consider its rotations τu

Di
(Ei,j)

for 0 ≤ u < μi. For 1 ≤ j ≤ ηi and 0 ≤ u < μi, let Ai,j,u = Si Di,j,u S−1
i

denote the τu
Di

(Ei,j)-perturbed variant of Ai. It follows from Definition 3 that
if we consider the set of diagonal matrices {Di,j,u | 1 ≤ j ≤ ηi, 0 ≤ u < μi},
then for every p ∈ {1, . . . k} and for every q ∈ {1, . . . μ}, there is a unique u and
j such that Di,j,u[p, p] = εq. Specifically, j = �q/μi�. To find u, let Ei,j [p] be
the p̂th element in a segment of Ei,j , where 1 ≤ p̂ ≤ μi, and let q̂ be q mod μi.
Then, u = (p̂ − q̂) if p̂ ≥ q̂ and u = (μi − q̂) + p̂ otherwise. By our choice of
εts, we also know that for all i ∈ {1, . . . m}, for all j, l ∈ {1, . . . νi} and for all
p, q ∈ {1, . . . μ}, we have εpαi,l �= εqαi,j unless p = q and j = l. This ensures that
all Di,j,u matrices, and hence all Ai,j,us matrices, are simple, i.e. have distinct
eigenvalues.

Using the reasoning in Lemma 4, we can now show that An
i =

1(∑μ
j=1 εn

j

) × ( ∑ηi

j=1

∑μi−1
u=0 An

i,j,u

)
and so,

∑m
i=1 wiA

n
i = 1(∑μ

j=1 εn
j

) ×
( ∑m

i=1

∑ηi

j=1

∑μi−1
u=0 wiA

n
i,j,u

)
. Since all εjs are positive reals,

∑μ
j=1 εn

j is a pos-
itive real for all n ≥ 1.

Hence, for each p, q ∈ {1, . . . k},
∑m

i=1 wiA
n
i [p, q] is > 0, < 0 or = 0 if and

only if
( ∑m

i=1

∑ηi

j=1

∑μi−1
u=0 wiA

n
i,j,u[p, q]

)
is > 0, < 0 or = 0, respectively. The

only remaining helper result that is now needed to complete the proof of the
theorem is that each Ai,j,u is a real algebraic matrix. This is shown in Lemma 5,
presented at the end of this section to minimally disturb the flow of arguments.

�	
The reduction in proof of Theorem 5 can be easily encoded as an algorithm,
as shown in Algorithm 1. Further, in addition to Corollary 2, there are other
consequences of our reduction. One such result (with proof in [3]) is below.

Corollary 3. Given A = {(w1, A1), . . . (wm, Am)}, where each wi ∈ Q and Ai ∈
Q

k×k is diagonalizable, and a real value ε > 0, there exists B = {(v1, B1),
. . . (vM , BM )}, where each vi ∈ Q and each Bi ∈ RA

k×k is simple, such that∣
∣
∣
∑m

i=0 wiA
n
i [p, q] − ∑M

j=0 vjB
n
j [p, q]

∣
∣
∣ < εn for all p, q ∈ {1, . . . k} and all n ≥ 1.

We end this section with the promised helper result used at the end of the proof
of Theorem 5.
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Algorithm 1. Reduction procedure for diagonalizable matrices
Input: A = {(wi, Ai) : 1 ≤ i ≤ m, wi ∈ Q, Ai ∈ Q

k×k and diagonalizable}
Output: B = {(vi, Bi) : 1 ≤ i ≤ t, vi ∈ Q, Bi ∈ RA

k×k are simple}
s.t.

(∑m
i=1 wiA

n
i

)
= f(n)

(∑t
i=1 viB

n
i

)
, where f(n) > 0 for all n ≥ 0?

1: P ← {1}; � Initialize set of forbidden ratios of various εjs
2: for i in 1 through m do � For each matrix Ai

3: Ri ← {(αi,j , ρi,j) : αi,j is eigenvalue of Ai with algebraic multiplicity ρi,j};
4: Di ← Diagonal matrix of αi,j-segments ordered in decreasing order of ρi,j ;
5: Si ← Matrix of linearly independent eigenvectors of Ai s.t. Ai = SiDiS

−1
i ;

6: P ← P ∪ { |αi,j/αi,l| : αi,j , αi,l are eigenvalues in Ri

}
; μi ← maxj ρi,j

7: μ = lcm(μ1, . . . μm); � Count of εjs needed
8: for j in 1 through μ do � Generate all required εjs
9: Choose εj ∈ Q s.t. εj > 0 and εj �∈ {πεp : 1 ≤ p < j, π ∈ P};

10: B ← ∅; � Initialize set of (weight, simple matrix) pairs
11: for i in 1 through m do � For each matrix Ai

12: νi ← μ/μi; � Count of segmented perturbations to be rotated for Ai

13: for j in 0 through νi − 1 do � For each segmented perturbation
14: Ei,j ← Seg. perturbn. w.r.t. Di with first μi elements being

εjμi+1, . . . ε(j+1)μi
;

15: for u in 0 through μi − 1 do � For each rotation of Ei,j

16: Ai,j,u ← τu
Di

(Ei,j)-perturbed variant of A;
17: B ← B ∪ {(wi, Ai,j,u)}; � Update A′

18: return B;

Lemma 5. For every real (resp. real algebraic) diagonalizable matrix A =
SDS−1 and perturbation E ∈ R

k (resp. RA
k), the E-perturbed variant of A

is a real (resp. real algebraic) diagonalizable matrix.

Proof. We first consider the case of A ∈ R
k×k and E ∈ R

k. Given a perturbation
E w.r.t. D, we first define k simple perturbations Ei (1 ≤ i ≤ k) w.r.t. D as
follows: Ei has all its components set to 1, except for the ith component, which
is set to εi. Furthermore, if D[i, i] is not real, then the hD(i)th component of Ei

is also set to εi. It is easy to see from Definition 3 that each Ei is a perturbation
w.r.t. D. Moreover, if j = hD(i), then Ej = Ei.

Let Ê = {Ei1 , . . . Eiu
} be the set of all unique perturbations w.r.t D among

E1, . . . Ek. It follows once again from Definition 3 that the E-perturbed variant of
A can be obtained by a sequence of Eij

-perturbations, where Eij
∈ Ê . Specifically,

let A0,Ê = A and Av,Ê be the Eiv
-perturbed variant of Av−1,Ê for all v ∈ {1, . . . u}.

Then, the E-perturbed variant of A is identical to Au,Ê . This shows that it suffices
to prove the lemma only for simple perturbations Ei, as defined above. We focus
on this special case below.

Let A′ = SD′S−1 be the Ei-perturbed variant of A, and let D[i, i] = α.
For every p ∈ {1, . . . k}, let ep denote the p-dimensional unit vector whose pth

component is 1. Then, A′ep gives the pth column of A′. We prove the first part of
the lemma by showing that A′ ep = (S D ′S−1) ep ∈ R

k×1 for all p ∈ {1, . . . k}.
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Let T denote D′ S−1 ep. Then T is a column vector with T[r] =
D′[r, r] S−1[r, p] for all r ∈ {1, . . . k}. Let U denote ST. By definition, U is
the pth column of the matrix A′. To compute U, recall that the rows of S−1

form a basis of Ck. Therefore, for every q ∈ {1, . . . k}, S−1 eq can be viewed as
transforming the basis of the unit vector eq to that given by the rows of S−1

(modulo possible scaling by real scalars denoting the lengths of the row vectors of
S−1). Similarly, computation of U = ST can be viewed as applying the inverse
basis transformation to T. It follows that the components of U can be obtained
by computing the dot product of T and the transformed unit vector S−1 eq, for
each q ∈ {1, . . . k}. In other words, U[q] = T · (S−1 eq). We show below that
each such U[q] is real.

By definition, U[q] =
∑k

r=1(T[r] S−1[r, q]) =
∑k

r=1(D
′[r, r] S−1[r, p] S−1

[r, q]). We consider two cases below.

– If D[i, i] = α is real, recalling the definition of D′, the expression for U[q]
simplifies to

∑k
r=1(D[r, r] S−1[r, p] S−1[r, q]) + (εi − 1) α S−1[i, p] S−1[i, q].

Note that
∑k

r=1(D[r, r] S−1[r, p] S−1[r, q]) is the qth component of the vector
(SDS−1) ep = A ep. Since A is real, so must be the qth component of A ep.
Moreover, since α is real, by our choice of S−1, both S−1[i, p] and S−1[i, q]
are real. Since εi is also real, it follows that (εi − 1) α S−1[i, p] S−1[i, q] is
real. Hence U[q] is real for all q ∈ {1, . . . k}.

– If D[i, i] = α is not real, from Definition 3, we know that D′[i, i] =
εi α and D′[hD(i), hD(i)] = εi α. The expression for U[q] then simpli-
fies to

∑k
r=1

(
D[r, r] S−1[r, p] S−1[r, q]

)
+ (εi − 1) (β + γ), where β =

α S−1[i, p] S−1[i, q] and γ = α S−1[hD(i), p] S−1[hD(i), q]. By our choice
of S−1, we know that S−1[hD(i), p] = S−1[i, p] and S−1[hD(i), q] = S−1[i, q].
Therefore, β = γ and hence (εi − 1) (β + γ) is real. By a similar argument as
in the previous case, it follows that U[q] is real for all q ∈ {1, . . . k}.

The proof when A ∈ RA
k×k and E ∈ Q

k follows from a similar reasoning as
above, and from the following facts about real algebraic matrices.

– If A is a real algebraic matrix, then every eigenvalue of A is either a real or
complex algebraic number.

– If A is diagonalizable, then for every real (resp. complex) algebraic eigenvalue
of A, there exists a set of real (resp. complex) algebraic eigenvectors that form
a basis of the corresponding eigenspace. �	

6 Conclusion

In this paper, we investigated eventual non-negativity and positivity for matrices
and the weighted sum of powers of matrices (ENNSoM/EPSoM). First, we showed
reductions from and to specific problems on linear recurrences, which allowed us
give complexity lower and upper bounds. Second, we developed a new and generic
perturbation-based reduction technique from simple matrices to diagonalizable
matrices, which allowed us to transfer results between these settings.
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Most of our results, that we showed in the rational setting, hold even with
real-algebraic matrices by adapting the complexity notions and depending on
corresponding results for ultimate positivity for linear recurrences and related
problems over reals. As future work, we would like to extend our techniques for
other problems of interest like the existence of a matrix power where all entries
are non-negative or zero. Finally, the line of work started here could lead to
effective algorithms and applications in varied areas ranging from control theory
systems to cyber-physical systems, where eventual properties of matrices play a
crucial role.
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