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Abstract. We consider a logic used to describe sets of configurations of dis-
tributed systems, whose network topologies can be changed at runtime, by recon-
figuration programs. The logic uses inductive definitions to describe networks
with an unbounded number of components and interactions, written using a mul-
tiplicative conjunction, reminiscent of Bunched Implications [37] and Separation
Logic [39]. We study the complexity of the satisfiability and entailment prob-
lems for the configuration logic under consideration. Additionally, we consider
the robustness property of degree boundedness (is every component involved in a
bounded number of interactions?), an ingredient for decidability of entailments.

1 Introduction

Distributed systems are increasingly used as critical parts of the infrastructure of our
digital society, as in e.g., datacenters, e-banking and social networking. In order to
address maintenance (e.g., replacement of faulty and obsolete network nodes by new
ones) and data traffic issues (e.g., managing the traffic inside a datacenter [35]), the
distributed systems community has recently put massive effort in designing algorithms
for reconfigurable systems, whose network topologies change at runtime [23]. How-
ever, dynamic reconfiguration in the form of software or network upgrades has been
recognized as one of the most important sources of cloud service outage [25].

This paper contributes to a logical framework that addresses the timely problems of
formal modeling and verification of reconfigurable distributed systems. The basic build-
ing blocks of this framework are (i) a Hoare-style program proof calculus [1] used to
write formal proofs of correctness of reconfiguration programs, and (ii) an invariant syn-
thesis method [6] that proves the safety (i.e., absence of reachable error configurations)
of the configurations defined by the assertions that annotate a reconfiguration program.
These methods are combined to prove that an initially correct distributed system cannot
reach an error state, following the execution of a given reconfiguration sequence.

The assertions of the proof calculus are written in a logic that defines infinite sets
of configurations, consisting of components (i.e., processes running on different nodes
of the network) connected by interactions (i.e., multi-party channels alongside which
messages between components are transfered). Systems that share the same architec-
tural style (e.g., pipeline, ring, star, tree, etc.) and differ by the number of components
and interactions are described using inductively defined predicates. Such configurations
can be modified either by (a) adding or removing components and interactions (recon-
figuration), or (b) changing the local states of components, by firing interactions.
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The assertion logic views components and interactions as resources, that can be
created or deleted, in the spirit of resource logics à la Bunched Implications [37], or
Separation Logic [39]. The main advantage of using resource logics is their support for
local reasoning [12]: reconfiguration actions are specified by pre- and postconditions
mentioning only the resources involved, while framing out the rest of the configuration.

The price to pay for this expressive power is the difficulty of automating the rea-
soning in these logics. This paper makes several contributions in the direction of proof
automation, by studying the complexity of the satisfiability and entailment problems,
for the configuration logic under consideration. Additionally, we study the complexity
of a robustness property [27], namely degree boundedness (is every component involved
in a bounded number of interactions?). In particular, the latter problem is used as a
prerequisite for defining a fragment with a decidable entailment problem. For space
reasons, the proofs of the technical results are given in [5].

1.1 Motivating Example

The logic studied in this paper is motivated by the need for an assertion language
that supports reasoning about dynamic reconfigurations in a distributed system. For
instance, consider a distributed system consisting of a finite (but unknown) number of
components (processes) placed in a ring, executing the same finite-state program and
communicating via interactions that connect the out port of a component to the in port
of its right neighbour, in a round-robin fashion, as in Fig. 1(a). The behavior of a com-
ponent is a machine with two states, T and H, denoting whether the component has a
token (T) or not (H). A component ci without a token may receive one, by executing a

transition H
in−→ T, simultaneously with its left neighbour c j, that executes the transition

T
out−→ H. Then, we say that the interaction (c j,out,ci, in) has fired, moving a token one

position to the right in the ring. Note that there can be more than one token, moving
independently in the system, as long as no token overtakes another token.

The token ring system is formally specified by the following inductive rules:

ringh,t(x) ← ∃y∃z . [x]@q∗ 〈x.out, z.in〉 ∗ chainh′,t ′(z,y)∗ 〈y.out, x.in〉
chainh,t(x, y) ← ∃z. [x]@q∗ 〈x.out, z.in〉 ∗ chainh′,t ′(z,y)
chain0,1(x, x) ← [x]@T chain1,0(x, x) ← [x]@H chain0,0(x, x) ← [x]

where h′ def=
{

max(h−1,0) , if q= H
h , if q= T

and t ′ def=
{

max(t−1,0) , if q= T
t , if q= H

The predicate ringh,t(x) describes a ring with at least two components, such that at least
h (resp. t) components are in state H (resp. T). The ring consists of a component x in
state q, described by the formula [x]@q, an interaction from the out port of x to the
in port of another component z, described as 〈x.out, z.in〉, a separate chain of compo-
nents stretching from z to y (chainh′,t ′(z,y)), and an interaction connecting the out port
of component y to the in port of component x (〈y.out, x.in〉). Inductively, a chain con-
sists of a component [x]@q, an interaction 〈x.out, z.in〉 and a separate chainh′,t ′(z,y).
Figure 1(b) depicts the unfolding of the inductive definition of the token ring, with the
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Fig. 1. Inductive Specification and Reconfiguration of a Token Ring

existentially quantified variables z from the above rules α-renamed to z1,z2, . . . to avoid
confusion.

A reconfiguration program takes as input a mapping of program variables to com-
ponents and executes a sequence of basic operations i.e., component/interaction cre-
ation/deletion, involving the components and interactions denoted by these variables.
For instance, the reconfiguration program in Fig. 1(c) takes as input three adjacent com-
ponents, mapped to the variables x, y and z, respectively, removes the component y
together with its left and right interactions and reconnects x directly with z. Program-
ming reconfigurations is error-prone, because the interleaving between reconfiguration
actions and interactions in a distributed system may lead to bugs that are hard to trace.
For instance, if a reconfiguration program removes the last component in state T (resp.
H) from the system, no token transfer interaction may fire and the system deadlocks.

We prove absence of such errors using a Hoare-style proof system [1], based on
the logic introduced above as assertion language. For instance, the proof from Fig.
1(c) shows that the reconfiguration sequence applied to a component y in state H (i.e.,
[y]@H) in a ring with at least h≥ 2 components in state H and at least t ≥ 1 components
in state T leads to a ring with at least h− 1 components in state H and at least t in
state T; note that the states of the components may change during the execution of the
reconfiguration program, as tokens are moved by interactions.

The proof in Fig. 1(c) uses local axioms specifying, for each basic operation,
only those components and interactions required to avoid faulting, with a frame rule
{φ} P {ψ} ⇒ {φ∗

�

�

�

�

F } P {ψ∗F}; for readability, the frame formulæ (from the pre-
conditions of the conclusion of the frame rule applications) are enclosed in boxes.

The proof also uses the consequence rule {φ} P {ψ} ⇒ {φ′} P {ψ′} that applies if
φ′ is stronger than φ and ψ′ is weaker than ψ. The side conditions of the consequence
rule require checking the validity of the entailments ringh,t(y) |= ∃x∃z . 〈x.out, y.in〉 ∗
[y]@H∗ 〈y.out, z.in〉 ∗ chainh−1,t(z,x) and chainh−1,t(z, x)∗ 〈x.out, z.in〉 |= ringh−1,t(z),
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for all h≥ 2 and t ≥ 1. These side conditions can be automatically discharged using the
results on the decidability of entailments given in this paper. Additionally, checking the
satisfiability of a precondition is used to detect trivially valid Hoare triples.

1.2 Related Work

Formal modeling coordinating architectures of component-based systems has received
lots of attention, with the development of architecture description languages (ADL),
such as BIP [3] or REO [2]. Many such ADLs have extensions that describe pro-
grammed reconfiguration, e.g., [19,30], classified according to the underlying formal-
ism used to define their operational semantics: process algebras [13,33], graph rewrit-
ing [32,41,44], chemical reactions [43] (see the surveys [7,11]). Unfortunately, only
few ADLs support formal verification, mainly in the flavour of runtime verification
[10,17,20,31] or finite-state model checking [14].

Parameterized verification of unbounded networks of distributed processes uses
mostly hard-coded coordinating architectures (see [4] for a survey). A first attempt at
specifying architectures by logic is the interaction logic of Konnov et al. [29], a combi-
nation of Presburger arithmetic with monadic uninterpreted function symbols, that can
describe cliques, stars and rings. More structured architectures (pipelines and trees) can
be described using a second-order extension [34]. However, these interaction logics are
undecidable and lack support for automated reasoning.

Specifying parameterized component-based systems by inductive definitions is not
new. Network grammars [26,32,40] use context-free grammar rules to describe sys-
tems with linear (pipeline, token-ring) architectures obtained by composition of an
unbounded number of processes. In contrast, we use predicates of unrestricted arities
to describe architectural styles that are, in general, more complex than trees. Moreover,
we write inductive definitions using a resource logic, suitable also for writing Hoare
logic proofs of reconfiguration programs, based on local reasoning [12].

Local reasoning about concurrent programs has been traditionally the focus of Con-
current Separation Logic (CSL), based on a parallel composition rule [36], initially
with a non-interfering (race-free) semantics [8] and later combining ideas of assume-
and rely-guarantee [28,38] with local reasoning [22,42] and abstract notions of fram-
ing [15,16,21]. However, the body of work on CSL deals almost entirely with shared-
memory multithreading programs, instead of distributed systems, which is the aim of
our work. In contrast, we develop a resource logic in which the processes do not just
share and own resources, but become mutable resources themselves.

The techniques developed in this paper are inspired by existing techniques for sim-
ilar problems in the context of Separation Logic (SL) [39]. For instance, we use an
abstract domain similar to the one defined by Brotherston et al. [9] for checking satis-
fiability of symbolic heaps in SL and reduce a fragment of the entailment problem in
our logic to SL entailment [18]. In particular, the use of existing automated reasoning
techniques for SL has pointed out several differences between the expressiveness of our
logic and that of SL. First, the configuration logic describes hypergraph structures, in
which edges are �-tuples for � ≥ 2, instead of directed graphs as in SL, where � is a
parameter of the problem: considering � to be a constant strictly decreases the com-
plexity of the problem. Second, the degree (number of hyperedges containing a given
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vertex) is unbounded, unlike in SL, where the degree of heaps is constant. Therefore,
we dedicate an entire section (Sect. 4) to the problem of deciding the existence of a
bound (and computing a cut-off) on the degree of the models of a formula, used as a
prerequisite for the encoding of the entailment problems from the configuration logic
as SL entailments.

2 Definitions

We denote by N the set of positive integers including zero. For a set A, we define A1 def= A,

Ai+1 def= Ai ×A, for all i ≥ 1, and A+ =
⋃

i≥1A
i, where × denotes the Cartesian product.

We denote by pow(A) the powerset of A and by mpow(A) the power-multiset (set of
multisets) of A. The cardinality of a finite set A is denoted as ||A||. By writing A ⊆fin B
we mean that A is a finite subset of B. Given integers i and j, we write [i, j] for the
set {i, i+1, . . . , j}, assumed to be empty if i > j. For a tuple t = 〈t1, . . . , tn〉, we define

|t| def= n, 〈t〉i def= ti and 〈t〉[i, j] def= 〈ti, . . . , t j〉. By writing x= poly(y), for given x,y ∈ N, we
mean that there exists a polynomial function f : N → N, such that x ≤ f (y).

2.1 Configurations

We model distributed systems as hypergraphs, whose vertices are components (i.e., the
nodes of the network) and hyperedges are interactions (i.e., describing the way the
components communicate with each other). The components are taken from a countably
infinite set C, called the universe. We consider that each component executes its own
copy of the same behavior, represented as a finite-state machine B= (P ,Q ,−→), where
P is a finite set of ports, Q is a finite set of states and −→⊆ Q ×P ×Q is a transition
relation. Intuitively, each transition q

p−→ q′ of the behavior is triggerred by a visible
event, represented by the port p. For instance, the behavior of the components of the

token ring system from Fig. 1(a) is B = ({in,out},{H,T},{H in−→ T,T
out−→ H}). The

universe C and the behavior B= (P ,Q ,−→) are fixed in the rest of this paper.
We introduce a logic for describing infinite sets of configurations of distributed

systems with unboundedly many components and interactions. A configuration is a
snapshot of the system, describing the topology of the network (i.e., the set of present
components and interactions) together with the local state of each component:

Definition 1. A configuration is a tuple γ = (C ,I ,ρ), where:

– C ⊆fin C is a finite set of components, that are present in the configuration,
– I ⊆fin (C×P )+ is a finite set of interactions, where each interaction is a sequence

(c1, p1, . . . ,cn, pn)∈ (C×P )n that binds together the ports p1, . . . , pn of the pairwise
distinct components c1, . . . ,cn, respectively.

– ρ : C → Q is a state map associating each (possibly absent) component, a state of
the behavior B, such that the set {c ∈ C | ρ(c) = q} is infinite, for each q ∈ Q .

The last condition requires that there is an infinite pool of components in each state
q∈Q ; since C is infinite and Q is finite, this condition is feasible. For example, the con-
figurations of the token ring from Fig. 1(a) are ({c1, . . . ,cn},{(ci,out,c(i mod n)+1, in) |
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i ∈ [1,n]},ρ), where ρ : C → {H,T} is a state map. The ring topology is described by
the set of components {c1, . . . ,cn} and interactions {(ci,out,c(i mod n)+1, in) | i ∈ [1,n]}.

Intuitively, an interaction (c1, p1, . . . ,cn, pn) synchronizes transitions labeled by the
ports p1, . . . , pn from the behaviors (i.e., replicas of the state machine B) of c1, . . . ,cn,
respectively. Note that the components ci are not necessary part of the configuration.
The interactions are classified according to their sequence of ports, called the interac-

tion type and let Inter
def= P+ be the set of interaction types; an interaction type models,

for instance, the passing of a certain kind of message (e.g., request, acknowledgement,
etc.). From an operational point of view, two interactions that differ by a permutation
of indices e.g., (c1, p1, . . . ,cn, pn) and (ci1 , pi1 , . . . ,cin , pin) such that {i1, . . . , in}= [1,n],
are equivalent, since the set of transitions is the same; nevertheless, we chose to distin-
guish them in the following, exclusively for reasons of simplicity.

Below we define the composition of configurations, as the union of disjoint sets of
components and interactions:

Definition 2. The composition of two configurations γi = (Ci,Ii,ρ), for i = 1,2, such

that C1 ∩C2 = /0 and I1 ∩ I2 = /0, is defined as γ1 • γ2
def= (C1 ∪C2,I1 ∪ I2,ρ). The com-

position γ1 • γ2 is undefined if C1 ∩C2 �= /0 or I1 ∩ I2 �= /0.

In analogy with graphs, the degree of a configuration is the maximum number of inter-
actions from the configuration that involve a (possibly absent) component:

Definition 3. The degree of a configuration γ = (C ,I ,ρ) is defined as δ(γ) def=
maxc∈C δc(γ), where δc(γ)

def= ||{(c1, p1, . . . ,cn, pn) ∈ I | c= ci, i ∈ [1,n]}||.
For instance, the configuration of the system from Fig. 1(a) has degree two.

2.2 Configuration Logic

Let V and A be countably infinite sets of variables and predicates, respectively. For
each predicate A ∈ A, we denote its arity by #A. The formulæ of the Configuration
Logic (CL) are described inductively by the following syntax:

φ := emp | [x] | 〈x1.p1, . . . ,xn.pn〉 | x@q | x= y | x �= y | A(x1, . . . ,x#A) | φ∗φ | ∃x . φ

where x,y,x1, . . . ∈ V, q ∈ Q and A ∈ A. A formula [x], 〈x1.p1, . . . ,xn.pn〉, x@q and
A(x1, . . . ,x#A) is called a component, interaction, state and predicate atom, respectively.
These formulæ are also referred to as atoms. The connective ∗ is called the separating

conjunction. We use the shorthand [x]@q
def= [x] ∗ x@q. For instance, the formula [x]@q ∗

[y]@q′ ∗ 〈x.out, y.in〉 ∗ 〈x.in, y.out〉 describes a configuration consisting of two distinct
components, denoted by the values of x and y, in states q and q′, respectively, and two
interactions binding the out port of one to the in port of the other component.

A formula is said to be pure if and only if it is a separating conjunction of state
atoms, equalities and disequalities. A formula with no occurrences of predicate atoms
(resp. existential quantifiers) is called predicate-free (resp. quantifier-free). A variable
is free if it does not occur within the scope of an existential quantifier ; we note fv(φ) the
set of free variables of φ. A sentence is a formula with no free variables. A substitution
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φ[x1/y1 . . .xn/yn] replaces simultaneously every free occurrence of xi by yi in φ, for all
i∈ [1,n]. Before defining the semantics of CL formulæ, we introduce the set of inductive
definitions that assigns meaning to predicates:

Definition 4. A set of inductive definitions (SID) Δ consists of rules A(x1, . . . ,x#A) ←
φ, where x1, . . . ,x#A are pairwise distinct variables, called parameters, such that fv(φ)⊆
{x1, . . . ,x#A}. The rule A(x1, . . . ,x#A) ← φ defines A and we denote by defΔ(A) the set
of rules from Δ that define A.

Note that having distinct parameters in a rule is without loss of generality, as e.g., a rule
A(x1,x1) ← φ can be equivalently written as A(x1,x2) ← x1 = x2 ∗ φ. As a convention,
we shall always use the names x1, . . . ,x#A for the parameters of a rule that defines A.

The semantics of CL formulæ is defined by a satisfaction relation γ |=ν
Δ φ between

configurations and formulæ. This relation is parameterized by a store ν : V → C map-
ping the free variables of a formula into components from the universe (possibly absent
from γ) and an SID Δ. We write ν[x← c] for the store that maps x into c and agrees with
ν on all variables other than x. The definition of the satisfaction relation is by induction
on the structure of formulæ, where γ = (C ,I ,ρ) is a configuration (Definition 1):

γ |=ν
Δ emp ⇐⇒ C = /0 and I = /0

γ |=ν
Δ [x] ⇐⇒ C = {ν(x)} and I = /0

γ |=ν
Δ 〈x1.p1, . . . ,xn.pn〉 ⇐⇒ C = /0 and I = {(ν(x1), p1, . . . ,ν(xn), pn)}

γ |=ν
Δ x@q ⇐⇒ γ |=ν

Δ emp and ρ(ν(x)) = q
γ |=ν

Δ x ∼ y ⇐⇒ γ |=ν
Δ emp and ν(x) ∼ ν(y), for all ∼∈ {=, �=}

γ |=ν
Δ A(y1, . . . ,y#A) ⇐⇒ γ |=ν

Δ φ[x1/y1, . . . ,x#A/y#A], for some rule
A(x1, . . . ,x#A) ← φ from Δ

γ |=ν
Δ φ1 ∗φ2 ⇐⇒ exist γ1,γ2, such that γ = γ1 • γ2 and γi |=ν

Δ φi, for i= 1,2

γ |=ν
Δ ∃x . φ ⇐⇒ γ |=ν[x←c]

Δ φ, for some c ∈ C

If φ is a sentence, the satisfaction relation γ |=ν
Δ φ does not depend on the store, written

γ |=Δ φ, in which case we say that γ is a model of φ. If φ is a predicate-free formula, the
satisfaction relation does not depend on the SID, written γ |=ν φ. A formula φ is satisfi-
able if and only if the sentence ∃x1 . . .∃xn . φ has a model, where fv(φ) = {x1, . . . ,xn}.
A formula φ entails a formula ψ, written φ |=Δ ψ if and only if, for any configuration γ
and store ν, we have γ |=ν

Δ φ only if γ |=ν
Δ ψ.

2.3 Separation Logic

Separation Logic (SL) [39] will be used in the following to prove several technical
results concerning the decidability and complexity of certain decision problems for
CL. For self-containment reasons, we define SL below. The syntax of SL formulæ is
described by the following grammar:

φ := emp | x0 �→ (x1, . . . ,xK) | x= y | x �= y | A(x1, . . . ,x#A) | φ∗φ | ∃x . φ

where x,y,x0,x1, . . . ∈ V, A ∈ A and K ≥ 1 is an integer constant. Formulæ of SL are
interpreted over finite partial functions h : C ⇀fin C

K, called heaps1, by a satisfaction
relation h �ν φ, defined inductively as follows:

1 We use the universe C here for simplicity, the definition works with any countably infinite set.
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h �ν
Δ emp ⇐⇒ h= /0

h �ν
Δ x0 �→ (x1, . . . ,xK) ⇐⇒ dom(h) = {ν(x0)} and h(ν(x0)) = 〈ν(x1), . . . ,ν(xK)〉

h �ν φ1 ∗φ2 ⇐⇒ there exist h1,h2 such that dom(h1)∩dom(h2) = /0,
h= h1 ∪h2 and hi �ν

Δ φi, for both i= 1,2

where dom(h) def= {c ∈ C | h(c) is defined} is the domain of the heap and (dis-) equali-
ties, predicate atoms and existential quantifiers are defined same as for CL.

2.4 Decision Problems

We define the decision problems that are the focus of the upcoming sections. As usual,
a decision problem is a class of yes/no queries that differ only in their input. In our case,
the input consists of an SID and one or two predicates, written between square brackets.

Definition 5. We consider the following problems, for a SID Δ and predicates A,B∈A:

1. Sat[Δ,A]: is the sentence ∃x1 . . .∃x#A . A(x1, . . . ,x#A) satisfiable for Δ?
2. Bnd[Δ,A]: is the set {δ(γ) | γ |=Δ ∃x1 . . .∃x#A . A(x1, . . . ,x#A)} finite?
3. Entl[Δ,A,B]: does A(x1, . . . ,x#A) |=Δ ∃x#B+1 . . .∃x#A . B(x1, . . . ,x#B) hold?

The size of a formula φ is the total number of occurrences of symbols needed to write it

down, denoted by size(φ). The size of a SID Δ is size(Δ) def= ∑A(x1,...,x#A)←φ∈Δ size(φ)+
#A+1. Other parameters of a SID Δ are:

– arity(Δ) def= max{#A | A(x1, . . . ,x#A) ← φ ∈ Δ},
– width(Δ) def= max{size(φ) | A(x1, . . . ,x#A) ← φ ∈ Δ},
– intersize(Δ) def= max{n | 〈x1.p1, . . . ,xn.pn〉 occurs in φ,A(x1, . . . ,x#A) ← φ ∈ Δ}.

For a decision problem P[Δ,A,B], we consider its (k, �)-bounded versions
P(k,�)[Δ,A,B], obtained by restricting the predicates and interaction atoms occurring
Δ to arity(Δ) ≤ k and intersize(Δ) ≤ �, respectively, where k and � are either positive
integers or infinity. We consider, for each P[Δ,A,B], the subproblems P(k,�)[Δ,A,B] cor-
responding to the three cases (1) k < ∞ and � = ∞, (2) k = ∞ and � < ∞, and (3) k = ∞
and � = ∞. As we explain next, this is because, for the decision problems considered
(Definition 5), the complexity for the case k < ∞, � < ∞ matches the one for the case
k < ∞, � = ∞.

Satisfiability (1) and entailment (3) arise naturally during verification of reconfigu-
ration programs. For instance, Sat[Δ,φ] asks whether a specification φ of a set configu-
rations (e.g., a pre-, post-condition, or a loop invariant) is empty or not (e.g., an empty
precondition typically denotes a vacuous verification condition), whereas Entl[Δ,φ,ψ]
is used as a side condition for the Hoare rule of consequence, as in e.g., the proof
from Fig. 1(c). Moreover, entailments must be proved when checking inductiveness of
a user-provided loop invariant.

The Bnd[Δ,φ] problem is used to check a necessary condition for the decidability
of entailments i.e., Entl[Δ,φ,ψ]. If Bnd[Δ,φ] has a positive answer, we can reduce the
problem Entl[Δ,φ,ψ] to an entailment problem for SL, which is always interpreted over
heaps of bounded degree [18]. Otherwise, the decidability status of the entailment prob-
lem is open, for configurations of unbounded degree, such as the one described by the
example below.
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Example 1. The following SID describes star topologies with a central controller con-
nected to an unbounded number of workers stations:

Controller(x) ←[x]∗Worker(x)
Worker(x) ←∃y . 〈x.out, y.in〉 ∗ [y]∗Worker(x) Worker(x) ← emp �

3 Satisfiability

We show that the satisfiability problem (Definition 5, point 1) is decidable, using a
method similar to the one pioneered by Brotherston et al. [9], for checking satisfiability
of inductively defined symbolic heaps in SL. We recall that a formula π is pure if and
only if it is a separating conjunction of equalities, disequalities and state atoms. In the
following, the order of terms in (dis-)equalities is not important i.e., we consider x = y
(resp. x �= y) and y= x (resp. y �= x) to be the same formula.

Definition 6. The closure cl(π) of a pure formula π is the limit of the sequence
π0,π1,π2, . . . such that π0 = π and, for each i ≥ 0, πi+1 is obtained by joining (with
∗) all of the following formulæ to πi:

– x= z, where x and z are the same variable, or x= y and y= z both occur in πi,
– x �= z, where x= y and y �= z both occur in πi, or
– y@q, where x@q and x= y both occur in πi.

Because only finitely many such formulæ can be added, the sequence of pure formulæ
from Definition 6 is bound to stabilize after polynomially many steps. A pure formula
is satisfiable if and only if its closure does not contain contradictory literals i.e., x = y
and x �= y, or x@q and x@q′, for q �= q′ ∈ Q . We write x ≈π y (resp. x �≈πy) if and only
if x= y (resp. x �= y) occurs in cl(π) and not(x≈π y) (resp. not(x �≈πy)) whenever x≈π y
(resp. x �≈πy) does not hold. Note that e.g., not(x ≈π y) is not the same as x �≈πy.

Base tuples constitute the abstract domain used by the algorithms for checking sat-
isfiability (point 1 of Definition 5) and boundedness (point 2 of Definition 5), defined
as follows:

Definition 7. A base tuple is a triple t= (C �,I �,π), where:

– C � ∈ mpowV is a multiset of variables denoting present components,
– I � : Inter → mpowV+ maps each interaction type τ ∈ Inter into a multiset of tuples

of variables of length |τ| each, and
– π is a pure formula.

A base tuple is called satisfiable if and only if π is satisfiable and the following hold:

1. for all x,y ∈ C �, not(x ≈π y),
2. for all τ ∈ Inter, 〈x1, . . . ,x|τ|〉,〈y1, . . . ,y|τ|〉 ∈ I �(τ), there exists i ∈ [1, |τ|] such that

not(xi ≈π yi),
3. for all τ ∈ Inter, 〈x1, . . . ,x#τ〉 ∈ I �(τ) and 1 ≤ i < j ≤ |τ|, we have not(xi ≈π x j).

We denote by SatBase the set of satisfiable base tuples.
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Intuitively, a base tuple is an abstract representation of a configuration, where compo-
nents (resp. interactions) are represented by variables (resp. tuples of variables). Note
that a base tuple (C �,I �,π) is unsatisfiable if C � (I �) contains the same variable (tuple
of variables) twice (for the same interaction type), hence the use of multisets in the
definition of base tuples. It is easy to see that checking the satisfiability of a given base
tuple (C �,I �,π) can be done in time poly(||C �||+∑τ∈Inter ||I �(τ)||+ size(π)).

We define a partial composition operation on satisfiable base tuples, as follows:

(C �
1 ,I

�
1 ,π1)⊗ (C �

2 ,I
�
2 ,π2)

def= (C �
1 ∪C �

2 ,I
�
1 ∪ I �

2 ,π1 ∗π2)

where the union of multisets is lifted to functions Inter → mpow(V+) in the usual way.
The composition operation ⊗ is undefined if (C �

1 ,I
�
1 ,π1)⊗ (C �

2 ,I
�
2 ,π2) is not satisfiable

e.g., if C �
1 ∩C �

2 �= /0, I �
1(τ)∩ I �

2(τ) �= /0, for some τ ∈ Inter, or π1 ∗π2 is not satisfiable.
Given a pure formula π and a set of variables X , the projection π↓X removes from π

all atoms α, such that fv(α) �⊆ X . The projection of a base tuple (C �,I �,π) on a variable
set X is formally defined below:

(C �,I �,π)↓X
def=

(
C � ∩X ,λτ . {〈x1, . . . ,x|τ|〉 ∈ I �(τ) | x1, . . . ,x|τ| ∈ X},cl(dist(I �)∗π)↓X

)
where dist(I �) def= ∗ τ∈Inter∗ 〈x1,...,x|τ|〉∈I �(τ)∗ 1≤i< j≤|τ| xi �= x j

The substitution operation (C �,I �,π)[x1/y1, . . . ,xn/yn] replaces simultaneously
each xi with yi in C �, I � and π, respectively. We lift the composition, projection and
substitution operations to sets of satisfiable base tuples, as usual.

Next, we define the base tuple corresponding to a quantifier- and predicate-free
formula φ = ψ ∗ π, where ψ consists of component and interaction atoms and π is pure.
Since, moreover, we are interested in those components and interactions that are visible
through a given indexed set of parameters X = {x1, . . . ,xn}, for a variable y, we denote
by {{y}}X

π the parameter xi with the least index, such that y ≈π xi, or y itself, if no such
parameter exists. We define the following sets of formulæ:

Base(φ,X) def=
{{(C �,I �,π)} , if (C �,I �,π) is satisfiable

/0 , otherwise

where C � def= {{{x}}X
π | [x] occurs in ψ}

I � def= λ〈p1, . . . , ps〉.
{〈{{y1}}X

π, . . . ,{{ys}}X
π
〉 | 〈y1.p1, . . . ,ys.ps〉 occurs in ψ

}

We consider a tuple of variables
−→
X , having a variable X (A) ranging over

pow(SatBase), for each predicate A that occurs in Δ. With these definitions, each rule
of Δ:

A(x1, . . . ,x#A) ← ∃y1 . . .∃ym . φ∗B1(z1
1, . . . ,z

1
#B1

)∗ . . .∗Bh(zh1, . . . ,z
h
#Bh

)

where φ is a quantifier- and predicate-free formula, induces the constraint:

X (A) ⊇ (
Base(φ,{x1, . . . ,x#A})⊗

h⊗

�=1

X (B�)[x1/z
�
1, . . . ,x#B�

/z�#B�
]
)↓x1 ,...,x#A

(1)



Decision Problems in a Logic for Reasoning 701

input output

1: initially
2: for , with quantifier- and predicate-free do

3: Base

4: while still change do
5: for do

6: if there exist then

7: Base

Fig. 2. Algorithm for the Computation of the Least Solution

Let Δ� be the set of such constraints, corresponding to the rules in Δ and let µ
−→
X .Δ�

be the tuple of least solutions of the constraint system generated from Δ, indexed by
the tuple of predicates that occur in Δ, such that µ

−→
X .Δ�(A) denotes the entry of µ

−→
X .Δ�

correponding to A. Since the composition and projection are monotonic operations,
such a least solution exists and is unique. Since SatBase is finite, the least solution can
be attained in a finite number of steps, using a Kleene iteration (see Fig. 2).

We state below the main result leading to an elementary recursive algorithm for the
satisfiability problem (Theorem 1). The intuition is that, if µ

−→
X .Δ�(A) is not empty, then

it contains only satisfiable base tuples, from which a model of A(x1, . . . ,x#A) can be
built.

Lemma 1. Sat[Δ,A] has a positive answer if and only if µ
−→
X .Δ�(A) �= /0.

If the maximal arity of the predicates occurring in Δ is bound by a constant k, no
satisfiable base tuple (C �,I �,π) can have a tuple 〈y1, . . . ,y|τ|〉 ∈ I �(τ), for some τ ∈
Inter, such that |τ| > k, since all variables y1, . . . ,y|τ| are parameters denoting distinct
components (point 3 of Definition 7). Hence, the upper bound on the size of a satisfiable
base tuple is constant, in both the k < ∞, � < ∞ and k < ∞, � = ∞ cases, which are,
moreover indistinguishable complexity-wise (i.e., both are NP-complete). In contrast,
in the cases k = ∞, � < ∞ and k = ∞, � = ∞, the upper bound on the size of satisfiable
base tuples is polynomial and simply exponential in size(Δ), incurring a complexity gap
of one and two exponentials, respectively. The theorem below states the main result of
this section:

Theorem 1. Sat(k,∞)[Δ,A] is NP-complete for k ≥ 4, Sat(∞,�)[Δ,A] is EXP-complete
and Sat[Δ,A] is in 2EXP.

The upper bounds are consequences of the fact that the size of a satisfiable base tuple is
bounded by a simple exponential in the min(arity(Δ), intersize(Δ)), hence the number
of such tuples is doubly exponential in min(arity(Δ), intersize(Δ)). The lower bounds
are by a polynomial reduction from the satisfiability problem for SL [9].

Example 2. The doubly-exponential upper bound for the algorithm computing the least
solution of a system of constraints of the form (1) is necessary, in general, as illustrated
by the following worst-case example. Let n be a fixed parameter and consider the n-arity
predicates A1, . . . ,An defined by the following SID:
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Ai(x1, . . . ,xn) ← ∗ n−i
j=0 Ai+1(x1, . . . ,xi−1, [xi, . . . ,xn] j), for all i ∈ [1,n−1]

An(x1, . . . ,xn) ← 〈x1.p, . . . ,xn.p〉 An(x1, . . . ,xn) ← emp

where, for a list of variables xi, . . . ,xn and an integer j ≥ 0, we write [xi, . . . ,xn] j for
the list rotated to the left j times (e.g., [x1,x2,x3,x4,x5]2 = x3,x4,x5,x1,x2). In this
example, when starting with A1(x1, . . . ,xn) one eventually obtains predicate atoms
An(xi1 , . . . ,xin), for any permutation xi1 , . . . ,xin of x1, . . . ,xn. Since An may choose to
create or not an interaction with that permutation of variables, the total number of base

tuples generated for A1 is 2n!. That is, the fixpoint iteration generates 22O(n logn)
base

tuples, whereas the size of the input of Sat[Δ,A] is poly(n). �

4 Degree Boundedness

The boundedness problem (Definition 5, point 2) asks for the existence of a bound on
the degree (Definition 3) of the models of a sentence ∃x1 . . .∃x#A . A(x1, . . . ,x#A). Intu-
itively, the Bnd[Δ,A] problem has a negative answer if and only if there are increasingly
large unfoldings (i.e., expansions of a formula by replacement of a predicate atom with
one of its definitions) of A(x1, . . . ,x#A) repeating a rule that contains an interaction atom
involving a parameter of the rule, which is always bound to the same component. We
formalize the notion of unfolding below:

Definition 8. Given a predicate A and a sequence (r1, i1), . . . ,(rn, in) ∈ (Δ×N)+,

where r1 : A(x1, . . . ,x#A) ← φ ∈ Δ, the unfolding A(x1, . . . ,x#A)
(r1,i1)...(rn,in)========⇒Δ ψ is

inductively defined as (1) ψ = φ if n = 1, and (2) ψ is obtained from φ by
replacing its i1-th predicate atom B(y1, . . . ,y#B) with ψ1[x1/y1, . . . ,x#B/y#B], where

B(x1, . . . ,x#B)
(r2,i2)...(rn,in)========⇒Δ ψ1 is an unfolding, if n > 1.

We show that the Bnd[Δ,A] problem can be reduced to the existence of increasingly
large unfoldings or, equivalently, a cycle in a finite directed graph, built by a variant of
the least fixpoint iteration algorithm used to solve the satisfiability problem (Fig. 3).

Definition 9. Given satisfiable base pairs t,u ∈ SatBase and a rule from Δ:

r : A(x1, . . . ,x#A) ← ∃y1 . . .∃ym . φ∗B1(z1
1, . . . ,z

1
#B1

)∗ . . .∗Bh(zh1, . . . ,z
h
#Bh

)

where φ is a quantifier- and predicate-free formula, we write (A, t)
(r, i)

∼∼∼∼�(B,u) if and
only if B=Bi and there exist satisfiable base tuples t1, . . . ,u= ti, . . . , th ∈ SatBase, such
that t ∈ (

Base(φ,{x1, . . . ,x#A})⊗⊗h
�=1 t�[x1/z�1, . . . ,x#B�

/z�#B�
]
)↓x1 ,...,x#A

. We define the
directed graph with edges labeled by pairs (r, i) ∈ Δ×N:

G(Δ) def=
({def(Δ)×SatBase},{〈(A, t),(r, i),(B,u)〉 | (A, t)

(r, i)
∼∼∼∼�(B,u)})

The graph G(Δ) is built by the algorithm in Fig. 3, a slight variation of the classical
Kleene iteration algorithm for the computation of the least solution of the constraints of
the form (1). A path (A1, t1)

(r1 , i1 )∼∼∼∼�(A2, t2)
(r2 , i2 )∼∼∼∼� . . .

(rn , in )∼∼∼∼�(An, tn) in G(Δ) induces a unique
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input output

1: initially
2: for , with quantifier- and predicate-free do
3: Base

4: while V or E still change do
5: for do

6: if there exist then

7: Base

8:
9:

Fig. 3. Algorithm for the Construction of G(Δ)

unfolding A1(x1, . . . ,x#A1)
(r1,i1)...(rn,in)========⇒Δ φ (Definition 8). Since the vertices of G(Δ)

are pairs (A, t), where t is a satisfiable base tuple and the edges of G(Δ) reflect the
construction of the base tuples from the least solution of the constraints (1), the outcome
φ of this unfolding is always a satisfiable formula.

An elementary cycle of G(Δ) is a path from some vertex (B,u) back to itself, such
that (B,u) does not occur on the path, except at its endpoints. The cycle is, moreover,
reachable from (A, t) if and only if there exists a path (A, t)

(r1 , i1 )∼∼∼∼� . . .
(rn , in )∼∼∼∼�(B,u) in G(Δ).

We reduce the complement of the Bnd[Δ,A] problem, namely the existence of an infinite
set of models of ∃x1 . . .∃x#A . A(x1, . . . ,x#A) of unbounded degree, to the existence of a
reachable elementary cycle in G(Δ′), where Δ′ is obtained from Δ, as described in the
following.

First, we consider, for each predicate B ∈ def(Δ), a predicate B′, of arity #B+ 1,
not in def(Δ) i.e., the set of predicates for which there exists a rule in Δ. Second, for
each rule B0(x1, . . . ,x#B0) ← ∃y1 . . .∃ym . φ ∗∗ h

�=2B�(z�1, . . . ,z
�
#B�

) ∈ Δ, where φ is a
quantifier- and predicate-free formula and iv(φ) ⊆ fv(φ) denotes the subset of variables
occurring in interaction atoms in φ, the SID Δ′ has the following rules:

B′
0(x1, . . . ,x#B0 ,x#B0+1) ← ∃y1 . . .∃ym . φ∗∗ ξ∈iv(φ)x#B0+1 �= ξ∗

∗ h
�=2B

′
�(z

�
1, . . . ,z

�
#B�

,x#B0+1) (2)

B′
0(x1, . . . ,x#B0 ,x#B0+1) ← ∃y1 . . .∃ym . φ∗ x#B0+1 = ξ∗

∗ h
�=2B

′
�(z

�
1, . . . ,z

�
#B�

,x#B0+1) (3)

for each variable ξ ∈ iv(φ), that occurs in an interaction atom in φ.

There exists a family of models (with respect to Δ) of ∃x1 . . .∃x#A . A(x1, . . . ,x#A) of
unbounded degree if and only if these are models of ∃x1 . . .∃x#A+1 . A′(x1, . . . ,x#A+1)
(with respect to Δ′) and the last parameter of each predicate B′ ∈ def(Δ′) can be mapped,
in each of the these models, to a component that occurs in unboundedly many interac-
tions. The latter condition is equivalent to the existence of an elementary cycle, con-
taining a rule of the form (3), that it, moreover, reachable from some vertex (A′, t) of
G(Δ′), for some t ∈ SatBase. This reduction is formalized below:
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Lemma 2. There exists an infinite sequence of configurations γ1,γ2, . . . such that γi |=Δ
∃x1 . . .∃x#A . A(x1, . . . ,x#A) and δ(γi)< δ(γi+1), for all i≥ 1 if and only if G(Δ′) has an
elementary cycle containing a rule (3), reachable from a node (A′, t), for t ∈ SatBase.

The complexity result below uses a similar argument on the maximal size of (hence
the number of) base tuples as in Theorem 1, leading to similar complexity gaps:

Theorem 2. Bnd(k,∞)[Δ,A] is in co-NP,Bnd(∞,�)[Δ,A] is in EXP,Bnd[Δ,A] is in 2EXP.

Moreover, the construction of G(Δ′) allows to prove the following cut-off result:

Proposition 1. Let γ be a configuration and ν be a store, such that γ |=ν
Δ A(x1, . . . ,x#A).

If Bnd(k,�)[Δ,A] then (1) δ(γ) = poly(size(Δ)) if k < ∞, � = ∞, (2) δ(γ) = 2poly(size(Δ)) if

k = ∞, � < ∞ and (3) δ(γ) = 22poly(size(Δ))
if k = ∞, � = ∞.

5 Entailment

This section is concerned with the entailment problem Entl[Δ,A,B], that asks whether
γ |=ν

Δ ∃x#A+1 . . .∃x#B . B(x1, . . . ,x#B), for every configuration γ and store ν, such that
γ |=ν

Δ A(x1, . . . ,x#A). For instance, the proof from Fig. 1(c) relies on the following entail-
ments, that occur as the side conditions of the Hoare logic rule of consequence:

ringh,t(y) |=Δ ∃x∃z.[y]@H∗ 〈y.out, z.in〉 ∗ chainh−1,t(z,x)∗ 〈x.out, y.in〉
[z]@H∗ 〈z.out, x.in〉 ∗ chainh−1,t(x,y)∗ 〈y.out, z.in〉 |=Δ ringh,t(z)

By introducing two fresh predicates A1 and A2, defined by the rules:

A1(x1) ← ∃y∃z.[x1]@H∗〈x1.out, z.in〉 ∗ chainh−1,t(z,y)∗〈y.out, x1.in〉 (4)

A2(x1,x2) ← ∃z.[x1]@H∗ 〈x1.out, z.in〉 ∗ chainh−1,t(z,x2)∗ 〈x2.out, x1.in〉 (5)

the above entailments are equivalent to Entl[Δ, ringh,t ,A1] and Entl[Δ,A2, ringh,t ],
respectively, where Δ consists of the rules (4) and (5), together with the rules that define
the ringh,t and chainh,t predicates (Sect. 1.1).

We show that the entailment problem is undecidable, in general (Thm. 3), and
recover a decidable fragment, by means of three syntactic conditions, typically met
in our examples. These conditions use the following notion of profile:

Definition 10. The profile of a SID Δ is the pointwise greatest function λΔ : A →
pow(N), mapping each predicate A into a subset of [1,#A], such that, for each rule
A(x1, . . . ,x#A) ← φ from Δ, each atom B(y1, . . . ,y#B) from φ and each i ∈ λΔ(B), there
exists j ∈ λΔ(A), such that x j and yi are the same variable.

The profile identifies the parameters of a predicate that are always replaced by a vari-
able x1, . . . ,x#A in each unfolding of A(x1, . . . ,x#A), according to the rules in Δ; it is
computed by a greatest fixpoint iteration, in time poly(size(Δ)).

Definition 11. A rule A(x1, . . . ,x#A) ← ∃y1 . . .∃ym . φ∗∗ h
�=1B�(z�1, . . . ,z

�
#B�

), where φ
is a quantifier- and predicate-free formula, is said to be:
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1. progressing if and only if φ = [x1] ∗ ψ, where ψ consists of interaction atoms
involving x1 and (dis-)equalities, such that

⋃h
�=1{z�1, . . . ,z�#B�

} = {x2, . . . ,x#A} ∪
{y1, . . . ,ym},

2. connected if and only if, for each � ∈ [1,h] there exists an interaction atom in ψ that
contains both z�1 and a variable from {x1}∪{xi | i ∈ λΔ(A)},

3. equationally-restricted (e-restricted) if and only if, for every disequation x �= y from
φ, we have {x,y}∩{xi | i ∈ λΔ(A)} �= /0.

A SID Δ is progressing, connected and e-restricted if and only if each rule in Δ is
progressing, connected and e-restricted, respectively.

For example, the SID consisting of the rules from Sect. 1.1, together with rules (4) and
(5) is progressing, connected and e-restricted.

We recall that defΔ(A) is the set of rules from Δ that define A and denote by def∗Δ(A)
the least superset of defΔ(A) containing the rules that define a predicate from a rule in
def∗Δ(A). The following result shows that the entailment problem becomes undecidable
as soon as the connectivity condition is even slightly lifted:

Theorem 3. Entl[Δ,A,B] is undecidable, even when Δ is progressing and e-restricted,
and only the rules in def∗Δ(A) are connected (the rules in def∗Δ(B)may be disconnected).

On the positive side, we prove that Entl[Δ,A,B] is decidable, if Δ is progressing,
connected and e-restricted, assuming further that Bnd[Δ,A] has a positive answer. In this
case, the bound on the degree of the models of A(x1, . . . ,x#A) is effectively computable,
using the algorithm from Fig. 3 (see Proposition 1 for a cut-off result) and denote by B
this bound, throughout this section.

The proof uses a reduction of Entl[Δ,A,B] to a similar problem for SL, showed to
be decidable [18]. We recall the definition of SL, interpreted over heaps h : C ⇀fin C

K,
introduced in Sect. 2.3. SL rules are denoted as A(x1, . . . ,x#(A)) ← φ, where φ is a SL

formula, such that fv(φ) ⊆ {x1, . . . ,x#(A)} and SL SIDs are denoted as Δ. The profile λΔ

is defined for SL same as for CL (Definition 10).

Definition 12. A SL rule A(x1, . . . ,x#(A)) ← φ from a SID Δ is said to be:

1. progressing if and only if φ = ∃t1 . . .∃tm . x1 �→ (y1, . . . ,yK) ∗ ψ, where ψ contains
only predicate and equality atoms,

2. connected if and only if z1 ∈ {xi | i ∈ λΔ(A)}∪{y1, . . . ,yK}, for every predicate atom
B(z1, . . . ,z#(B)) from φ.

Note that the definitions of progressing and connected rules are different for SL, com-
pared to CL (Definition 11); in the rest of this section, we rely on the context to distin-
guish progressing (connected) SL rules from progressing (connected) CL rules. More-
over, e-restricted rules are defined in the same way for CL and SL (point 3 of Definition
11). A tight upper bound on the complexity of the entailment problem between SL for-
mulæ, interpreted by progressing, connected and e-restricted SIDs, is given below:

Theorem 4 ([18]). The SL entailment problem is in 22poly(width(Δ)·logsize(Δ))
, for progress-

ing, connected and e-restricted SIDs.
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The reduction of Entl[Δ,A,B] to SL entailments is based on the idea of viewing a config-
uration as a logical structure (hypergraph), represented by a undirected Gaifman graph,
in which every tuple from a relation (hyperedge) becomes a clique [24]. In a similar
vein, we encode a configuration, of degree at most B, by a heap of degree K (Definition
13), such that K is defined using the following integer function:

pos(i, j,k) def= 1+B ·
j−1

∑
�=1

|τ�|+ i · |τ j|+ k

where Inter
def= {τ1, . . . ,τM} is the set of interaction types and Q def= {q1, . . . ,qN} is the set

of states of the behavior B= (P ,Q ,−→) (Sect. 2). Here i∈ [0,B−1] denotes an interac-
tion of type j ∈ [1,M] and k ∈ [0,N−1] denotes a state. We use M and N throughout the
rest of this section, to denote the number of interaction types and states, respectively.

For a set I of interactions, let Tuples
j
I (c)

def= {〈c1, . . . ,cn〉 | (c1, p1, . . . ,cn, pn) ∈
I , τ j = 〈p1, . . . , pn〉, c ∈ {c1, . . . ,cn}} be the tuples of components from an interac-
tion of type τ j from I , that contain a given component c.

Definition 13. Given a configuration γ= (C ,I ,ρ), such that δ(γ)≤B, a Gaifman heap

for γ is a heap h : C ⇀fin C
K, where K

def= pos(0,M+1,N), dom(h) = nodes(γ) and, for
all c0 ∈ dom(h), such that h(c0) = 〈c1, . . . ,cK〉, the following hold:

1. c1 = c0 if and only if c0 ∈ C ,
2. for all j ∈ [1,M], Tuples jI (c) = {c1, . . . ,cs} if and only if there exist integers 0 ≤

k1 < .. . < ks <B, such that 〈h(c0)〉inter(ki, j) = ci, for all i∈ [1,s], where inter(i, j) def=
[pos(i−1, j,0),pos(i, j,0)] are the entries of the i-th interaction of type τ j in h(c0),

3. for all k ∈ [1,N], we have 〈h(c0)〉state(k) = c0 if and only if ρ(c0) = qk, where the

entry state(k) def= pos(0,M+1,k−1) in h(c0) corresponds to the state qk ∈ Q .

We denote by G(γ) the set of Gaifman heaps for γ.

Intuitively, if h is a Gaifman heap for γ and c0 ∈ dom(h), then the first entry of h(c0)
indicates whether c0 is present (condition 1 of Definition 13), the next B · ∑M

j=1 |τ j|
entries are used to encode the interactions of each type τ j (condition 2 of Definition 13),
whereas the last N entries are used to represent the state of the component (condition
3 of Definition 13). Note that the encoding of configurations by Gaifman heaps is not
unique: two Gaifman heaps for the same configuration may differ in the order of the
tuples from the encoding of an interaction type and the choice of the unconstrained
entries from h(c0), for each c0 ∈ dom(h). On the other hand, if two configurations have
the same Gaifman heap encoding, they must be the same configuration.

Example 3. Figure 4(b) shows a Gaifman heap for the configuration in Fig. 4(a), where
each component belongs to at most 2 interactions of type 〈out, in〉. �

We build a SL SID Δ that generates the Gaifman heaps of the models of the predicate
atoms occurring in a progressing CL SID Δ. The construction associates to each variable
x, that occurs free or bound in a rule from Δ, a unique K-tuple of variables η(x) ∈ V

K,
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Fig. 4. Gaifman Heap for a Chain Configuration

that represents the image of the store value ν(x) in a Gaifman heap h i.e., h(ν(x)) =
ν(η(x)). Moreover, we consider, for each predicate symbol A ∈ def(Δ), an annotated
predicate symbol Aι of arity #Aι = (K+1) ·#A, where ι : [1,#A]× [1,M] → 2[0,B−1] is
a map associating each parameter i ∈ [1,#A] and each interaction type τ j, for j ∈ [1,M],
a set of integers ι(i, j) denoting the positions of the encodings of the interactions of type
τ j, involving the value of xi, in the models of Aι(x1, . . . ,x#A,η(x1), . . . ,η(x#A)) (point 2
of Definition 13). Then Δ contains rules of the form:

Aι(x1, . . . ,x#(A),η(x1), . . . ,η(x#(A))) ← (6)

∃y1 . . .∃ym∃η(y1) . . .∃η(ym) . ψ∗π ∗∗ h
�=1 B

�
ι�(z

�
1, . . . ,z

�
#(B�),η(z

�
1), . . . ,η(z

�
#(B�)))

for which Δ has a stem ruleA(x1, . . . ,x#(A))← ∃y1 . . .∃ym . ψ∗π∗∗ h
�=1B

�(z�1, . . . ,z
�
#B�),

where ψ∗π is a quantifier- and predicate-free formula and π is the conjunction of equal-
ities and disequalities from ψ∗π. However, not all rules (6) are considered in Δ, but only
the ones meeting the following condition:

Definition 14. A rule of the form (6) is well-formed if and only if, for each i ∈ [1,#A]
and each j ∈ [1,M], there exists a set of integers Yi, j ⊆ [0,B−1], such that:

– ||Yi, j|| = ||I j
ψ,π(xi)||, where I j

ψ,π(x) is the set of interaction atoms 〈z1.p1, . . . ,zn.pn〉
from ψ of type τ j = 〈p1, . . . , pn〉, such that zs ≈π x, for some s ∈ [1,n],

– Yi, j ⊆ ι(i, j) and ι(i, j)\Yi, j = Z j(xi), where Z j(x)
def=

⋃h
�=1

⋃#B�

k=1{ι�(k, j) | x ≈π z�k}
is the set of positions used to encode the interactions of type τ j involving the
store value of the parameter x, in the sub-configuration corresponding to an atom
B�(z�1, . . . ,z

�
#(B�)), for some � ∈ [1,h].

We denote by Δ the set of well-formed rules (6), such that, moreover:

ψ def= x1 �→ η(x1) ∗ ∗x∈fv(ψ) CompStatesψ(x) ∗ ∗#A
i=1 InterAtomsψ(xi), where:

CompStatesψ(x)
def=∗ [x] occurs in ψ 〈η(x)〉1 = x ∗ ∗ x@qk occurs in ψ 〈η(x)〉state(k) = x

InterAtomsψ(xi)
def=∗M

j=1∗r j
p=1 〈η(xi)〉inter( j,k jp)

= x j
p and {k j1, . . . ,k jr j}

def= ι(i, j)\Z j(xi)

Here for two tuples of variables x = 〈x1, . . . ,xk〉 and y = 〈y1, . . . ,yk〉, we denote by
x = y the formula ∗ k

i=1xi = yi. Intuitively, the SL formula CompStatesψ(x) realizes
the encoding of the component and state atoms from ψ, in the sense of points (1) and
(3) from Definition 13, whereas the formula InterAtomsψ(xi) realizes the encodings of
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the interactions involving a parameter xi in the stem rule (point 2 of Definition 13). In
particular, the definition of InterAtomsψ(xi) uses the fact that the rule is well-formed.

We state below the main result of this section on the complexity of the
entailment problem. The upper bounds follow from a many-one reduction of
Entl[Δ,A,B] to the SL entailment Aι(x1, . . . ,x#A,η(x1), . . . ,η(x#A)) �Δ ∃x#B+1 . . .∃x#B

∃η(x#B+1) . . .∃η(x#B) . Bι′(x1, . . . ,x#B,η(x1), . . . ,η(x#B)), in combination with the
upper bound provided by Theorem 4, for SL entailments. If k < ∞, the complexity
is tight for CL, whereas gaps occur for k= ∞, � < ∞ and k= ∞, �= ∞, due to the cut-off
on the degree bound (Proposition 1), which impacts the size of Δ and time needed to
generate it from Δ.

Theorem 5. If Δ is progressing, connected and e-restricted and, moreover, Bnd[Δ,A]
has a positive answer, Entlk,�[Δ,A,B] is in 2EXP, Entl∞,�[Δ,A,B] is in 3EXP ∩ 2EXP-
hard, and Entl[Δ,A,B] is in 4EXP ∩ 2EXP-hard.

6 Conclusions and Future Work

We study the satisfiability and entailment problems in a logic used to write proofs of
correctness for dynamically reconfigurable distributed systems. The logic views the
components and interactions from the network as resources and reasons also about the
local states of the components. We reuse existing techniques for Separation Logic [39],
showing that our configuration logic is more expressive than SL, fact which is confirmed
by a number of complexity gaps. Closing up these gaps and finding tight complexity
classes in the more general cases is considered for future work. In particular, we aim
at lifting the boundedness assumption on the degree of the configurations that must be
considered to check the validity of entailments.
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