Skip to main content

Philosophy and Modeling and Simulation

  • Chapter
  • First Online:
  • 743 Accesses

Part of the book series: Simulation Foundations, Methods and Applications ((SFMA))

Abstract

This chapter of the SCS M&S Body of Knowledge summarizes philosophical foundations that are only partially addressed in other chapters in a constrained manner. It starts with a philosophical discussion of simulation epistemology, including some idea about the role of ontologies as well. A timeline on scientific research and method development shows how simulation contributes to scientific research methods. This leads to the section dealing with the challenge of what type of knowledge can be acquired from simulation—the core question of epistemology. Additional sections investigate criteria for acceptance and hypothesis/proposing explanation in simulations. After working out differences of simulation and experience as well as simulation and experiments, the chapter concludes with observations on M&S as a discipline.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kienzle HJ (1970) Epistemology and sociology. Br J Sociol 21(4):413–424

    Article  Google Scholar 

  2. Feibleman J (1953) Ontology. Johns Hopkins Press, Baltimore, MD, p 1953

    Google Scholar 

  3. Rescher N (2000) Process philosophy: a survey of basic issues. University of Pittsburgh Press, Pittsburgh, PA, p 2000

    Book  Google Scholar 

  4. Robinson S, Arbez G, Birta LG, Tolk A, Wagner G (2015) Conceptual modeling: definition, purpose and benefits. In: Proceedings of the 2015 winter simulation conference (WSC ‘15). IEEE Press, Piscataway, NJ, USA, pp 2812–2826

    Google Scholar 

  5. Hofmann M, Palii J, Mihelcic G (2011) Epistemic and normative aspects of ontologies in modelling and simulation. J Simul 5(3):135–146

    Article  Google Scholar 

  6. Benjamin PC, Patki M, Mayer RJ (2006) Using ontologies for simulation modeling. In: Proceedings of the 2006 winter simulation conference, pp 1151–1159

    Google Scholar 

  7. Silver GA, Miller JA, Hybinette M, Baramidze G, York WS (2011) DeMO: an ontology for discrete-event modeling and simulation. SIMULATION 87:747–773

    Article  Google Scholar 

  8. Teo YM, Szabo C (2008) CODES: An integrated approach to composable modeling and simulation. In: Proceedings of the 41st annual simulation symposium. IEEE CS Press, pp 103–110

    Google Scholar 

  9. Kim TG, Lee C, Christensen ER, Zeigler BP (1990) System entity structuring and model base management. IEEE Trans Syst Man Cybern 20(5):1013–1025

    Article  Google Scholar 

  10. Gruber TR (1993) A translation approach to portable ontology specifications. Knowl Acquis 5(2):199–220

    Article  Google Scholar 

  11. Borst WN (1997) Construction of engineering ontologies. Ph.D. thesis, University of Twente, Enschede

    Google Scholar 

  12. Gelfert A (2016) How to do science with models: a philosophical primer. Springer International Publishing AG, Cham, Switzerland

    Book  Google Scholar 

  13. Winsberg E (1999) Sanctioning models: the epistemology of simulation. Sci Context 12(2):275–292

    Article  Google Scholar 

  14. Frank U, Troitzsch KG (2005) Epistemological perspectives on simulation. J Artif Soc Soc Simul 8(4)

    Google Scholar 

  15. Grune-Yanoff T, Weirich P (2010) The philosophy and epistemology of simulation: a review. Simul Gaming 41(1):20–50

    Article  Google Scholar 

  16. Winsberg EB (2010) Science in the age of computer simulation. University of Chicago Press, Chicago

    Book  Google Scholar 

  17. Tolk A, Ihrig M, Page EH, Szabo C, Heath BL, Padilla JJ, Suarez ED, Weirich P, Yilmaz L (2013) Epistemology of modeling and simulation. Proceedings of the winter simulations conference. IEEE, Piscataway, NJ, pp 1152–1166

    Google Scholar 

  18. Wilson KG (1989) Grand challenges to computational science. Future Gener Comput Syst 5(2–3):171–189

    Article  Google Scholar 

  19. Atlas Collaboration (2012) Observation of a new particle in the search for the standard model Higgs Boson with the ATLAS detector at the LHC. Phys Lett B 716(1):1–29

    Article  Google Scholar 

  20. Goldman SL (2006) Science wars: what scientists know and how they know it. Lehigh University, The Teaching Company, Chantilly, VA

    Google Scholar 

  21. Newton I, Motte A, Cajori F, Thompson SP (1955) Mathematical principles of natural philosophy, vol 34. Encyclopaedia Britannica

    Google Scholar 

  22. Kant I, Jaki SL (1981) Universal natural history and theory of the heavens. Scottish Academic Press, Edinburgh

    Google Scholar 

  23. Kuhn TS (1962) The structure of scientific revolutions. Chicago, IL

    Google Scholar 

  24. Thompson MJ (2017) Introduction: what is critical theory? In: The Palgrave handbook of critical theory. Political philosophy and public purpose. Palgrave Macmillan, New York NY

    Google Scholar 

  25. Rosen R (1998) Essays on life itself. Columbia University Press, New York NY

    Google Scholar 

  26. Tolk A (2018) Simulation and modeling as the essence of computational science. In: Proceedings of the 50th summer computer simulation conference. Society for Computer Simulation International, San Diego, CA

    Google Scholar 

  27. Garvin MR, Alvarez C, Miller JI, Prates ET, Walker AM, Amos BK, Mast AE, Justice A, Aronow B, Jacobson D (2020) A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm. Elife 9:e59177

    Article  Google Scholar 

  28. Tolk A, Harper A, Mustafee N (2021) Hybrid models as transdisciplinary research enablers. Eur J Oper Res 291(3):1075–1090

    Article  MATH  Google Scholar 

  29. Lempert RJ, Popper SW, Bankes SC (2003) Shaping the next one hundred years: new methods for quantitative, long-term policy analysis, RAND Technical Report MR-1626. Santa Monica, CA, USA

    Google Scholar 

  30. Marchau VAWJ, Walker WE, Bloemen PJT, Popper SW (2019) Decision making under deep uncertainty: from theory to practice. Springer, Cham, Switzerland

    Book  Google Scholar 

  31. Ihrig M (2016) A new research architecture for the simulation era. Seminal contributions to modelling and simulation. Springer, Cham, pp 47–55

    Chapter  Google Scholar 

  32. Tolk A (2017) Bias ex silico: observations on simulationist's regress. In: Proceedings of the annual simulation symposium, spring simulation multi-conference. Article 15. Society for Computer Simulation International, San Diego, CA

    Google Scholar 

  33. Shermer M (2017) How to convince someone when facts fail: why worldview threats undermine evidence. Sci Am 316(1):69

    Article  Google Scholar 

  34. Oxford (2019) Knowledge: English dictionary, thesaurus, & grammar help. Available at: https://www.lexico.com/en/definition/knowledge. Last access Aug 2019

  35. Kebede G (2010) Knowledge management: an information science perspective. Int J Inf Manage 30(5):416–424

    Article  Google Scholar 

  36. Bock P (2001) Chapter 5: An epistemological journey. In: An getting it right: R&D methods for science and engineering. Academic Press, San Diego

    Google Scholar 

  37. Weirich P (2004) Belief and acceptance. In: Niiniluoto I, Sintonen M, Wolenski J (eds) Handbook of epistemology. Kluwer, Dordrecht, pp 499–520

    Chapter  Google Scholar 

  38. Hacking I (2001) Probability and inductive logic. Chapter 18, “Significance and Power”. Cambridge University Press, Cambridge

    Google Scholar 

  39. Titelbaum M (Forthcoming) Fundamentals of Bayesian epistemology. Chapter 6, “Confirmation”. Oxford University Press, New York

    Google Scholar 

  40. Deaton ML (2006) Validation of simulation models. In: Johnson N, Kotz S (eds) Encyclopedia of statistical sciences, 2nd ed. Wiley, Hoboken, NJ

    Google Scholar 

  41. Hempel CG, Oppenheim P (1948) Studies in the logic of explanation. Philos Sci 15(2):135–175. https://doi.org/10.1086/286983

    Article  Google Scholar 

  42. Salmon WC (1984) Scientific explanation and the causal structure of the world. Princeton University Press. https://doi.org/10.2307/j.ctv173f2gh

  43. Kitcher P (1989) Explanatory unification and the causal structure of the world. http://conservancy.umn.edu/handle/11299/185687

  44. Achinstein P (1983) The nature of explanation. Oxford University Press

    Google Scholar 

  45. Salmon WC (2006) Four decades of scientific explanation. University of Pittsburgh Press

    Google Scholar 

  46. Illustris—About. Retrieved 14 Mar 2021, from https://www.illustris-project.org/about/#public-three

  47. Baumberger C, Beisbart C, Brun G (2017) What is understanding? An overview of recent debates in epistemology and philosophy of science. In: Explaining understanding. new perspectives from epistemology and philosophy of science. Routledge, p 30

    Google Scholar 

  48. Durán JM (2019) Models, explanation, representation, and the philosophy of computer simulations. In: Proceedings of the IACAP, forthcoming

    Google Scholar 

  49. Krohs U (2008) How digital computer simulations explain real-world processes. Int Stud Philos Sci 22(3):277–292. https://doi.org/10.1080/02698590802567324

    Article  Google Scholar 

  50. Cartwright N (1983) How the laws of physics lie. Clarendon Press

    Book  Google Scholar 

  51. Mäki U (1994) Isolation, idealization and truth in economics. Poznan Stud Philos Sci Hum 38:147–168

    Google Scholar 

  52. Weirich P (2011) The explanatory power of models and simulations: a philosophical exploration. Simul Gaming 42(2):155–176. https://doi.org/10.1177/1046878108319639

    Article  Google Scholar 

  53. Durán JM (2017) Varying the explanatory span: scientific explanation for computer simulations. Int Stud Philos Sci 31(1):27–45. https://doi.org/10.1080/02698595.2017.1370929

    Article  Google Scholar 

  54. Humphreys P (2004) Extending ourselves: computational science, empiricism, and scientific method. Oxford University Press

    Book  Google Scholar 

  55. Gelfert A (2018) Models in search of targets: exploratory modelling and the case of turing patterns. In: Christian A, Hommen D, Retzlaff N, Schurz G (eds), Philosophy of science: between the natural sciences, the social sciences, and the humanities. Springer International Publishing, pp 245–269. https://doi.org/10.1007/978-3-319-72577-2_14

  56. Massimi M (2019) Two kinds of exploratory models. Philos Sci 86(5):869–881. https://doi.org/10.1086/705494

    Article  Google Scholar 

  57. Winsberg E (2019) Computer simulations in science. In: Zalta EN (ed) The Stanford encyclopaedia of philosophy (Winter 2019). Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/win2019/entries/simulations-science/

  58. Barberousse A, Franceschelli S, Imbert C (2009) Computer simulations as experiments. Synthese 169(3):557–574. https://doi.org/10.1007/s11229-008-9430-7

    Article  Google Scholar 

  59. Beisbart C (2018) Are computer simulations experiments? And if not, how are they related to each other? Eur J Philos Sci 8(2):171–204. https://doi.org/10.1007/s13194-017-0181-5

    Article  Google Scholar 

  60. Jantzen BC (2016) Dynamical kinds and their discovery [Cs, Stat]. http://arxiv.org/abs/1612.04933

  61. Hennig C (2015) What are the true clusters? Pattern Recogn Lett 64:53–62. https://doi.org/10.1016/j.patrec.2015.04.009

    Article  MATH  Google Scholar 

  62. Ören TI (2011) A critical review of definitions and about 400 types of modeling and simulation. SCS M&S Mag, 2(3):142–151. http://scs.org/wp-content/uploads/2016/12/2011-04-Issue06-6.pdf. Accessed 02 Aug 2019

  63. Experiment (n.d.) In Cambridge’s dictionary. Retrieved from https://dictionary.cambridge.org/pt/dicionario/ingles/experiment. Accessed 02 Aug 2019

  64. Ören T, Mittal S, Durak U (2017) The evolution of simulation and its contribution to many disciplines. In: Guide to simulation-based disciplines. Springer, Cham, pp 3–24

    Google Scholar 

  65. de França BBN, Travassos GH (2016) Experimentation with dynamic simulation models in software engineering: planning and reporting guidelines. Empir Softw Eng 21(3):1302–1345

    Article  Google Scholar 

  66. Rahmandad H, Sterman JD (2012) Reporting guidelines for simulation-based research in social sciences. Syst Dyn Rev 28(4):396–411

    Article  Google Scholar 

  67. Alpaydin E (2016). Machine learning: the new AI. The MIT Press

    Google Scholar 

  68. Meraji S, Tropper C (2010) A machine learning approach for optimizing parallel logic simulation. In: Proceedings of 39th International conference on parallel processing, pp 545–554

    Google Scholar 

  69. Toma S (2014) Detection methodology and identify multiple faults in complex systems from discrete events and neural networks: applications for wind turbines. Thesis report, University of Corsica

    Google Scholar 

  70. Floyd MW, Wainer GA (2010) Creation of DEVS models using imitation learning. In: Proceedings of SCSC’10, San Diego, CA, USA, pp 334–341

    Google Scholar 

  71. Saadawi H, Wainer G, Pliego G (2016) DEVS execution acceleration with machine learning. In: Proceedings of TMS-DEVS’16, pp 16

    Google Scholar 

  72. Rachelson E, Quesnel G, Garcia F, Fabiani P (2008) A simulation-based approach for solving generalized semi-Markov decision processes. In: Proceedings of ECAI’08 conference. IOS Press, Amsterdam, The Netherlands, pp 583–587

    Google Scholar 

  73. Kessler C, Capocchi L, Santucci JF, Zeigler BP (2017) Hierarchical Markov decision process based on DEVS formalism. In: Proceedings of WinterSim’17, Dec. 3–6, 2017, Las Vegas, NV, USA, pp 1001–1012

    Google Scholar 

  74. Seo C, Zeigler BP, Kim D (2018) DEVS Markov modeling and simulation: formal definition and implementation. In: Proceedings of TMS ’18, San Diego, CA, USA, Article 1, p 12

    Google Scholar 

  75. Puterman ML (1994) Markov decision processes: discrete stochastic dynamic programming, 1st edn. Wiley, New York, NY, USA

    Book  MATH  Google Scholar 

  76. Arsham H (1998) Techniques for Monte Carlo optimizing. Monte Carlo Methods Appl 4:181–229

    Article  MATH  Google Scholar 

  77. Sutton RS, Barto AG (1998) Introduction to reinforcement learning, 1st ed. MIT Press, Cambridge, MA, USA

    Google Scholar 

  78. Graciano Neto VV, Garcés L, Guessi M, Paes C, Manzano W, Oquendo F, Nakagawa E (2018a) ASAS: an approach to support simulation of smart systems. In: Proceedings of 51st Hawaii conference on systems sciences (HICSS). Big Island, Hawaii, USA, pp 5777–5786

    Google Scholar 

  79. Graciano Neto VV, Manzano W, Kassab M, Nakagawa EY (2018b) Model-based engineering & simulation of software-intensive systems-of-systems: experience report and lessons learned. In: Proceedings of the 12th European conference on software architecture: companion proceedings. ACM, Madrid, Spain (Article No. 27)

    Google Scholar 

  80. Graciano Neto VV, Paes CE, Rohling AJ, Manzano W, Nakagawa EY (2019) Modeling & simulation of software architectures of systems-of-systems: an industrial report on the Brazilian space system. In: 2019 Spring simulation conference (SpringSim). IEEE, pp 1–12

    Google Scholar 

  81. Oxford English Dictionary (2020) http://oed.com

  82. Krishnan A (2009) What are academic disciplines? Some observations on the disciplinarity vs. interdisciplinarity debate. University of Southampton, NCRM Working Paper Series

    Google Scholar 

  83. Congress (2020) Library of Congress search: https://www.loc.gov/books/?all=true&q=%22modeling+and+simulation%22

  84. Zeigler BP (1976) Theory of Modeling and Simulation. Academic Press

    MATH  Google Scholar 

  85. Ören T, Turnista C, Mittal S, Diallo S (2017a) Chapter 13: Simulation-based learning and education. In: Mittal S, Durak U, Ören T (eds) Guide to simulation-based disciplines: advancing our computational future. Springer

    Google Scholar 

  86. Wikipedia (2020) https://en.wikipedia.org/wiki/Simulation

  87. Mittal S, Durak U, Ören T (eds) (2017) Guide to simulation-based disciplines: advancing our computational future. Springer.

    Google Scholar 

  88. Glotzer SC et al (2009) International assessment of research and development in simulation-based engineering and science. World Technology Evaluation Center, Baltimore, MD

    Google Scholar 

  89. Page E (2017) Chapter 2: Modeling and simulation (M&S) technology landscape. In: Mittal S, Durak U, Ören T (eds) Guide to simulation-based disciplines: advancing our computational future. Springer, pp 3–24

    Google Scholar 

  90. Valdvida WD, Clark BY (2015) The politics of Federal R&D: a punctuated equilibrium analysis. Brookings Institute

    Google Scholar 

  91. Industrial Research Institute (2016) 2016 Global R&D funding forecast. R&D Magazine

    Google Scholar 

  92. Forbes JR, Ortiz S (2007) H.Res. 487: Recognizing modeling and simulation as a National critical technology. Available from: https://www.scs.org/newsletters/2010-01/index_file/Files/MSResolution487.pdf

  93. Tolk A, Ören T (eds) (2017) The profession of modeling and simulation: discipline, ethics, education, vocation, societies, and economics. Wiley

    Google Scholar 

  94. Zeigler BP, Praehofer H, Kim TG (2000) Theory of modeling and simulation: integrating discrete event and continuous complex dynamic systems, 2nd edn. Academic Press, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Tolk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tolk, A. et al. (2023). Philosophy and Modeling and Simulation. In: Ören, T., Zeigler, B.P., Tolk, A. (eds) Body of Knowledge for Modeling and Simulation. Simulation Foundations, Methods and Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-11085-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11085-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11084-9

  • Online ISBN: 978-3-031-11085-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics