Skip to main content

Realtime Optical Flow Estimation on Vein and Artery Ultrasound Sequences Based on Knowledge-Distillation

  • Conference paper
  • First Online:
Biomedical Image Registration (WBIR 2022)

Abstract

In this paper, we propose an approach for realtime optical flow estimation in ultrasound sequences of vein and arteries based on knowledge distillation. Knowledge distillation is a technique to train a faster, smaller model by learning from cues of larger models. Mobile devices with limited resources could be key in providing effective point-of-care healthcare and motivate the search of more lightweight solutions in the deep learning based image analysis. For ultrasound video analysis, motion correspondences of image contents (anatomies) have to be computed for temporal context and for real time application, fast solutions are required. We use a PWC-Net’s [1] optical flow estimation output to create soft targets to train a PDD-Net [2] as lightweight optical flow estimator. We analyse the students’ performance on the challenging task of fast segmentation propagation of vein and arteries in ultrasound images. Experiments show that even though we did not fine-tune the teachers on this task, a model trained with soft targets outperformed a model trained directly with labels and without a teacher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.kaggle.com/mattiaspaul/learn2reg-tutorial.

  2. 2.

    https://thinksono.com/.

  3. 3.

    https://github.com/TillNicke/KD-for-optical-flow.git.

References

  1. Sun, D., Yang, X., Liu, M.-Y., Kautz, J.: PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8934–8943 (2018)

    Google Scholar 

  2. Heinrich, M.P.: Closing the gap between deep and conventional image registration using probabilistic dense displacement networks. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 50–58. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_6

    Chapter  Google Scholar 

  3. Yao, R., Lin, G., Xia, S., Zhao, J., Zhou, Y.: Video object segmentation and tracking: a survey. ACM Trans. Intell. Syst. Technol. 11 (2020)

    Google Scholar 

  4. Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.: Elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2009)

    Article  Google Scholar 

  5. Mok, T.C.W., Chung, A.C.S.: Conditional deformable image registration with convolutional neural network. In: De Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 35–45. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_4

    Chapter  Google Scholar 

  6. Hu, Y., et al.: Weakly-supervised convolutional neural networks for multimodal image registration. Med. Image Anal. 49, 1–13 (2018)

    Article  Google Scholar 

  7. Noble, J.A.: Reflections on ultrasound image analysis (2016)

    Google Scholar 

  8. De Luca, V., et al.: Evaluation of 2d and 3d ultrasound tracking algorithms and impact on ultrasound-guided liver radiotherapy margins. Med. Phys. 45(11), 4986–5003 (2018)

    Article  Google Scholar 

  9. Liu, F., Liu, D., Tian, J., Xie, X., Yang, X., Wang, K.: Cascaded one-shot deformable convolutional neural networks: developing a deep learning model for respiratory motion estimation in ultrasound sequences. Med. Image Anal. 65, 101793 (2020)

    Article  Google Scholar 

  10. Tanno, R.: AutoDVT: joint real-time classification for vein compressibility analysis in deep vein thrombosis ultrasound diagnostics. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 905–912. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_100

    Chapter  Google Scholar 

  11. Dosovitskiy, A., et al.: Flownet: learning optical flow with convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2758–2766 (2015)

    Google Scholar 

  12. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: FlowNet 2.0: evolution of optical flow estimation with deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2462–2470 (2017)

    Google Scholar 

  13. Mok, T.C.W., Chung, A.C.S.: Large deformation diffeomorphic image registration with Laplacian pyramid networks. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 211–221. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_21

    Chapter  Google Scholar 

  14. Li, J., Zhao, R., Huang, J.-T., Gong, Y.: Learning small-size DNN with output-distribution-based criteria. In: Fifteenth Annual Conference of the International Speech Communication Association (2014)

    Google Scholar 

  15. Yuan, L., Tay, F.E., Li, G., Wang, T., Feng, J. : Revisiting knowledge distillation via label smoothing regularization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3903–3911 (2020)

    Google Scholar 

  16. Kim, T., Oh, J., Kim, N., Cho, S., Yun, S.Y.: Comparing kullback-leibler divergence and mean squared error loss in knowledge distillation, arXiv preprint arXiv:2105.08919 (2021)

  17. Hering, A., et al.: Learn2Reg: comprehensive multi-task medical image registration challenge, dataset and evaluation in the era of deep learning, arXiv preprint arXiv:2112.04489 (2021)

  18. Heinrich, M.P., Oktay, O., Bouteldja, N.: Obelisk-net: fewer layers to solve 3d multi-organ segmentation with sparse deformable convolutions. Med. Image Anal. 54, 1–9 (2019)

    Article  Google Scholar 

  19. Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with gaussian edge potentials. Adv. Neural Inf. Process. Syst. 24, 109–117 (2011)

    Google Scholar 

  20. Reinke, A., et al.: Common limitations of image processing metrics: a picture story, arXiv preprint arXiv:2104.05642 (2021)

  21. Hofstätter, S., Althammer, S., Schröder, M., Sertkan, M., Hanbury, A.: Improving efficient neural ranking models with cross-architecture knowledge distillation, arXiv preprint arXiv:2010.02666 (2020)

  22. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  23. Yan, W., Wang, Y., Li, Z., van der Geest, R.J., Tao, Q.: Left ventricle segmentation via optical-flow-net from short-axis cine MRI: preserving the temporal coherence of cardiac motion. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 613–621. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_70

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Till Nicke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nicke, T., Graf, L., Lauri, M., Mischkewitz, S., Frintrop, S., Heinrich, M.P. (2022). Realtime Optical Flow Estimation on Vein and Artery Ultrasound Sequences Based on Knowledge-Distillation. In: Hering, A., Schnabel, J., Zhang, M., Ferrante, E., Heinrich, M., Rueckert, D. (eds) Biomedical Image Registration. WBIR 2022. Lecture Notes in Computer Science, vol 13386. Springer, Cham. https://doi.org/10.1007/978-3-031-11203-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11203-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11202-7

  • Online ISBN: 978-3-031-11203-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics