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ABSTRACT

Multimodal image alignment involves finding spatial cor-
respondences between volumes varying in appearance and
structure. Automated alignment methods are often based
on local optimization that can be highly sensitive to their
initialization. We propose a global optimization method for
rigid multimodal 3D image alignment, based on a novel
efficient algorithm for computing similarity of normalized
gradient fields (NGF) in the frequency domain. We vali-
date the method experimentally on a dataset comprised of
20 brain volumes acquired in four modalities (T1w, Flair,
CT, [18F] FDG PET), synthetically displaced with known
transformations. The proposed method exhibits excellent
performance on all six possible modality combinations, and
outperforms all four reference methods by a large margin.
The method is fast; a 3.4Mvoxel global rigid alignment re-
quires approximately 40 seconds of computation, and the
proposed algorithm outperforms a direct algorithm for the
same task by more than three orders of magnitude. Open-
source implementation is provided.

Index Terms— image registration, medical image analy-
sis, cross-correlation, global optimization, 3D

1. INTRODUCTION

Multimodal image alignment (also known as registration) in-
volves finding correspondences between images with varying
degree of difference of appearance and structure [1], often
with the goal of combining the characteristics of each modal-
ity via image fusion. Alignment of large displacements is par-
ticularly challenging since correspondences to be inferred are
far apart, requiring global contextual and spatial information.

While many methods for monomodal alignment exist,
much fewer general-purpose multimodal alignment methods
exhibiting high performance and robustness (w.r.t. the choice
of the modalities to be aligned) are available. Common ap-
proaches include local optimization methods based on mutual
information (MI) [2, 3], as well as normalized gradient fields
(NGF) [4], and representation extraction techniques based on
local self-similaries [5], as well as Deep Feature Learning
[6, 7]. Recently, a global alignment method based on the
cross-mutual information function (CMIF) was presented [8].
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Fig. 1: Main idea of the proposed global alignment method.
Input: Two image volumes of modalities [18F] FDG PET,
and T1 weighted MR, as A and B respectively (displayed as
slices). For a number of random 3D rotations θ, the similar-
ity measure sANGF between the masked normalized gradient
fields is computed efficiently for all 3D displacements; finally,
the sought transformation is found as the maximum of sANGF.

We here propose a new global alignment method based on
NGF, that is fast and shows excellent performance on a rigid
multimodal 3D medical image alignment task, compared to
local optimization-based MI and NGF, and global alignment-
based CMIF, as well as a version of the proposed method us-
ing a related (but distinct) existing similarity measure, on 6
pairs of modality combinations. Figure 1 illustrates the gen-
eral idea of the method.

A fast and user-friendly PyTorch-based implementa-
tion of the method with open-source code is available at
http://github.com/MIDA-group/cross sim ngf.

2. BACKGROUND

Here we recall the most relevant aspects of NGF and methods
for computing them.

The (regularized) normalized gradient field [4], for image
A at point x, is given by

n⃗(x;A) = ∇A(x)√
∥∇A(x)∥22 + ε2

, (1)
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where ε is a small constant introduced to reduce the impact
of gradients with very small magnitude, and avoid division
by zero. In this work we use ε = 10−5 (selected empirically).
The main assumption of NGF is that parts of images acquired
by different modalities are in correspondence when the direc-
tions of their intensity changes are parallel or anti-parallel. A
similarity of NGF (SNGF) based on the squared dot-product
of the elements of the NGF can be defined as

sNGF(x;A,B) = ⟨n⃗(x;A), n⃗(x;B)⟩2. (2)

This measure approaches 1 if the two vectors are parallel or
anti-parallel and 0 if the two vectors are orthogonal.

Orientation correlation (OC) and squared orientation cor-
relation (SOC) offer an efficient way of computing SNGF of
2D images for all discrete displacements, where 2D gradi-
ents are represented as complex numbers [9]. An efficient
algorithm which utilizes log-polar Fourier Transform is pro-
posed for OC-based alignment w.r.t. rotation and scaling in
2D [10]. NGF also appeared as a component of an objective
function combined with mutual information to enhance the
performance of multimodal image alignment tasks [11].

NGF cross-correlation was extended to 3D in the context
of medical template matching [12], by utilizing a modified
version of (2) where squaring of the dot-product is omitted:

sUS-NGF(x;A,B) = ⟨n⃗(x;A), n⃗(x;B)⟩. (3)

By observing three separable components of the unsquared
dot-product, the authors formulated an algorithm for effi-
ciently computing the measure for all discrete displacements
using cross-correlation in the frequency domain. Addition-
ally, in [12] it was observed that smoothing of the images
is important to enhance the efficacy of the method. Eq. (3),
similarly to (the unsquared) OC [9], exhibits many useful
properties, such as invariance to contrast and absolute inten-
sity levels, being sensitive only to the orientation of the im-
ages. For many multimodal scenarios (unlike the monomodal
template matching scenario in [12]), one part of a specimen
appears dark in one modality and bright in another, and it can
thus be highly detrimental to the alignment performance if
the objective function counts them as misaligned.

3. METHOD

3.1. Algorithm for Fast Computation of Similarity of
NGF in the Frequency Domain

In [4], the point-wise contributions of sNGF (2) are aggregated
by summation. Here, we formulate a scaled similarity mea-
sure which is applicable to selected sub-regions of the images,
while masking out the remaining parts of the finite rectangu-
lar domains. The similarity of average NGF is

sANGF(A,B;MA,MB) =
1

∑xMA(x)MB(x)∑x
MA(x)MB(x)sNGF(x;A,B) , (4)

where masks MA and MB are indicator functions on the do-
main. Based on computed sANGF for displaced images B, we
define the cross similarity of NGF

CSNGF(χ;A,B,MA,MB) =
1

N(χ)∑x
MA(x)MB(x + χ)sNGF(x;A(x),B(x + χ)), (5)

where χ is a discrete translation, and whereN(χ) is the num-
ber of overlapping voxels (where the masks intersect) as a
function of χ and can be computed as the cross-correlation
between the two mask imagesN(χ) = (MA⋆MB)(χ), anal-
ogously to how masks are incorporated in CMIF [8]. To com-
pute CSNGF in the frequency domain for all χ in 3D, we
rewrite (2), by expanding the squared dot-product and obtain

sNGF(x;A,B) =
3

∑
i=1

(n⃗i(x;A)2n⃗i(x;B)2+

2
3

∑
j=i+1

n⃗i(x;A)n⃗j(x;A)n⃗i(x;B)n⃗j(x;B))
(6)

which consists of 6 separable parts, each computable inde-
pendently using cross-correlation. The cross-correlations

(n⃗i(⋅ ;A)2 ⋆ n⃗i(⋅ ;B)2) , (7)

((n⃗i(⋅ ;A)n⃗j(⋅ ;A)) ⋆ (n⃗i(⋅ ;B)n⃗j(⋅ ;B))) (8)

are efficiently computed in the frequency domain (and com-
bined via summation before application of the inverse trans-
form). Computing CSNGF involves 14 real-valued FFTs (6
per image plus 1 mask for each image) and 2 inverse FFTs,
and a few element-wise complex sums and multiplications per
voxel. This general approach is applicable to images of arbi-
trary dimension; for clarity, we here only observe the 3D case.

3.2. Method for Global 3D Rigid Alignment

The efficient algorithm for computing the CSNGF for all χ
provides direct means of global optimization of sANGF w.r.t.
axis-aligned shifts. To enable global optimization w.r.t. rigid
transformations, we adopt a hybrid approach where the rota-
tion parameters θ (represented as Euler angles) are explored
with random search and the optimal displacements for a given
rotation are then located by computing arg maxχ CSNGF.

For each randomly selected rotation vector θ, the corre-
sponding transformation Tθ is applied to the floating image
B̂ = B ○ Tθ using trilinear interpolation. n⃗(⋅ ;B ○ Tθ) is com-
puted, followed by computation of CSNGF for all χ satisfy-
ing a user-selected amount of minimum overlap γ, and using a
suitable zero padding scheme (following [8]). We use γ = 0.5
everywhere in this work.

Let Θ̄ denote a set of starting points of 3D rotations, u
denote the maximum allowed step, θ̄ ∼ U(Θ̄), where U(Θ̄)
denotes the uniform discrete distribution from the set Θ̄, and



rx ∼ U(−u,u), ry ∼ U(−u,u), rz ∼ U(−u,u). We then sam-
ple a new 3D rotation θ = {θ̄x + rx, θ̄y + ry, θ̄z + rz}, where
θ̄x denotes a rotation around the x-axis, θ̄y around the result-
ing y-axis, and θ̄z around the resulting z-axis.

Both for purposes of speed and widened convergence re-
gion around the global maximum, we employ a multi-stage,
Gaussian pyramid scheme with smoothing and downsampling
of the images, with m levels. Let Θ̄k, for level k, comprise
the best rotations w.r.t. the similarity measure from the previ-
ous stage (or user-selected starting points for the first stage).
In addition to random sampling relative to these rotations, we
also compute CSNGF for all elements of Θ̄k, to avoid missing
an already located good solution due to randomness.

The pyramid scheme is parameterized by smoothing
parameters σ = (σ1, . . . , σm), downsampling factors d =
(d1, . . . dm), maximum allowed steps u = (u1, . . . um), num-
ber of random rotations a = (a1, . . . am), and number of
starting points p = (p1, . . . , pm). For all experiments using
this framework, we use d = (4,2,2,1), s = (180,30,10,0),
a = (5000,3000,300,0), p = (1,20,3,1), with the initial
starting point (0,0,0).

4. DATA

The empirical evaluation of the proposed method is based on
the CERMEP-IDB-MRXFDG dataset [13], available upon
request from the authors. The dataset consists of images
of brains of 33 subjects acquired by 4 different modalities:
T1 weighted MR, Flair MRI, Computed Tomography (CT),
[18F] FDG PET, all mapped to the standard MNI space, thus
providing ground-truth for image alignment method evalua-
tion, and a possibility to consider 6 different combinations
of modalities, enabling evaluation of the methods in terms of
generality and robustness.

4.1. Construction of The Evaluation Dataset

For each of the twelve (ordered) pairs of modalities (six un-
ordered modality combinations), and for each of the first 20
subjects (leaving the last 13 for testing), we randomly (uni-
formly) sample a 3D rotation θ, and an axis-aligned shift χi ∈
[−30 vx,+30 vx] for each axis i. These transformations are
applied using inverse mapping and bicubic interpolation, with
zero-padding, to the first image volume of each pair. The
transformed image is taken as reference image and the un-
transformed image as floating image in the alignment task.
Finally, a block of size 151 × 151 × 151 vx (c.f. original size
207 × 243 × 226) at the center of the volume is extracted, re-
taining most of the content of interest, while omitting most of
the background. Examples are shown in Fig. 2.

(a) Ref1: PET (b) Ref2: T1 (c) Ref3: Flair (d) Ref4: CT

(e) Flo1: T1 (f) Flo2: Flair (g) Flo3: CT (h) Flo4: PET

(i) GT1: T1 (j) GT2: Flair (k) GT3: CT (l) GT4: PET

Fig. 2: Sample slices of 3D image pairs from the evaluation
dataset generated from the CERMEP-IDB-MRXFDG dataset
[13]. (a-d) the reference (transformed) images and (e-h) the
floating images. Image (e) is to be registered to (a); (f) to (b),
(g) to (c) and (h) to (d). The bottom row shows the ground-
truth (GT) of each floating (Flo) image aligned to the corre-
sponding reference (Ref) image.

5. PERFORMANCE ANALYSIS

5.1. Multimodal Brain Image Volume Alignment

We first evaluate the performance of the proposed method
w.r.t. the accuracy of global multimodal alignment of 3D im-
ages, compared to several widely used general-purpose meth-
ods and a recent global alignment method based on CMIF.

5.1.1. Method Selection and Experimental Setup

Let USNGF refer to an alignment method based on CSNGF,
with sNGF replaced by sUS-NGF in (5). USNGF is included
in this study as the closest related method to our proposed
method CSNGF, with the aim to evaluate the advantage to
the proposed algorithm in relation to what could be achieved
with the algorithm in [12]. The recent CMIF-based global
alignment method [8], which exhibited excellent performance
and outperformed several recent Deep Learning methods (in-
cluding [6]) on multiple biomedical datasets, is another ref-
erence method. All the selected global optimization methods
are implemented in Python/PyTorch [14] with CUDA/GPU-
acceleration. We also compare with local optimization-based
methods using MI and NGF as objective functions, relying
on open-source implementations Elastix [3] and AIRLab [15]
respectively.

We select the mean Euclidean distance between he corre-



Table 1: Image alignment performance presented in terms
of success-rate, where the threshold of success is set to 5 vx.
The modality names are abbreviated in the headings (T: T1,
F: Flair, C: CT, P: [18F] FDG PET). The results for the two
directions for each modality combination is aggregated.

Method
Modalities

T/F T/C T/P F/C F/P C/P

LO-MI 0.05 0.025 0.075 0.025 0.1 0.075
LO-NGF 0.025 0.00 0.00 0.00 0.00 0.00
CMIF 0.675 0.30 0.325 0.80 0.85 0.525
USNGF 0.225 0.00 0.00 0.00 0.925 0.10
USNGF- 0.00 0.275 0.00 0.00 0.00 0.00
CSNGF 1.00 0.95 0.925 0.90 0.925 0.95

sponding corner points of the extracted block and its version
after the performed (recovered) alignment as a displacement
measure, denoted dE . We consider an alignment successful
if dE < 5 vx, which is 2% of the length of the diagonal of the
blocks, rounded to the nearest integer.

We include both USNGF and “USNGF-”, which desig-
nates the method USNGF with an intensity-inverted floating
image, introduced with an aim to investigate the sensitivity of
USNGF to the sign of a gradient [9].

For CMIF we use k = 16 (for the k-means clustering), and
σ = (3.0,1.5,1.0,0.0). For NGF, USNGF (and USNGF-), we
use σ = (5.0,3.0,2.0,1.5). For local optimization MI (LO-
MI) [2, 3], we use 6 pyramid levels, the Adaptive Stochastic
Gradient Descent optimizer [16], 4096 maximum iterations
for each level. For local optimization NGF (LO-NGF) [4], we
use 5 pyramid levels, the ADAM optimizer, iteration counts
according to the schedule (4096, 4096, 1024, 100, 50), with
downsampling factors (16, 8, 4, 2, 1) and Guassian smoothing
parameters (15.0, 9.0, 5.0, 3.0, 1.0), with learning-rate 0.01.
Trilinear interpolation is used.

5.1.2. Results

The results of the evaluation of the 6 considered methods on
the multimodal brain image dataset are presented in Tab. 1.
The proposed method provides overall excellent performance,
and is the best choice for all observed modality combinations.
Most of the competitors show generally poor performance,
completely failing on one or more modality combinations.

For global alignment processes, near-successes are also
of interest, since those solutions may be refined with a local
optimization method; therefore we plot the full cumulative
distribution up to the threshold dE < 20 as Fig. 3.

5.2. Time Analysis

The evaluation of time complexity has two parts; (i) compar-
ison of run-times of the observed rigid registration methods,
and (ii) comparison of run-times of the proposed Cross-Sim-
NGF algorithm with a direct (not FFT-based) approach.

The reported results for the global methods (CMIF, US-
NGF, CSNGF) are obtained on a Nvidia GeForce RTX 3090.
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Fig. 3: The success-rate of each considered method as a func-
tion of the acceptable displacement error t (fraction of the 240
alignments where dE < t); the results for all modality combi-
nations are aggregated. Up and to the left is better.

Table 2: Run-times of the considered methods in seconds.

Method LO-MI LO-NGF CMIF USNGF CSNGF
Run-time 52 61 569 33 41

The selected implementations of the local optimization meth-
ods are run on the CPU. They are not GPU-accelerated, and
have far less inherent parallelism (due to dependency between
each iteration), which makes comparisons difficult; their run-
times are still included here for reference.

Both the FFT-based algorithm and the direct method are
implemented in Python, and use PyTorch to utilize GPU-
acceleration; the direct method is implemented as a nested
loop over all valid axis-aligned shifts χ, and direct computa-
tion of the squared dot-products.

The run-times of all methods for a full alignment process
are presented in Tab. 2. Comparison of the run-times of the
FFT-based algorithm and the direct method, as a function of
image size, is presented in Tab. 3. We observe that for size
128, the here proposed algorithm is approximately 6275 times
(more than three orders of magnitude) faster.

6. CONCLUSION

We propose a novel approach to use NGF for global rigid
multimodal 3D medical image alignment. We confirm both
its great performance and its high efficiency, benefiting from
FFT processing and the parallel compute capability of GPUs.
The method does not require or use any training (data), a sig-
nificant advantage for (bio)medical applications [7].

Table 3: Run-time comparison of FFT-based Cross-Sim-NGF
and a direct algorithm for computing CSNGF on cube image
volumes as a function of size (expressed as side-length).

Method
Size

8 16 32 64 128

Direct algorithm 0.129 0.557 3.537 27.07 502.4
FFT-based alg. 0.002 0.002 0.002 0.008 0.088
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