Skip to main content

COVID-19 Social Distance Surveillance Using Deep Learning

  • Conference paper
  • First Online:
Book cover Computer Vision and Image Processing (CVIP 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1568))

Included in the following conference series:

  • 798 Accesses

Abstract

COVID-19 disease discovered from the novel corona virus can spread through close contact with a COVID-19 infected person. One of the measures advised to contain the spread of the virus is to maintain social distancing by minimizing contact between potentially infected individuals and healthy individuals or between population groups with high rates of transmission and population groups with no or low-levels of transmission. Motivated by this practice, we propose a deep learning framework for social distance detection and monitoring using surveillance video that can aid in reducing the impact of COVID-19 pandemic. This work utilizes YOLO, Detectron2 and DETR pre-trained models for detecting humans in a video frame to obtain bounding boxes and their coordinates. Bottom-centre points of the boxes were determined and were then transformed to top-down view for accurate measurement of distances between the detected humans. Based on the depth of each bottom-centre point estimated using monodepth2, dynamic distance between pairs of bounding boxes and corresponding distance threshold (safe distance) to prevent violation of social distancing norm were computed. Bounding boxes which violate the distance threshold were categorized as unsafe. All the experiments were conducted on publicly available Oxford Town Center, PETS2009 and VIRAT dataset. Results showed that Detectron2 with top-down view transformation and distance thresholding using pixel depth estimation outperformed other state-of-the-art models. The major contribution of this work is the estimation and integration of variable depth information in obtaining the distance threshold for evaluating social distances between humans in videos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afiq, A., Norliza, Z., Mohd, F.: Person detection for social distancing and safety violation alert based on segmented ROI. In: 2020 10th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), pp. 113–118 (2020). https://doi.org/10.1109/ICCSCE50387.2020.9204934

  2. Imran, A., Misbah, A., Joel, R., Gwanggil, J., Sadia, D.: A deep learning-based social distance monitoring framework for COVID-19. Sustain. Cities Soc. 65, 102571 (2021). ISSN 2210-6707

    Article  Google Scholar 

  3. Yew, C., Mohd, Z., Salman, Y., Sumayyah, D.: Social distancing detection with deep learning model. In: 2020 8th International Conference on Information Technology and Multimedia (ICIMU), pp. 334–338 (2020). https://doi.org/10.1109/ICIMU49871.2020.9243478

  4. Narinder, P., Sanjay, S., Sonali, A.: Monitoring COVID-19 social distancing with person detection and tracking via fine-tuned YOLOv3 and deep sort techniques (2020). http://arxiv.org/abs/2005.01385

  5. Mohammad, S., Shamim, H., Mohammed, A.: Towards the sustainable development of smart cities through mass video surveillance: A response to the COVID-19 pandemic. Sustain. Cities Soc. 64, 102582 (2021). ISSN 2210-6707

    Article  Google Scholar 

  6. Lin-Bo, K., In-Sung, K., Kyeong-yuk, M., Jun, W., Jongwha, C.: Low-cost implementation of bird’s-eye view system for camera-on-vehicle. In: ICCE 2010 - 2010 Digest of Technical Papers International Conference on Consumer Electronics, pp 311–312 (2010). https://doi.org/10.1109/ICCE.2010.5418845

  7. Joseph, R., Ali, F.: Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  8. Alexey, B., Chein-Yao, W., Hong-Yang, L.: Yolov4: Optimal speed and accuracy of object detection, arXiv preprint arXiv:2004.10934 (2020)

  9. Glen, J., Alex S., Jirka, B., Ayush, C., Liu, C., Abhiram, V., Jan, H., Laurentiu, D., Yonghye, K.: Ultralytics/yolov5(v5.0), https://doi.org/10.5281/zenodo.4679653Detectron2 (2021). Accessed 16 Oct 2020

  10. https://github.com/facebookresearch/detectron2/blob/master/MODELZOO.md. Accessed 16 Oct 2020

  11. Nicolas, C., Fransisco, M., Gabriel, S., Nicolas, U., Alexander, K., Sergey, Z.: End-to-End Object Detection with Transformers (2020)

    Google Scholar 

  12. Clement, G., Oisin, A., Micheal, F., Gabriel, B.: Digging into self-supervised monocular depth estimation. arXiv preprint arXiv:1806.01260 (2018)

  13. Yolo_Label (2020). https://github.com/developer0hye/Yolo_Label. Accessed 16 Oct 2020

  14. Oxford Town Centre video data: http://www.robots.ox.ac.uk/ActiveVision/Research/Projects/2009bbenfold_headpose/project.html. Accessed 16 Oct 2020

  15. PETS2009 dataset: http://www.cvg.reading.ac.uk/PETS2009/a.html. Accessed 17 Oct 2020

  16. VIRAT Video Dataset: https://viratdata.org/. Accessed 18 Oct 2020

Download references

Acknowledgements

We are grateful to the International Institute of Information Technology Bangalore (IIITB), India for the infrastructure support. We are thankful to Infosys Foundation for the financial assistance and project grant through the Infosys Foundation Career Development Chair Professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uttam Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nair, P., Kumar, U., Nandan, S. (2022). COVID-19 Social Distance Surveillance Using Deep Learning. In: Raman, B., Murala, S., Chowdhury, A., Dhall, A., Goyal, P. (eds) Computer Vision and Image Processing. CVIP 2021. Communications in Computer and Information Science, vol 1568. Springer, Cham. https://doi.org/10.1007/978-3-031-11349-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11349-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11348-2

  • Online ISBN: 978-3-031-11349-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics