
OGGN: A Novel Generalized Oracle Guided Generative Architecture
for Modelling Inverse Function of Artificial Neural Networks

Mohammad Aaftab V1 and Mansi Sharma2

Abstract— This paper presents a novel Generative Neural
Network Architecture for modelling the inverse function of an
Artificial Neural Network (ANN) either completely or partially.
Modelling the complete inverse function of an ANN involves
generating the values of all features that corresponds to a
desired output. On the other hand, partially modelling the
inverse function means generating the values of a subset of
features and fixing the remaining feature values. The feature set
generation is a critical step for artificial neural networks, useful
in several practical applications in engineering and science. The
proposed Oracle Guided Generative Neural Network, dubbed
as OGGN, is flexible to handle a variety of feature generation
problems. In general, an ANN is able to predict the target
values based on given feature vectors. The OGGN architecture
enables to generate feature vectors given the predetermined
target values of an ANN. When generated feature vectors are
fed to the forward ANN, the target value predicted by ANN
will be close to the predetermined target values. Therefore,
the OGGN architecture is able to map, inverse function of the
function represented by forward ANN. Besides, there is another
important contribution of this work. This paper also introduces
a new class of functions, defined as constraint functions. The
constraint functions enable a neural network to investigate a
given local space for a longer period of time. Thus, enabling to
find a local optimum of the loss function apart from just being
able to find the global optimum. OGGN can also be adapted to
solve a system of polynomial equations in many variables. The
experiments on synthetic datasets validate the effectiveness of
OGGN on various use cases.

I. INTRODUCTION

Neural networks are known to be great function approxi-
mators for a given data, i.e., for a given dataset with features
and targets, neural networks are very useful in modelling
the function which maps features to targets [1], [2]. The
inverse function of a dataset, i.e., the function that maps
the targets to corresponding features is also very important.
Neural networks have been used to solve the inverse problem,
especially in design and manufacturing applications [3]–[10],
where the ability to predict features corresponding to a given
target value is vital. The modelling of the inverse function
can be accomplished by modelling the inverse function of
a neural network that maps features to targets. The problem
of finding the inverse of a neural network is also crucial
in various engineering problems, especially the optimisation
ones [11]–[15]. Inverse problems in imaging and computer
vision are being solved with the help of deep convolution
neural networks [16]–[19]. Generative Adversarial Networks

1Mohammad Aaftab V is a final Year B.Tech. Mechanical Engineering
Student at IIT Madras, India. aaftaabv@gmail.com

2Mansi Sharma is with the Department of Electrical Engineering, IIT
Madras, India. mansisharmaiitd@gmail.com

[20] have also been used extensively in solving inverse
problems [21]–[25].

Our paper introduces a novel neural network architecture
called Oracle Guided Generative Neural Networks (OGGN).
The proposed OGGN model the inverse function (i.e., the
function from targets to features) using the forward function
(i.e., the function from features to targets). We define oracle
as the function mapping features to targets. Theoretically,
an oracle can either be a mathematical function or a neural
network. The generative neural network is responsible for
predicting features that correspond to a desired target, i.e.,
when the predicted features are modelled using oracle, the
output must be close to desired target value. The generator’s
loss function is dependent on the oracle. Generator tries to
minimize loss using gradient descent. Thus, the proposed
architecture is called Oracle Guided Generative Neural Net-
work.

The primary contribution of the proposed architecture is
solving the problem of modelling the inverse of a given
function or neural network. OGGN architecture can generate
feature vector based on a given oracle and a given target
vector value, such that, when the generated feature vector is
fed into the oracle, it outputs the target vector close to the
predetermined target value. The proposed OGGN architec-
ture can also find feature vectors subject to constraints like
fixed range for a few or all of the feature values. In addition,
OGGN can also generate feature vectors corresponding to
a required target with one or more feature values fixed as
constants. It can also be modified to tackle the problem of
solving a system of polynomial equations in many variables.
All use cases of OGGN are analyzed on synthetic datasets
in various experiments.

II. RELATED WORK

The problem of developing generative neural networks for
finding features has been explored well, especially in the
recent years. In this section, we explore some latest methods.

Chen et al. [26] describes a general-purpose inverse design
approach using generative inverse design networks along
with active learning. They introduce a framework named
Generative Inverse Design Networks (GIDNs). Their frame-
work has two DNNs namely, the predictor and the generator.
The weights and biases of the predictor are learned using
gradient decent and backpropagation, while training on a
given dataset. In the designer, the weights and biases are
adapted from the predictor and set as constants. Initial
Gaussian distribution features are fed into the designer as
inputs and the optimized design features are generated as

ar
X

iv
:2

10
4.

03
93

5v
1 

 [
cs

.L
G

] 
 8

 A
pr

 2
02

1



Fig. 1. Oracle neural network: maps features to targets

Fig. 2. Generative network training methodology

outputs. The designer inverse model optimizes the initial
inputs or designs based on an objective function via gradient
descent with weights and biases of all layers kept as constants
and only the input layer values are learned. Active learning
takes place in the feedback loop, where the optimized designs
or features are verified and added to the dataset. We differ
from their approach, in using an additional generator neural
network to generate features from random data whose size
is tunable according to the complexity of the inverse neural
network.

Yang et al. [27] describe neural network inversion in
adversarial settings. They present an approach to generate
the training data that were used in training a forward neural
network using only black box access to it. Our approach also
uses a black box access to the forward neural network, but the
use cases, training procedure, and architecture are different.
While their approach mainly focuses on generating the exact

training data (features and targets) that were used at the time
of training the forward neural network, our approach shows
how to generate features corresponding to any desired target.

Tahersima et al. [28] present a method to design integrated
photonic power splitters using deep neural networks to model
the inverse relation. Their approach deals along the same
lines as ours. They also use neural networks to find feature
vector that corresponds to a given target value. However,
their network is different from our approach as it is built for
a very specific application of designing integrated photonic
power splitters. We proposed an architecture that can be
generalized and used for any data.

Zang et al. [29] describes a multi-valued neural network
for inverse modeling and application to microwave filters.
They also attempt to find the feature vector corresponding
to a required target value. They focus mainly on the existence
of non-unique feature vectors corresponding to a given target



value. Their approach overcomes the above mentioned non-
uniqueness problem by generating multiple sets of feature
vectors at a time for a given target vector.

Our proposed methodology uses a separate generator neu-
ral network to convert random data into features using oracle
neural network. Hence, our approach is different from the
previous works.

III. PROPOSED ORACLE GUIDED GENERATIVE NEURAL
NETWORK

We introduce a novel neural network architecture known
as OGGN, for modelling the inverse of a given neural
network. Modelling the inverse of a neural network involves
finding the values of features that correspond to a desired
target value. The most straight forward way to accomplish
this task is to train a new neural network with targets
as inputs and features as outputs. The data required for
training the new inverse neural network can be obtained
by swapping the input and output data used to train the
forward network. The straight forward method of modelling
the inverse function can often suffer from the multi-valued
relationship between inputs and outputs. The multi-valued
relationship refers to the fact that different feature vectors can
correspond to a same target vector. It means that same input
values to the inverse network (targets) can have different
outputs (features). This causes significant problems while
training the inverse neural network directly from the swapped
data. Humayun et al. [30] discusses this problem in detail.

The proposed OGGN architecture provides a better alter-
native method for mapping the inverse of a neural network.
Oracle network is the name of the forward neural network
whose inverse function we are trying to model (figure 1).
The workflow of our architecture is depicted in (figure 2).
A generator neural network takes random data as input (the
dimensionality of the random data is a hyper-parameter and
can be increased or decreased to fit the complexity of the
inverse function) and outputs the predicted feature vector
value. The training procedure of OGGN is summarized in
Algorithm 1.

Algorithm 1: OGGN Methodology
Result: features corresponding to a desired target

value
random data (size tunable according to the
complexity of system of equations);

Oracle Neural Network (maps the features to targets);
e is the acceptable error between predicted targets
and desired targets.;

while loss > e do
features = generator(random data);
predicted target = oracle(features) ;
loss = (predicted target−desired target)2.0;
optimizer adjusts weights and biases of generator

neural network based on loss;
end

Once predicted features from generator are obtained, they
are modelled into target vectors using the oracle neural
network. The loss value of the generator neural network
is the mean squared error between the predicted target
vectors and desired target vectors. The training of generator
neural network is done via gradient descent to minimize the
obtained loss value. Minimizing this loss means that the pre-
dicted features are close to the features corresponding to the
desired target vector. Thus, as the generator trains, it predicts
features closer and closer to the required features (i.e., those
that correspond the desired target vector). By training the
generator, the values of input features corresponding to a
desired value of target vector have been derived. It is possible
to generate multiple such input feature vectors at a time by
passing many rows into the generator neural network and
optimising all of them at the same time. Thus, multiple input
feature vectors that all correspond to a same or similar value
of a output vector can be found.

OGGN can solve the following problems:
• It is possible to model the inverse function to a given

neural network by trying to produce the values of
feature vectors that correspond to a required output in
the forward neural network.

• OGGN can also model only a part of the inverse
function of a forward neural network, i.e., it is possible
to fix one or more input feature values and train the
generator to produce only the remaining feature values
such that the whole feature vector corresponds to a
desired target value.

• OGGN can constraint the values of one or more gen-
erated feature values. This is accomplished by using
a family of functions introduced in our paper called
constraint functions.

• OGGN can be adapted to solve a system of polynomial
equations.

All these use cases are validated using synthetic datasets.

A. Constraint Functions

Activation functions [31] in neural networks such as
ReLu, Tanh serve various purposes ranging from introducing
non-linearity to the modelling process or avoiding gradient
vanishing.

We propose one such family of functions named, con-
straint functions, which serve the purpose of constraining
the search/exploration space in a neural network. Constraint
functions, like activation functions are applied to each output
from a neuron. Constraint functions are conditional and
they help the neural network minimize the loss while still
exploring in a prescribed space. Constraint functions help in
maintaining the outputs in a certain range. One such example
function is described in the experiments section below.

IV. EXPERIMENTS AND RESULTS

A. Dataset Preparation

To test the performance of the proposed model, we gener-
ated a synthetic dataset. We consider an arbitrary polynomial



exponential function in four variables x1, x2, x3, x4. The
function is defined as:

y = 9x0.87
1 + 8.97x0.02

2 + 0.876x0.12
3 + 2.9876x0.987

4 (1)

The training data has been prepared by randomly choosing
values of xi, i = 1, ..., 4 variables in (1). The target variable
y is calculated from polynomial function by substituting the
randomly selected x values. We consider 10, 000 random
sample points of this function (1) for training our model.
For testing, we generated a new set of 1000 random samples
of the function (1).

B. Experimental Settings

The generated training data is used to train the proposed
oracle neural network, which maps the forward function be-
tween features and target outputs, i.e., the function mapping
from x values to y value. To validate the proposed idea,
same oracle network has been used for carrying out all the
experiments. Each experiment is designed to validate a use
case of the proposed OGGN architecture. The use cases
include:

• Generating values of all features corresponding to a
desired target value.

• Generating values of some features corresponding to a
desired target value, while other feature values are set
as constants.

• Generating feature values corresponding to a desired
target value, such that, the feature values are restricted
within a customizable range.

• Solving a system of polynomial equations.
Each use case requires a different generator neural network

architecture.

C. Use Cases of the Proposed OGGN architecture

Here, different use cases of proposed OGGN architecture
are described and experiments have been performed to vali-
date the proposed model.

1) Modelling the inverse function: The main purpose of
this experiment is to generate values of the features corre-
sponding to a desired output. For example, given a target
value y, our objective is to generate the values of xi, i =
1, ..., 4, such that, when they are substituted in the reference
function (1), we get the output very near to the previously
given target value y. In this experiment, we aim to find
feature vectors xi, i = 1, ..., 4 corresponding to a required
output y = 1900. So, the generated xi, i = 1, ..., 4 values
from this experiment when modelled using the polynomial
function (1), the output is very close to 1900. Generalized
steps of this use case is summarized in Algorithm 1. Pseudo
code of this experiment is given in Algorithm 2. It is not
guaranteed to get the exact desired value always, while
modelling the generated features using the forward neural
network. It may be either because of the error in modelling
the polynomial function by the Oracle network, or due to the
polynomial function itself never reach the desired value y for
any value of xi, i = 1, ..., 4. Hence, the generator network

Algorithm 2: Model inverse function using OGGN
Result: features corresponding to a desired target

value
random data (size tunable according to the
complexity of system of equations);

Oracle Neural Network (maps the features to targets);
while loss > e do

x1, x2, x3, x4 = generator(random data);
predicted target = oracle(x1, x2, x3, x4) ;
loss = (predicted target−desired target)2.0;
optimizer adjusts weights and biases of generator
neural network based on loss;

end

only tries to minimize the error between the desired output
and the predicted target.

After training the generator network for 2000 epochs, we
get the feature values x1 = 224.6277, x2 = 0.000, x3 =
283.2135, x4 = 328.2939. The target value corresponding
to the predicted features is 1911.4099. It is clear that this
predicted target, 1911.4099 is very close to the desired
target value of 1900.00. With this experiment, we verify
that we can compute feature vectors that correspond to an
output of our choice. Thus, this experiment demonstrates the
feasibility of the proposed model and its principle. It verifies
the proof of concept or theoretical underpinnings that the
proposed OGGN has potential to solve a number of inverse
problems. The feature vectors can be further optimized so
that the target can be achieved closer to 1900. We can explore
different approaches like using more data for training of
the oracle network or using extended architecture with more
layers for oracle and generator neural networks. Training the
networks for a larger number of epochs could also improve
the accuracy.

2) Finding the other feature values with one feature
specified as constant: In this experiment, we aim to find
the optimal values of feature vectors xi, i 6= j, such that
one or more variables xj can be specified as a constant. For
example, the value of x4 is set to 10.0 in the polynomial
function (1). The objective is to compute the values of x1, x2,
x3 using proposed model such that the target output should
be close to the desired value y = 2000.0. The generator
predicts the values of x1, x2, x3. Now, the feature values
(i.e., predicted x1, x2, x3 and constant x4) are modelled using
oracle network. The oracle gives a predicted output and this
prediction is compared to target output via mean squared
error. The generator network tries to minimize this error by
adjusting its weights and biases using back propagation and
gradient descent. After training the generator network for
1000 epochs, we estimate the feature values x1 = 485.6413,
x2 = 70.6677, x3 = 90.4546, x4 = 10.00. The target value
corresponding to the predicted features is 1996.1234. It is
clear that the predicted target value 1996.1234 is very close
to the desire target value of y = 2000.0. Results can be
further improved by using better optimizer or training the



networks for longer times with larger datasets. The pseudo
code for training OGGN for this experiment is summarized
in Algorithm 3.

Algorithm 3: Model subset of inverse function using
OGGN

Result: some features corresponding to a desired
target value while other features are fixed

random data (size tunable according to the
complexity of system of equations);

Oracle Neural Network (maps the features to targets);
x4=10.00 (this is constant);
while loss > e do

x1, x2, x3 = generator(random data);
predicted target = oracle(x1, x2, x3, x4) ;
loss = (predicted target−desired target)2.0;
optimizer adjusts weights and biases of generator

neural network based on loss;
end

This experiment has been designed to demonstrate that
the proposed OGGN architecture can explore different pro-
jections of the inverse function as well.

3) Finding the feature vector with some features in a
desired range and some features specified to be constant:
The objective of this experiment is to find the optimal values
of feature vectors xi, i 6= j, such that they are in a desired
range and one or more variables xj can be specified as a
constant. For instance, the value of x4 is set to 100.0 in
the polynomial function (1). The objective is to compute the
values of x1, x2, x3 using proposed model, such that, the
target output should be close to the desired value y = 788.0
and the computed values of x1, x2, x3 are within the desired
range of 1 to 100. The generator predicts the values of
x1, x2, x3. The training methodology used in this experiment
is summarized in Algorithm 4.

We introduce a family of functions dubbed as constraint
functions. These constraint functions decide the range of
the output of a neural network. Thus, the feature vectors
predicted by generator network are within the predetermined
range specified by the constraint functions. The constraint
functions are defined as,{

x/c1 UpperBound ≤ x
x ∗ c2 x ≤ LowerBound

(2)

where, c1 and c2 are constants. The values of c1 and c2 are
decided after checking the range of outputs from the gener-
ator network, trained without using constraint functions. If
the outputs of unconstrained generator network are higher
than the required upper bound, it is necessary to divide
those outputs with an appropriate number in order to bring
outputs into the desired range. This appropriate value is set
as constant c1. Similarly, If the outputs of unconstrained
generator network are lower than the required lower bound,
it is necessary to multiply those outputs with an appropriate
number in order to bring outputs into the desired range. This
suitable value is set as constant c2.

Algorithm 4: Model constrained subset of inverse
function using OGGN

Result: some features constrained to a given space
corresponding to a desired target value while
other features are fixed

random data (size tunable according to the
complexity of system of equations);

Oracle neural network (maps the features to targets);
x4=100.00 (this is constant);
constraints on range of features is given;
constrainedgenerator is the neural network with
constraint functions applied to its output layer;

while loss > e do
x1, x2, x3 = constrainedgenerator(random data);
predicted target = oracle(x1, x2, x3, x4) ;
loss = (predicted target−desired target)2.0;
optimizer adjusts weights and biases of generator
neural network based on loss;

end

For example, in this experiment, the generator before using
constraint functions produce the outputs in the range of 200−
500. To let the feature values lie between 1 and 100, initially
c1 is set to 2. To further increase the exploration time of
generator in the range of 1 and 100, experimentally, the value
of c1 is set to 20.0. Similarly, the value of c2 has been chosen
as 10.0. Thus, the constraint function is defined as{

x/20 100 ≤ x
x ∗ 10 x ≤ 1

(3)

Like an activation function, the constraint function can be
applied to neurons in any layer. However in this experiment,
constraint function has been applied on neurons in the output
layer only. The constrained generator network predicts x1,
x2, x3 in the required range. The value of x4 is set as
constant, x4 = 100. The oracle network models the generated
features x1, x2, x3 and x4 and predicts the corresponding
target. Final loss is calculated as a Mean Squared Error
between the predicted target and the required target. The
generator neural network then tries to minimize the final loss
via gradient descent.

The constraint function enables a neural network to search
in a prescribed space for a longer period of time. It helps
neural network explore the prescribed space thoroughly. If
the global minimum of the loss function lies outside the
prescribed range, even a constrained neural network will
eventually optimize itself to produce outputs that correspond
to global minima of loss function. We can arrive at the
local optima by stopping training of the constrained neural
network once the outputs go beyond the prescribed range.

We obtained output y = 777.5806 with the predicted
feature vector x1 = 100.0423, x2 = 0.0000, x3 = 53.7249,
x4 = 100.00. Here the values of x1, x2, x3 were generated
by the generator after training for 200 epochs. The theoretical
maximum value achievable for the function (1) is 787.34, if



all the features x1, x2, x3 and x4 are constrained to lie within
the range of 1 and 100. It is apparent that the predicted
value is pretty close to the theoretical maximum value.
This experiment is designed to show that proposed OGGN
architecture can explore different projections of the inverse
function in a subspace. Thus, proposed OGGN architecture
can impose constraints on one or more features and find the
local optimum of a function.

4) Solving a simultaneous system of polynomial equa-
tions: In this experiment, we describe another use case of
proposed OGGN architecture. OGGN can be used to solve
a system of polynomial equations. It is highly versatile
and adaptable. Solving a system of polynomial equations
involve finding the values of the variables that satisfy all
equations. We consider an arbitrary system of polynomial
equations to demonstrate the usefulness of the proposed
OGGN architecture.

9x2 + 8.97y7.8 + 0.876z − 32.0 = 0,
12x3 + 9.97y8 + 10.876z3 − 43.0 = 0

(4)

To solve (4), we consider the following functions

f(x, y, z) = 9x2 + 8.97y7.8 + 0.876z − 32.0,
g(x, y, z) = 12x3 + 9.97y8 + 10.876z3 − 43.0

(5)

Solving the simultaneous system of equations involve finding
the values of x, y, z such that both f(x, y, z) and g(x, y, z)
would come close to zero. To this end, we consider the oracle
function for generator neural network, given as.

oracleoutput = (f(x, y, z)2 + g(x, y, z)2)0.5 (6)

The main purpose of oracle is to convert the features into
targets. In most real life datasets, a mathematical equation
is not available to model the features into targets. The only
way to model features into targets in real life datasets is to
use a neural network. In the previous experiments, a neural
network was used as oracle to demonstrate the ability of
the OGGN to work with practical datasets. However, in this
example, the objective is to solve a system of equations.
A mathematical equation converting variables into targets
is readily available. Hence, here the oracle is not a neural
network, rather it is a function (6).

The value of the oracle function (6) will be close to zero if
and only if both functions f(x, y, z) and g(x, y, z) are close
to zero. Hence the solutions of the system of equations (4)
are the values of x, y, z such that upon modelling them using
the oracle function (6), the output is close to zero. To this
end, we task the generator neural network to find the values
of x, y, z such that the oracle function value (6) will be close
to zero. The training process is summarized in Algorithm 5.

The error e, in algorithm 5 is a small number close to zero.
The variables x, y, z predicted by the generator are modelled
using the oracle (6). The corresponding loss is calculated as
a mean square error between predicted oracle function value
and zero. Generator neural network now tries to minimize
the loss via gradient descent and back propagation.

Algorithm 5: Solving System of Equations (4): the
OGGN way

Result: solutions of system of equations, x, y, z
random data (size tunable according to the
complexity of system of equations);

while loss > e do
x, y, z = generator(random data);
predicted target = oracle(x, y, z) (6);
loss = (predicted target−0.00)2.0;
optimizer adjusts weights and biases of generator
neural network based on loss;

end

After training generator neural network, it predicts values
of x, y, z such that when modelled using oracle (6), we get
an output of 0.0589. The values generated are x = 1.2279,
y = 1.0952, z = 0.2624. For these variables, f(x, y, z) =
0.03179 and g(x, y, z) = 0.04953.

If the given system of equations has a solution, we can be
certain that the generated values x = 1.2279, y = 1.0952,
z = 0.2624 are close to the actual solution. If the system
does not have an exact solution, we can conclude that the
obtained values of variables x, y, z take both f(x, y, z) and
g(x, y, z) as close to zero as possible. Hence, we conclude
in this example that OGGN is capable of solving a system
of polynomial equations.

V. CONCLUSIONS AND FUTURE WORK

This paper introduces a novel Oracle Guided Generative
Neural Networks (OGGN) to solve the problem of finding
the inverse of a given function either fully or partially. The
problem of predicting the features corresponding to a desired
target is very important and useful in several design and
manufacturing fields [3]–[10]. It is also very useful in various
engineering problems, especially optimization ones [11]–
[15]. OGGN can also generate features subject to constraints,
i.e., it can generate features that lie within a given range.
Our paper also introduces a class of functions known as
Constraint Functions. Constraint functions enable a given
neural network to explore a given space thoroughly and arrive
at a local optima. The proposed concept of OGGN architec-
ture coupled with constraint functions have huge potential
in several practical applications in design and manufacturing
industries. OGGNs are flexible and can be adapted to solve
a large variety of research problems.

This paper has described a way to generate feature vectors
that are able to model a particular fixed target value using
OGGN. In the future, we can further extend the proposed
idea for generating feature vectors corresponding to different
target values. This aids in the process of extending a given
dataset by creating new synthetic data. The synthetic data
can build a better oracle neural network. This improved
oracle can guide the generator more effectively and can lead
to the creation of better synthetic data. Thus, OGGNs can
potentially help in active learning of both forward mapping



and inverse mapping neural networks for a given dataset.
Synthetic dataset generation using the described architecture
could helpful in classification tasks [32]. Especially, if there
is a lot of class imbalance [33]–[35]. OGGNs can create syn-
thetic data corresponding to the lesser represented class and
potentially overcome the problem of class data imbalance.

REFERENCES

[1] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural networks, vol. 2, no. 5,
pp. 359–366, 1989.

[2] S. Wu and M. J. Er, “Dynamic fuzzy neural networks-a novel approach
to function approximation,” IEEE transactions on systems, man, and
cybernetics, part B (cybernetics), vol. 30, no. 2, pp. 358–364, 2000.

[3] D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks
for the inverse design of nanophotonic structures,” Acs Photonics,
vol. 5, no. 4, pp. 1365–1369, 2018.

[4] S. A. Hassan, “Artificial neural networks for the inverse design of
nanoparticles with preferential nano-bio behaviors,” The Journal of
Chemical Physics, vol. 153, no. 5, p. 054102, 2020.

[5] J. Lenaerts, H. Pinson, and V. Ginis, “Artificial neural networks for
inverse design of resonant nanophotonic components with oscillatory
loss landscapes,” Nanophotonics, vol. 10, no. 1, pp. 385–392, 2021.

[6] X. Xu, C. Sun, Y. Li, J. Zhao, J. Han, and W. Huang, “An improved
tandem neural network for the inverse design of nanophotonics de-
vices,” Optics Communications, vol. 481, p. 126513, 2021.

[7] Y. Qu, H. Zhu, Y. Shen, J. Zhang, C. Tao, P. Ghosh, and M. Qiu, “In-
verse design of an integrated-nanophotonics optical neural network,”
Science Bulletin, vol. 65, no. 14, pp. 1177–1183, 2020.

[8] V. Sekar, M. Zhang, C. Shu, and B. C. Khoo, “Inverse design of airfoil
using a deep convolutional neural network,” Aiaa Journal, vol. 57,
no. 3, pp. 993–1003, 2019.

[9] S. So, J. Mun, and J. Rho, “Simultaneous inverse design of materials
and structures via deep learning: demonstration of dipole resonance
engineering using core–shell nanoparticles,” ACS applied materials &
interfaces, vol. 11, no. 27, pp. 24 264–24 268, 2019.

[10] K. Kim, S. Kang, J. Yoo, Y. Kwon, Y. Nam, D. Lee, I. Kim, Y.-S. Choi,
Y. Jung, S. Kim et al., “Deep-learning-based inverse design model
for intelligent discovery of organic molecules,” npj Computational
Materials, vol. 4, no. 1, pp. 1–7, 2018.

[11] O. May, L. J. Ricalde, B. Ali, E. O. López, E. Venegas-Reyes, and
O. A. Jaramillo, “Neural network inverse modeling for optimization,”
in Artificial Neural Networks-Models and Applications. InTech, 2016,
vol. 1, no. 2, pp. 168–176.

[12] J. Hernández, D. Colorado, O. Cortés-Aburto, Y. El Hamzaoui, V. Ve-
lazquez, and B. Alonso, “Inverse neural network for optimal per-
formance in polygeneration systems,” Applied Thermal Engineering,
vol. 50, no. 2, pp. 1399–1406, 2013.

[13] R. Rajesh, R. Preethi, P. Mehata, and B. J. Pandian, “Artificial neural
network based inverse model control of a nonlinear process,” in 2015
International Conference on Computer, Communication and Control
(IC4). IEEE, 2015, pp. 1–6.

[14] N. Hattab and M. Motelica-Heino, “Application of an inverse neural
network model for the identification of optimal amendment to reduce
copper toxicity in phytoremediated contaminated soils,” Journal of
Geochemical Exploration, vol. 136, pp. 14–23, 2014.

[15] V. M. Krasnopolsky, “Neural network applications to solve forward
and inverse problems in atmospheric and oceanic satellite remote
sensing,” in Artificial Intelligence Methods in the Environmental
Sciences. Springer, 2009, pp. 191–205.

[16] M. T. McCann, K. H. Jin, and M. Unser, “A review of convolutional
neural networks for inverse problems in imaging,” arXiv preprint
arXiv:1710.04011, 2017.

[17] G. Ongie, A. Jalal, C. A. Metzler, R. G. Baraniuk, A. G. Dimakis,
and R. Willett, “Deep learning techniques for inverse problems in
imaging,” IEEE Journal on Selected Areas in Information Theory,
vol. 1, no. 1, pp. 39–56, 2020.

[18] H. Li, J. Schwab, S. Antholzer, and M. Haltmeier, “Nett: Solving in-
verse problems with deep neural networks,” Inverse Problems, vol. 36,
no. 6, p. 065005, 2020.

[19] F. Wang, A. Eljarrat, J. Müller, T. R. Henninen, R. Erni, and C. T.
Koch, “Multi-resolution convolutional neural networks for inverse
problems,” Scientific reports, vol. 10, no. 1, pp. 1–11, 2020.

[20] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial
networks,” arXiv preprint arXiv:1406.2661, 2014.

[21] H. Ren and P. Ben-Tzvi, “Learning inverse kinematics and dynamics of
a robotic manipulator using generative adversarial networks,” Robotics
and Autonomous Systems, vol. 124, p. 103386, 2020.

[22] Y. Dan, Y. Zhao, X. Li, S. Li, M. Hu, and J. Hu, “Generative adversar-
ial networks (gan) based efficient sampling of chemical composition
space for inverse design of inorganic materials,” npj Computational
Materials, vol. 6, no. 1, pp. 1–7, 2020.

[23] M. Lenninger, “Generative adversarial networks as integrated forward
and inverse model for motor control,” 2017.

[24] A. Creswell and A. A. Bharath, “Inverting the generator of a generative
adversarial network,” IEEE transactions on neural networks and
learning systems, vol. 30, no. 7, pp. 1967–1974, 2018.

[25] M. Asim, M. Daniels, O. Leong, A. Ahmed, and P. Hand, “Invertible
generative models for inverse problems: mitigating representation error
and dataset bias,” in International Conference on Machine Learning.
PMLR, 2020, pp. 399–409.

[26] C.-T. Chen and G. X. Gu, “Generative deep neural networks for inverse
materials design using backpropagation and active learning,” Advanced
Science, vol. 7, no. 5, p. 1902607, 2020.

[27] Z. Yang, E.-C. Chang, and Z. Liang, “Adversarial neural net-
work inversion via auxiliary knowledge alignment,” arXiv preprint
arXiv:1902.08552, 2019.

[28] M. H. Tahersima, K. Kojima, T. Koike-Akino, D. Jha, B. Wang, C. Lin,
and K. Parsons, “Deep neural network inverse design of integrated
photonic power splitters,” Scientific reports, vol. 9, no. 1, pp. 1–9,
2019.

[29] C. Zhang, J. Jin, W. Na, Q.-J. Zhang, and M. Yu, “Multivalued neural
network inverse modeling and applications to microwave filters,” IEEE
Transactions on Microwave Theory and Techniques, vol. 66, no. 8, pp.
3781–3797, 2018.

[30] H. Kabir, Y. Wang, M. Yu, and Q.-J. Zhang, “Neural network in-
verse modeling and applications to microwave filter design,” IEEE
Transactions on Microwave Theory and Techniques, vol. 56, no. 4,
pp. 867–879, 2008.

[31] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation
functions: Comparison of trends in practice and research for deep
learning,” arXiv preprint arXiv:1811.03378, 2018.

[32] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller,
“Deep learning for time series classification: a review,” Data Mining
and Knowledge Discovery, vol. 33, no. 4, pp. 917–963, 2019.

[33] N. Japkowicz and S. Stephen, “The class imbalance problem: A
systematic study,” Intelligent data analysis, vol. 6, no. 5, pp. 429–
449, 2002.

[34] X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory undersampling for
class-imbalance learning,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), vol. 39, no. 2, pp. 539–550, 2008.

[35] J. M. Johnson and T. M. Khoshgoftaar, “Survey on deep learning with
class imbalance,” Journal of Big Data, vol. 6, no. 1, pp. 1–54, 2019.


	I INTRODUCTION
	II Related Work
	III Proposed Oracle Guided Generative Neural Network
	III-A Constraint Functions

	IV Experiments and Results
	IV-A Dataset Preparation
	IV-B Experimental Settings
	IV-C Use Cases of the Proposed OGGN architecture
	IV-C.1 Modelling the inverse function
	IV-C.2 Finding the other feature values with one feature specified as constant
	IV-C.3 Finding the feature vector with some features in a desired range and some features specified to be constant
	IV-C.4 Solving a simultaneous system of polynomial equations


	V Conclusions and Future work
	References

