Skip to main content

(Semi-) Automatic Construction of Knowledge Graph Metadata

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13384))

Abstract

Recently a huge number of knowledge graphs (KGs) has been generated, but there has not been enough attention to generate high-quality metadata to enable users to reuse the KGs for their own purposes. The main challenge is to generate standardized and high quality descriptive metadata which helps users understand the content of the large KGs. Some existing solutions make use of a combination of schema-level patterns derived from graph summarization with instance-level snippets. I will follow this trend and develop a method based on a combination of content-based patterns with user activity data such as SPARQL query logs to make generated metadata more informative and useful than other developed approaches. The problem of current models is generating complex, long or insufficient metadata which I plan to tackle by proposing a guideline to generate standard metadata during my Ph.D.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Spahiu, B., Porrini, R., Palmonari, M., Rula, A., Maurino, A.: ABSTAT: ontology-driven linked data summaries with pattern minimalization. In: Sack, H., Rizzo, G., Steinmetz, N., Mladenić, D., Auer, S., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9989, pp. 381–395. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47602-5_51

    Chapter  Google Scholar 

  2. Nayak, S., Zaveri, A., Serrano, P.H., Dumontier, M.: Experience: automated prediction of experimental metadata from scientific publications. J. Data Inf. Qual. 13(4), 1–11 (2021). https://doi.org/10.1145/3451219

    Article  Google Scholar 

  3. Dumontier, M., et al.: The health care and life sciences community profile for dataset descriptions. PeerJ 4, e2331 (2016)

    Article  Google Scholar 

  4. Martínez-Romero, M, O’Connor, M.J., Shankar, R.D., et al.: Fast and accurate metadata authoring using ontology-based recommendations. In: AMIA Annual Symposium Proceedings 2018, vol. 2017, pp. 1272–1281. Published 16 April 2018

    Google Scholar 

  5. Song, Q., Wu, Y., Dong, X.L.: Mining summaries for knowledge graph search. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 1215–1220 (2016). https://doi.org/10.1109/ICDM.2016.0162

  6. European commission, directorate-general for research and innovation, cost-benefit analysis for FAIR research data: cost of not having FAIR research data. Publications Office (2019). https://doi.org/10.2777/02999, https://op.europa.eu/en/publication-detail/-/publication/d375368c-1a0a-11e9-8d04-01aa75ed71a1/language-en

  7. Wilkinson, M.D., et al.: The FAIR guiding principles for scientific data management and stewardship. Sci. data 3(1), 1–9 (2016). https://www.nature.com/articles/sdata201618

  8. Pietriga, E., et al.: Browsing linked data catalogs with LODAtlas. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11137, pp. 137–153. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00668-6_9

    Chapter  Google Scholar 

  9. Wang, X., et al.: PCSG: pattern-coverage snippet generation for RDF datasets. In: Hotho, A., et al. (eds.) ISWC 2021. LNCS, vol. 12922, pp. 3–20. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88361-4_1

    Chapter  Google Scholar 

  10. Rosnet, T., de Lamotte, F., Devignes, M.D., Lefort, V., Gaignard, A.: FAIR-checker–supporting the findability and reusability of digital life science resources

    Google Scholar 

  11. Palmonari, M., Rula, A., Porrini, R., Maurino, A., Spahiu, B., Ferme, V.: ABSTAT: linked data summaries with abstraction and statistics. In: Gandon, F., Guéret, C., Villata, S., Breslin, J., Faron-Zucker, C., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9341, pp. 128–132. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25639-9_25

    Chapter  Google Scholar 

  12. Huber, R., Devaraju, A.: F-UJI: an automated tool for the assessment and improvement of the FAIRness of research data. In: EGU General Assembly Conference Abstracts, pp. EGU21–15922 (2021)

    Google Scholar 

  13. Liu, D., Cheng, G., Liu, Q., Yuzhong, Q.: Fast and practical snippet generation for RDF datasets. ACM Trans. Web (TWEB) 13(4), 1–38 (2019)

    Article  Google Scholar 

  14. Buil-Aranda, C., Ugarte, M., Arenas, M., Dumontier, M.: A preliminary investigation into SPARQL query complexity and federation in Bio2RDF. In: Mendelzon, A. (ed.) International Workshop on Foundations of Data Management, p. 196 (2015)

    Google Scholar 

  15. Saleem, M., Ali, M.I., Hogan, A., Mehmood, Q., Ngomo, A.-C.: LSQ: the linked SPARQL queries dataset. In: Arenas, M., Corcho, O., Simperl, E., Strohmaier, M., d’Aquin, M., Srinivas, K., Groth, P., Dumontier, M., Heflin, J., Thirunarayan, K., Staab, S. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 261–269. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25010-6_15

    Chapter  Google Scholar 

  16. Stadlera, C., et al.: LSQ 2.0: a linked dataset of SPARQL query logs

    Google Scholar 

  17. Liu, Y., Safavi, T., Dighe, A., Koutra, D.: Graph summarization methods and applications: a survey. ACM Comput. Surv. (CSUR) 51(3), 1–34 (2018)

    Article  Google Scholar 

  18. Safavi, T., Belth, C., Faber, L., Mottin, D., Müller, E., Koutra, D.: Personalized knowledge graph summarization: from the cloud to your pocket. In: 2019 IEEE International Conference on Data Mining (ICDM), pp. 528–537. IEEE (2019)

    Google Scholar 

Download references

Acknowledgements

This research has been funded by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie project Knowgraphs (grant agreement ID: 860801). I would like to express my special thanks of gratitude to my advisors and collaborators Prof. Michel Dumontier, Prof Christopher Brewster, Dr. Remzi Celebi, Chang Sun and Vincent Emonet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Mohammadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mohammadi, M. (2022). (Semi-) Automatic Construction of Knowledge Graph Metadata. In: Groth, P., et al. The Semantic Web: ESWC 2022 Satellite Events. ESWC 2022. Lecture Notes in Computer Science, vol 13384. Springer, Cham. https://doi.org/10.1007/978-3-031-11609-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11609-4_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11608-7

  • Online ISBN: 978-3-031-11609-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics