Skip to main content

A Neural Architecture Search Based Framework for Segmentation of Epithelium, Nuclei and Oral Epithelial Dysplasia Grading

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13413))

Included in the following conference series:

Abstract

Oral epithelial dysplasia (OED) is a pre-cancerous histopathological diagnosis given to a range of oral lesions. Architectural, cytological and histological features of OED can be modelled through the segmentation of full epithelium, individual nuclei and stroma (connective tissues) to provide significant diagnostic features. In this paper, we explore a customised neural architecture search (NAS) based method for optimisation of an efficient architecture for segmentation of the full epithelium and individual nuclei in pathology whole slide images (WSIs). Our initial experimental results show that the NAS-derived architecture achieves 93.5% F1-score for the full epithelium segmentation and 94.5% for nuclear segmentation outperforming other state-of-the-art models. Accurate nuclear segmentation allows us to perform quantitative statistical and morphometric feature analyses of the segmented nuclei within regions of interest (ROIs) of multi-gigapixel whole-slide images (WSIs). We show that a random forest model using these features can differentiate between low-risk and high-risk OED lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. European Cancer Patient Coalition: European Cancer Patient Coalition: Head & Neck Cancers (2018)

    Google Scholar 

  2. Barnes, L., Eveson, J.W., Sidransky, D., Reichart, P. (eds.): Pathology and Genetics of Head and Neck Tumors, vol. 9. IARC, Lyon (2005)

    Google Scholar 

  3. Wright, A., Shear, M.: Epithelial dysplasia is immediately adjacent to oral squamous cell carcinomas. J. Oral Pathol. Med. 14(7), 559–564 (1985)

    Article  Google Scholar 

  4. Barnes, L., Eveson, J., Reichart, P., Sidransky, D.: World Health Organization classification of tumours: pathology and genetics of head and neck tumours (2005)

    Google Scholar 

  5. Kujan, O., Khattab, A., Oliver, R.J., Roberts, S.A., Thakker, N., Sloan, P.: Why oral histopathology suffers inter-observer variability on grading oral epithelial dysplasia: an attempt to understand the sources of variation. Oral Oncol. 43(3), 224–231 (2007). https://doi.org/10.1016/j.oraloncology.2006.03.009

    Article  Google Scholar 

  6. Shubhasini, A.R., Praveen, B.N., Usha Hegde, U.K., Shubha, G., Keerthi, G.: Inter-and intra-observer variability in diagnosis of oral dysplasia. Asian Pac. J. Cancer Prev. APJCP 18(12), 3251 (2017). https://doi.org/10.22034/APJCP.2017.18.12.3251

  7. Krishnan, L., Karpagaselvi, K., Kumarswamy, J., Sudheendra, U.S., Santosh, K.V., Patil, A.: Inter-and intra-observer variability in three grading systems for oral epithelial dysplasia. J. Oral Maxillofac. Pathol. JOMFP 20(2), 261 (2016). https://doi.org/10.4103/0973-029X.185928

    Article  Google Scholar 

  8. Speight, P.M., Khurram, S.A., Kujan, O.: Oral potentially malignant disorders: risk of progression to malignancy. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 125(6), 612–627 (2018). https://doi.org/10.1016/j.oooo.2017.12.011

    Article  Google Scholar 

  9. Bera, K., Schalper, K.A., Rimm, D.L., Velcheti, V., Madabhushi, A.: Artificial intelligence in digital pathology—new tools for diagnosis and precision oncology. Nat. Rev. Clin. Oncol. 16(11), 703–715 (2019)

    Article  Google Scholar 

  10. Bulten, W., et al.: Epithelium segmentation using deep learning in H&E-stained prostate specimens with immunohistochemistry as reference standard. Sci. Rep. 9(1), 1–10 (2019). https://doi.org/10.1038/s41598-018-37257-4

    Article  Google Scholar 

  11. Mahmood, H., Shaban, M., Rajpoot, N., Khurram, S.A.: Artificial Intelligence-based methods in head and neck cancer diagnosis: an overview. Br. J. Cancer 124(12), 1934–1940 (2021). https://doi.org/10.1038/s41416-021-01386-x

    Article  Google Scholar 

  12. Bashir, R.S., et al.: Automated grade classification of oral epithelial dysplasia using morphometric analysis of histology images. In: Medical Imaging 2020: Digital Pathology, vol. 11320, p. 1132011. International Society for Optics and Photonics, March 2020. https://doi.org/10.1117/12.2549705

  13. Shephard, A.J., et al.: Simultaneous nuclear instance and layer segmentation in oral epithelial dysplasia. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 552–561 (2021)

    Google Scholar 

  14. Azarmehr, N., Shephard, A., Rajpoot, N., Khurram, S.A.: An optimal architecture for semantic segmentation in multi-gigapixel images of oral dysplasia. In: 35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia (2021)

    Google Scholar 

  15. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8697–8710 (2018)

    Google Scholar 

  16. Liu, C., et al.: Progressive neural architecture search. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 19–35. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_2

    Chapter  Google Scholar 

  17. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 4780–4789, July 2019

    Google Scholar 

  18. Weng, Y., Zhou, T., Li, Y., Qiu, X.: Nas-unet: Neural architecture search for medical image segmentation. IEEE Access 7, 44247–44257 (2019)

    Article  Google Scholar 

  19. Koohbanani, N.A., Jahanifar, M., Tajadin, N.Z., Rajpoot, N.: NuClick: a deep learning framework for interactive segmentation of microscopic images. Med. Image Anal. 65, 101771 (2020). https://doi.org/10.1016/j.media.2020.101771

    Article  Google Scholar 

  20. Liu, C., et al.: Auto-DeepLab: hierarchical neural architecture search for semantic image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 82–92 (2019)

    Google Scholar 

  21. Ryan, M.S., Nudd, G.R.: The viterbi algorithm (1993)

    Google Scholar 

  22. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  23. Li, S., et al.: PyTorch distributed: experiences on accelerating data parallel training. arXiv preprint arXiv:2006.15704 (2020)

  24. Paszke, A., et al.: Automatic differentiation in PyTorch (2017)

    Google Scholar 

  25. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  26. Badrinarayanan, V., Handa, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling. arXiv preprint arXiv:1505.07293 (2015)

  27. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  28. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    Article  Google Scholar 

  29. Silva, A.B., et al.: Computational analysis of histological images from hematoxylin and eosin-stained oral epithelial dysplasia tissue sections. Expert Syst. Appl., 116456 (2022). https://doi.org/10.1016/j.eswa.2021.116456

Download references

Acknowledgements

This work was supported by a Cancer Research UK Early Detection Project Grant, as part of the ANTICIPATE study (grant no. C63489/A29674).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neda Azarmehr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Azarmehr, N., Shephard, A., Mahmood, H., Rajpoot, N., Khurram, S.A. (2022). A Neural Architecture Search Based Framework for Segmentation of Epithelium, Nuclei and Oral Epithelial Dysplasia Grading. In: Yang, G., Aviles-Rivero, A., Roberts, M., Schönlieb, CB. (eds) Medical Image Understanding and Analysis. MIUA 2022. Lecture Notes in Computer Science, vol 13413. Springer, Cham. https://doi.org/10.1007/978-3-031-12053-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12053-4_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12052-7

  • Online ISBN: 978-3-031-12053-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics