Skip to main content

From Astronomy to Histology: Adapting the FellWalker Algorithm to Deep Nuclear Instance Segmentation

  • Conference paper
  • First Online:
Book cover Medical Image Understanding and Analysis (MIUA 2022)

Abstract

Accurate cell nuclei segmentation is necessary for subsequent histopathology image analysis, including tumour classification, grading and prognosis. Manually identifying cell nuclei is both difficult and time-consuming, with cell nuclei exhibiting dramatic differences in morphology and staining characteristics. Recently, significant advancements in automatic cell nuclei segmentation have been achieved using deep learning, with methods particularly successful in identifying cell nuclei from background tissue. However, delineating individual cell nuclei remains challenging, with often unclear boundaries between neighbouring nuclei. In this paper, we incorporate the FellWalker algorithm, originally developed for analysing molecular clouds, into a deep learning-based pipeline to perform instance cell nuclei segmentation. We evaluate our proposed method on the Lizard dataset, the largest publicly available nuclear segmentation dataset in digital pathology, and compare it against popular methods such as U-Net with Watershed and Mask R-CNN. Our proposed method consistently outperforms the other methods across dataset sizes, achieving an object Dice of 0.7876, F1 score of 0.8245 and Aggregated Jaccard Index of 0.6526. The flexible nature of our pipeline incorporating the FellWalker algorithm has the potential for broader application in biomedical image instance segmentation tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdolhoseini, M., Kluge, M.G., Walker, F.R., Johnson, S.J.: Segmentation of heavily clustered nuclei from histopathological images. Sci. Rep. 9(1), 1–13 (2019)

    Article  Google Scholar 

  2. Alsubaie, N., Sirinukunwattana, K., Raza, S.E.A., Snead, D., Rajpoot, N.: A bottom-up approach for tumour differentiation in whole slide images of lung adenocarcinoma. In: Medical Imaging 2018: Digital Pathology, vol. 10581, p. 105810E. International Society for Optics and Photonics (2018)

    Google Scholar 

  3. Berg, S., et al.: Ilastik: interactive machine learning for (bio) image analysis. Nat. Methods 16(12), 1226–1232 (2019)

    Article  Google Scholar 

  4. Berry, D.S.: Fellwalker - a clump identification algorithm. Astron. Comput. 10, 22–31 (2015)

    Article  Google Scholar 

  5. Berry, D., Reinhold, K., Jenness, T., Economou, F.: Cupid: a clump identification and analysis package. In: Astronomical Data Analysis Software and Systems XVI, vol. 376, p. 425 (2007)

    Google Scholar 

  6. Buslaev, A., Iglovikov, V.I., Khvedchenya, E., Parinov, A., Druzhinin, M., Kalinin, A.A.: Albumentations: fast and flexible image augmentations. Information 11(2), 125 (2020)

    Article  Google Scholar 

  7. Caicedo, J.C., et al.: Evaluation of deep learning strategies for nucleus segmentation in fluorescence images. Cytometry A 95(9), 952–965 (2019)

    Article  Google Scholar 

  8. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  Google Scholar 

  9. Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP), pp. 1–4. IEEE (2017)

    Google Scholar 

  10. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)

    Google Scholar 

  11. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  12. Graham, S., et al.: Lizard: a large-scale dataset for colonic nuclear instance segmentation and classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 684–693 (2021)

    Google Scholar 

  13. Graham, S., et al.: Conic: Colon nuclei identification and counting challenge 2022. arXiv preprint arXiv:2111.14485 (2021)

  14. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  16. Hollandi, R., Moshkov, N., Paavolainen, L., Tasnadi, E., Piccinini, F., Horvath, P.: Nucleus segmentation: towards automated solutions. Trends Cell Biol. (2022)

    Google Scholar 

  17. Hollandi, R., et al.: Nucleaizer: a parameter-free deep learning framework for nucleus segmentation using image style transfer. Cell Syst. 10(5), 453–458 (2020)

    Article  Google Scholar 

  18. Irshad, H., Veillard, A., Roux, L., Racoceanu, D.: Methods for nuclei detection, segmentation, and classification in digital histopathology: a review-current status and future potential. IEEE Rev. Biomed. Eng. 7, 97–114 (2013)

    Article  Google Scholar 

  19. Jung, H., Lodhi, B., Kang, J.: An automatic nuclei segmentation method based on deep convolutional neural networks for histopathology images. BMC Biomed. Eng. 1(1), 1–12 (2019)

    Article  Google Scholar 

  20. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002)

    Article  Google Scholar 

  21. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  22. Kornilov, A.S., Safonov, I.V.: An overview of watershed algorithm implementations in open source libraries. J. Imaging 4(10), 123 (2018)

    Article  Google Scholar 

  23. Kumar, N., et al.: A multi-organ nucleus segmentation challenge. IEEE Trans. Med. Imaging 39(5), 1380–1391 (2019)

    Article  Google Scholar 

  24. Kumar, N., Verma, R., Sharma, S., Bhargava, S., Vahadane, A., Sethi, A.: A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Trans. Med. Imaging 36(7), 1550–1560 (2017)

    Article  Google Scholar 

  25. Liu, Y., et al.: Detecting cancer metastases on gigapixel pathology images. arXiv preprint arXiv:1703.02442 (2017)

  26. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440 (2015)

    Google Scholar 

  27. Lu, C., et al.: A prognostic model for overall survival of patients with early-stage non-small cell lung cancer: a multicentre, retrospective study. Lancet Digit. Health 2(11), e594–e606 (2020)

    Article  Google Scholar 

  28. Ma, J., et al.: How distance transform maps boost segmentation CNNs: an empirical study. In: Medical Imaging with Deep Learning, pp. 479–492. PMLR (2020)

    Google Scholar 

  29. Mahbod, A., Schaefer, G., Ellinger, I., Ecker, R., Smedby, Ö., Wang, C.: A two-stage U-net algorithm for segmentation of nuclei in H &E-stained tissues. In: Reyes-Aldasoro, C.C., Janowczyk, A., Veta, M., Bankhead, P., Sirinukunwattana, K. (eds.) ECDP 2019. LNCS, vol. 11435, pp. 75–82. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23937-4_9

    Chapter  Google Scholar 

  30. Meyer, F., Maragos, P.: Multiscale morphological segmentations based on watershed, flooding, and Eikonal PDE. In: Nielsen, M., Johansen, P., Olsen, O.F., Weickert, J. (eds.) Scale-Space 1999. LNCS, vol. 1682, pp. 351–362. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48236-9_31

    Chapter  Google Scholar 

  31. Murugesan, B., Sarveswaran, K., Shankaranarayana, S.M., Ram, K., Joseph, J., Sivaprakasam, M.: PSI-net: shape and boundary aware joint multi-task deep network for medical image segmentation. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 7223–7226. IEEE (2019)

    Google Scholar 

  32. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  Google Scholar 

  33. Plissiti, M.E., Nikou, C., Charchanti, A.: Watershed-based segmentation of cell nuclei boundaries in pap smear images. In: Proceedings of the 10th IEEE International Conference on Information Technology and Applications in Biomedicine, pp. 1–4. IEEE (2010)

    Google Scholar 

  34. Robboy, S.J., et al.: Pathologist workforce in the united states: I. Development of a predictive model to examine factors influencing supply. Arch. Pathol. Lab. Med. 137(12), 1723–1732 (2013)

    Google Scholar 

  35. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  36. Schmidt, U., Weigert, M., Broaddus, C., Myers, G.: Cell detection with star-convex polygons. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 265–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_30

    Chapter  Google Scholar 

  37. Sirinukunwattana, K., et al.: Gland segmentation in colon histology images: the GLAS challenge contest. Med. Image Anal. 35, 489–502 (2017)

    Article  Google Scholar 

  38. Sirinukunwattana, K., Snead, D.R., Rajpoot, N.M.: A stochastic polygons model for glandular structures in colon histology images. IEEE Trans. Med. Imaging 34(11), 2366–2378 (2015)

    Article  Google Scholar 

  39. Stringer, C., Wang, T., Michaelos, M., Pachitariu, M.: Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18(1), 100–106 (2021)

    Article  Google Scholar 

  40. Taghanaki, S.A., et al.: Combo loss: handling input and output imbalance in multi-organ segmentation. Comput. Med. Imaging Graph. 75, 24–33 (2019). https://doi.org/10.1016/j.compmedimag.2019.04.005

    Article  Google Scholar 

  41. Vicente, S., Kolmogorov, V., Rother, C.: Graph cut based image segmentation with connectivity priors. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

    Google Scholar 

  42. Vuola, A.O., Akram, S.U., Kannala, J.: Mask-RCNN and U-net ensembled for nuclei segmentation. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 208–212. IEEE (2019)

    Google Scholar 

  43. Wählby, C., Sintorn, I.M., Erlandsson, F., Borgefors, G., Bengtsson, E.: Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections. J. Microsc. 215(1), 67–76 (2004)

    Article  MathSciNet  Google Scholar 

  44. Yang, L., et al.: NuSet: a deep learning tool for reliably separating and analyzing crowded cells. PLoS Comput. Biol. 16(9), e1008193 (2020)

    Article  Google Scholar 

  45. Yang, X., Li, H., Zhou, X.: Nuclei segmentation using marker-controlled watershed, tracking using mean-shift, and Kalman filter in time-lapse microscopy. IEEE Trans. Circuits Syst. I Regul. Pap. 53(11), 2405–2414 (2006)

    Article  Google Scholar 

  46. Yeung, M., Sala, E., Schönlieb, C.B., Rundo, L.: Unified Focal loss: generalising Dice and cross entropy-based losses to handle class imbalanced medical image segmentation. Comput. Med. Imaging Graph. 95, 102026 (2022)

    Article  Google Scholar 

  47. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was funded in part by the UK Research and Innovation Future Leaders Fellowship [MR/V023799/1], in part by the Medical Research Council [MC/PC/21013], in part by the European Research Council Innovative Medicines Initiative [DRAGON, H2020-JTI-IMI2 101005122], and in part by the AI for Health Imaging Award [CHAIMELEON, H2020-SC1-FA-DTS2019-1 952172]. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, or the Department of Health and Social Care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Yeung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yeung, M., Watts, T., Yang, G. (2022). From Astronomy to Histology: Adapting the FellWalker Algorithm to Deep Nuclear Instance Segmentation. In: Yang, G., Aviles-Rivero, A., Roberts, M., Schönlieb, CB. (eds) Medical Image Understanding and Analysis. MIUA 2022. Lecture Notes in Computer Science, vol 13413. Springer, Cham. https://doi.org/10.1007/978-3-031-12053-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12053-4_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12052-7

  • Online ISBN: 978-3-031-12053-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics