Skip to main content

CAKE: A Context-Aware Knowledge Embedding Model of Knowledge Graph

  • Conference paper
  • First Online:
Book cover Database and Expert Systems Applications (DEXA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13426))

Included in the following conference series:

  • 1224 Accesses

Abstract

Recently, knowledge embedding on knowledge Graph (KG) has drawn increasing attention from both academia and industry for its concise rationale and promising prospects. However, performances of existing knowledge embedding methods are mostly either far from satisfactory, or exhibits weakness for generalization. In this work, a context-aware knowledge embedding model (CAKE) has been proposed for applications like knowledge completion and link prediction. We model the generative process of KG formation based on latent Dirichlet allocation and hierarchical Dirichlet process, where the latent semantic structure of knowledge elements is learned as contexts. Contextual information, i.e. the context-specific probability distribution over elements, is thereafter leveraged in a translation-based embedding model. Essentially, we develop loss function in a probabilistic style to approximately realize the “attention” mechanism in our model. In this work, the learned embeddings of entities and relations are applied to link prediction and triple classification in experiments and our model shows the best performance compared with multiple baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Conference on Neural Information Processing Systems (NeurIPS), pp. 2787–2795 (2013)

    Google Scholar 

  2. Dasgupta, S.S., Ray, S.N., Talukdar, P.: HyTE: hyperplane-based temporally aware knowledge graph embedding. In: Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 2001–2011 (2018)

    Google Scholar 

  3. Du, L., Lu, Z., Wang, Y., Song, G., Wang, Y., Chen, W.: Galaxy network embedding: a hierarchical community structure preserving approach. In: International Joint Conferences on Artificial Intelligence (IJCAI), pp. 2079–2085 (2018)

    Google Scholar 

  4. Du, L., Wang, Y., Song, G., Lu, Z., Wang, J.: Dynamic network embedding: an extended approach for skip-gram based network embedding. In: International Joint Conferences on Artificial Intelligence (IJCAI), pp. 2086–2092 (2018)

    Google Scholar 

  5. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: YAGO2: a spatially and temporally enhanced knowledge base from Wikipedia. Artif. Intell. (AI) 194, 28–61 (2013)

    Article  MathSciNet  Google Scholar 

  6. Ji, G., Liu, K., He, S., Zhao, J.: Knowledge graph completion with adaptive sparse transfer matrix. In: AAAI Conference on Artificial Intelligence (AAAI), pp. 985–991 (2016)

    Google Scholar 

  7. Jia, Y., Wang, Y., Lin, H., Jin, X., Cheng, X.: Locally adaptive translation for knowledge graph embedding. In: AAAI Conference on Artificial Intelligence (AAAI), pp. 992–998 (2016)

    Google Scholar 

  8. Jiang, T., et al.: Encoding temporal information for time-aware link prediction. In: Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 2350–2354 (2016)

    Google Scholar 

  9. Levy, O., Goldberg, Y.: Neural word embedding as implicit matrix factorization. In: Conference on Neural Information Processing Systems (NeurIPS), pp. 2177–2185 (2014)

    Google Scholar 

  10. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: AAAI Conference on Artificial Intelligence (AAAI), pp. 2181–2187 (2015)

    Google Scholar 

  11. Nickel, M., Rosasco, L., Poggio, T.: Holographic embeddings of knowledge graphs. In: AAAI Conference on Artificial Intelligence (AAAI), pp. 1955–1961 (2016)

    Google Scholar 

  12. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  13. Qian, W., Fu, C., Zhu, Y., Cai, D., He, X.: Translating embeddings for knowledge graph completion with relation attention mechanism. In: International Joint Conferences on Artificial Intelligence (IJCAI), pp. 4286–4292 (2018)

    Google Scholar 

  14. Shi, B., Weninger, T.: ProjE: embedding projection for knowledge graph completion. In: AAAI Conference on Artificial Intelligence (AAAI), pp. 1236–1242 (2017)

    Google Scholar 

  15. Steenwinckel, B., et al.: Walk extraction strategies for node embeddings with RDF2Vec in knowledge graphs. In: Kotsis, G., et al. (eds.) DEXA 2021. CCIS, vol. 1479, pp. 70–80. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87101-7_8

    Chapter  Google Scholar 

  16. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: International World Wide Web Conference (WWW), pp. 1067–1077 (2015)

    Google Scholar 

  17. Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M.: Sharing clusters among related groups: hierarchical Dirichlet processes. In: Conference on Neural Information Processing Systems (NeurIPS), pp. 1385–1392 (2005)

    Google Scholar 

  18. Wang, R., et al.: AceKG: a large-scale knowledge graph for academic data mining. In: ACM International Conference on Information and Knowledge Management (CIKM), pp. 1487–1490 (2018)

    Google Scholar 

  19. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI Conference on Artificial Intelligence (AAAI), pp. 1112–1119 (2014)

    Google Scholar 

  20. Xiao, H., Huang, M., Zhu, X.: TransG: a generative model for knowledge graph embedding. In: Annual Meeting of the Association for Computational Linguistics (ACL), pp. 2316–2325 (2016)

    Google Scholar 

  21. Zhang, W., Paudel, B., Zhang, W., Bernstein, A., Chen, H.: Interaction embeddings for prediction and explanation in knowledge graphs. In: ACM International Conference on Web Search and Data Mining (WSDM), pp. 96–104 (2019)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Key R &D Program of China [2018YFB1004700]; the National Natural Science Foundation of China [61872238, 61972254]; and the State Key Laboratory of Air Traffic Management System and Technology [SKLATM20180X].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Gao .

Editor information

Editors and Affiliations

A Appendix: Optimization of CAKE

A Appendix: Optimization of CAKE

For entity \(\epsilon \), the gradient of its embedding is

$$\begin{aligned} \begin{aligned} \frac{1}{2}\frac{\partial \mathcal {L}}{\partial e^l_\epsilon }&= \sum _{c\in \mathcal {C}}\sum _{(h,r,t)\in \mathcal {D}^+}\sum _{(h',r',t')\in \mathcal {D}^-}\sum _{l'=1}^L(w_c^lw_c^{l'}-1)\{p_c(h,r,t)\\&\times [e_h^{l'}-e_t^{l'}-\omega _c^\top (e_h-e_t)\omega _c^{l'}+P_c^{l'}(e_r)]\times (I_{t=\epsilon }\\&-I_{h=\epsilon })-(\kappa -p_c(h',r',t'))\times [e_{h'}^{l'}-e_{t'}^{l'}\\&-\omega _c^\top (e_{h'}-e_{l'})\omega _c^{l'}+P_c^{l'}(e_{r'})]\times (I_{t'=\epsilon -I_{h'=\epsilon }})\} \end{aligned} \end{aligned}$$

For relation \(\pi \), the gradient of its embedding is

$$\begin{aligned} \begin{aligned} \frac{1}{2}\frac{\partial \mathcal {L}}{\partial e^l_\pi }&= \sum _{c\in \mathcal {C}}\sum _{(h,r,t)\in \mathcal {D}^+}\sum _{(h',r',t')\in \mathcal {D}^-}\sum _{l'=1}^Lw_c^lw_c^{l'}\times \{I_{r=\pi }\\&\times p_c(h,r,t) \times [P_c^{l'}(e_h)+e_r^{l'}-(\omega _c^\top e_r)\omega _r^{l'}\\&-P_c^{l'}(e_t)]- I_{r'=\pi }\times (\kappa -p_c(h',r',t'))\\&\times [P_c^{l'}(e_{h'}+e_{r'}^{l'}-(\omega _c^\top e_{r'})\omega _{r'}^{l'}-P_c^{l'})]\} \end{aligned} \end{aligned}$$

For context \(\delta \), the gradient of its normal vector is

$$\begin{aligned} \begin{aligned} \frac{1}{2}\frac{\partial \mathcal {L}}{\partial e^l_\pi }&= \sum _{c\in \mathcal {C}}\sum _{(h,r,t)\in \mathcal {D}^+}\sum _{(h',r',t')\in \mathcal {D}^-}\sum _{l'=1}^L(e_t^l-e_h^l-e_r^l)\times \{I_{c=\delta }\\&\times p_c(h,r,t)\times (\omega _c^{l'}+I_{l=l'}\times \omega _c^l)\times [e_h^{l'}+e_r^{l'}-e_t^{l'}\\&-\omega _c^\top (e_h+e_r+e_t)\omega _c^{l'}]-I_{c'=\epsilon }\times (\kappa -p_c'(h',r',t'))\\&\times (\omega _{c'}^{l'}+I_{l=l'}\times \omega _{c'}^l)\times [e_h^{l'}+e_r^{l'}-e_t^{l'}\\&-\omega _{c'}^\top (e_h+e_r+e_t)\omega _{c'}^{l'}]\} \end{aligned} \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, J., Ke, H., Mo, H., Gao, X., Chen, G. (2022). CAKE: A Context-Aware Knowledge Embedding Model of Knowledge Graph. In: Strauss, C., Cuzzocrea, A., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2022. Lecture Notes in Computer Science, vol 13426. Springer, Cham. https://doi.org/10.1007/978-3-031-12423-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12423-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12422-8

  • Online ISBN: 978-3-031-12423-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics