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Abstract. Designing smart home services is a complex task when
multiple services with a large number of sensors and actuators are
deployed simultaneously. It may rely on knowledge-based or data-driven
approaches. The former can use rule-based methods to design services
statically, and the latter can use learning methods to discover inhabi-
tants’ preferences dynamically. However, neither of these approaches is
entirely satisfactory because rules cannot cover all possible situations that
may change, and learning methods may make decisions that are some-
times incomprehensible to the inhabitant. In this paper, PBRE (Peda-
gogic Based Rule Extractor) is proposed to extract rules from learning
methods to realize dynamic rule generation for smart home systems. The
expected advantage is that both the explainability of rule-based methods
and the dynamicity of learning methods are adopted. We compare PBRE
with an existing rule extraction method, and the results show better per-
formance of PBRE. We also apply PBRE to extract rules from a smart
home service represented by an NRL (Neural Network-based Reinforce-
ment Learning). The results show that PBRE can help the NRL-simulated
service to make understandable suggestions to the inhabitant.

Keywords: Rule extraction · Neural network · Reinforcement
learning · Smart home

1 Introduction

Numerous smart home applications are rapidly emerging to provide various ser-
vices to inhabitants. Most of these applications belong to the knowledge-based
approaches. Expert systems [12] are one of the most well-known knowledge-based
systems. They allow inhabitants to design their services based on a set of rules.
However, despite the potential security and privacy risks [19], developing smart
home services with knowledge-based approaches is usually a complicated manual
process, especially when the services are complex or the actuators are diverse and
tightly interconnected. Moreover, it is not easy to design rules when only ultimate
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objectives are known, e.g., it is cumbersome to design rules for an HVAC (heating,
ventilation, and air conditioning) system when the desired indoor temperature is
specified along with the energy consumption to be minimized.

Other applications to implement a smart home system mainly belong to data-
driven approaches. These approaches make strategic decisions based on the anal-
ysis and interpretation of data. And learning methods that learn from data and
make predictions based on it are at the forefront of data-driven decision making
[5]. They try to automatically discover the patterns of the systems by analyzing
the datasets provided. Thus, in a smart home, these approaches can figure out
regulation solutions by studying inhabitants’ activities. It is essential to consider
the reactions of an inhabitant when attempting to design a user-friendly smart
home system [6]. Reinforcement learning (RL) [8], whose basic idea is that an
artificial agent learns the system’s behavior patterns by interacting with the
environment, can consider the inhabitant’s reactions to the proposed actions to
find out his habitual behaviors, and a group of habitual behaviors can be trans-
lated into a service. In this way, RL enables the inhabitant to participate in the
control of smart home services. Moreover, neural network-based reinforcement
learning (NRL), which integrates neural networks with RL, facilitates the mod-
eling of high-dimensional systems for RL [8]. However, NRL works like a black
box as it does not explain why it proposes new services or modifies existing ones.

To overcome the above shortcomings of the two approaches, we propose to
extract rules from a trained NRL. The extracted rules allow showing the inhabi-
tant in which situations the NRL suggested certain actions and enrich the knowl-
edge base, which saves the inhabitant from manually creating rules. However,
most of the existing rule extraction methods focus either only on neural net-
works with discrete inputs or on binary classification problems. Nevertheless, in
a smart home, there are both discrete (window state: open or closed) and con-
tinuous states (light intensity or temperature). Moreover, the control of smart
home services is not only a binary but also a multi-class classification problem.
In this paper, a method called PBRE (Pedagogic Based Rule Extractor) is pro-
posed to extract rules from a trained NRL that takes discrete and continuous
states as input and proposes states for multiple actuators.

In the rest of the paper, Sect. 2 presents existing work on rule extraction.
Section 3 explains the principle of PBRE. Section 4 evaluates PBRE and com-
pares it with an existing method called RxNCM.1 Section 5 shows how the NRL
learning and rule extraction methods can be integrated into a smart home sys-
tem. Section 6 simulates smart home light services with NRLs and evaluates the
performance of PBRE in extracting rules from NRLs (see Footnote 1). Section 7
summarizes the main contributions and provides interesting perspectives.

2 Context and Related Work

The smart home is usually implemented by setting up various services. In our
study, a set of possible operations performed by different devices can change
1 The codes for the implementations of all experiments can be found in: https://

github.com/mingming81/PBRE.git.
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the value of a particular environment state. A service can be denoted by the
name of that state, and the operations involved are means to implement that
service. For example, if an inhabitant is at home, raising the heater to increase
the temperature or opening a window to decrease the temperature are two ways
to implement a temperature service.

To create services, we can use methods of knowledge-based [9,17,18] or data-
driven approaches. However, knowledge-based systems usually require manual
input from the inhabitant to design services, which hinders the creation of com-
plex services. Although neural networks are more and more popular, and NRLs
are used by many smart home systems [16,23,24] to create services that can
interact with the environment and adapt to the inhabitant’s activities, they are
like black boxes, and we do not know why they suggest certain services.

To make NRLs understandable and enrich the knowledge base, we consider
extracting rules from NRLs. There is a lot of work on extracting rules from trained
neural networks. For example, in a tree-based machine learning approach [4,15]
collects all formulas from the root to a leaf node with a decision value and conju-
gates all these formulas to obtain a rule. [3] proposes an algorithm called RxNCM.
This algorithm first removes insignificant input attributes from the trained neural
network. Then, it determines the ranges for each attribute by selecting its min-
imum and maximum values from the training samples. The rules are created by
combining attributes with ranges of values and the corresponding outputs. These
rules are then pruned by removing conditions from a rule if the accuracy of the
rules can be increased in the test dataset. Finally, the pruned rules are updated
by removing overlapping ranges of attribute values between rules if the accuracy
of the new rules in the test dataset is increased. [22] proposes MOFN to extract
rules. First, a neural network is created using KBANN [21] and then trained. Next,
units with similar weighted connections are grouped. The average values replace
the weight values in each group, and the groups with low link weights are deleted.
The updated neural network is subsequently trained again by optimizing the bias
values. Then rules with weights and biases are extracted by combining inputs and
outputs. The final rules are obtained by removing the weights and biases. How-
ever, with the exception of RxNCM, the above work focuses on neural networks
that either have specific structures, e.g., [4] is only suitable for tree-based machine
learning methods, or they only accept categorical and limited integer inputs, e.g.,
[22] is only suitable for neural networks with limited integer inputs. In this work,
we propose PBRE to extract rules from trained neural networks or NRLs by ignor-
ing the input data types and structures of neural networks, and then evaluate it
with RxNCM to prove its better performance.

3 The Proposed PBRE Method

The principle of PBRE is illustrated in Fig. 1: First, PBRE extracts an instance
rule from a trained neural network, where an instance rule is a mapping between
the inputs and outputs of a neural network at a given time step. Then, it gener-
alizes the instance rule. Next, it combines the generalized rules by merging those
whose conclusions are the same and the range values of the states in the conditions
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Fig. 1. PBRE rule extraction process Fig. 2. Tree data structure

overlap. Finally, it refines the combined rules by removing insignificant states in
the conditions based on the accuracy of the rules in the unseen dataset. The unseen
dataset is a dataset that contains samples from which no rules are extracted, while
the seen dataset is used to extract rules. The use of the unseen dataset allows the
evaluation of the generalization capability [14,20] of the extracted rules.

3.1 Generate Instance Rules

A neural network can directly output the desired action that an actuator will per-
form. Nevertheless, an NRL may provide the quality values for all possible states
of an actuator, e.g., a deep neural network-based Q-learning (DQN) [10], which
we use in this paper to implement smart home services. Therefore, we first intro-
duce how to select the state of an actuator when the NRL generates quality values
for all possible states of that actuator. Suppose that there is a trained NRL with
an unknown structure, its inputs are st = [si

0

t , · · · , si
n

t ] where the superscript
indicates the type of input state and the subscript denotes the time step. The
outputs are action quality values qt = [qact

0

0,t , · · · , qact
0

i,t , · · · , qact
m

0,t , · · · , qact
m

k,t ],
where the superscript indicates the type of actuators and the subscript repre-
sents the actuator’s certain state and time step. Thus, the proposed states are

sact
0

i′,t = argmax(qact
0

0,t , · · · , qact
0

i,t ), · · · , sact
m

k′,t = argmax(qact
m

0,t , · · · , qact
m

k,t ). (1)

Moreover, we can obtain and represent the instance rule irt at time step t as

if state i0 has value s0t , · · · , then actuator act0 will have state sact
0

i′,t , · · · . (2)

However, instance rules are not like rules for general situations. We should
generalize them into rules by performing the following procedure.

3.2 Generalize Instance Rules

We generalize instance rules by first expressing instance rules in a tree structure
with linked lists. This tree structure gives a concise and clear idea of an instance
rule’s compositions and generalization process. Then, we generalize an instance
rule by merging it with another instance rule or rule whose conclusions are the
same as those of the instance rule and whose certain conditions have close values
or contain the values of those of the instance rule.
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Figure 2 shows the structure of the linked list tree. Each branch is a linked
list and stores an instance rule or a rule. Each branch node consists of a state
value belonging to either conclusions or conditions. Except for the root node
whose value is constant, the other nodes at the same level describe the values
of the same state type of different instance rules or rules. The data structure
of each node belonging to the Node class is shown in Fig. 2. It consists of two
parts: data being the state value of the current node and subNodes storing the
child nodes of the current node. The state value of the node is represented as

node.data = {Float : mean, F loat : min, F loat : max} (3)

where mean, min, and max are the average, minimum, and maximum of the state
value of all combined samples. The introduction of a range of values between the
minimum and the maximum makes it possible to combine instance rules or an
instance rule and a rule when their conclusions are the same, while the values
of certain states in the conditions are the same or close or overlap. The data
structure of subNodes is shown in Eq. 4. It is a vector consisting of all subnodes
of the current node. Each element in this vector contains a subnode of class Node
and an integer count indicating how many times the state value of the current
subnode appears simultaneously with the state values of the nodes in the same
branch and at higher levels.

node.subNodes = {{Node:node0, Integer:count0}, · · · }. (4)

To access a node and its subnodes, we use the dot notation like the property
accessor in JavaScript, i.e. the node ni in slashes in Fig. 2 can be described as
root.node1.nodec, which belongs to the class Node, its state value is ni.data,
and the subnodes are: ni.subNodes. To access its average, minimum and max-
imum values, we use ni.data.mean, ni.data.min and ni.data.max; to query its
jth subnode, we use ni.subNodes[j].

However, after generalizing an instance rule, there is a possibility that some
particular state value ranges overlap between rules with the same conclusions.
Therefore, we need to combine the obtained rules.

3.3 Combine Rules

To combine rules Ra whose conclusions are the same while the ranges of states in
the conditions overlap, for each state c in the condition, we first sort rules of Ra

in ascending order of the minimum values of c. Next, we name the first rule of
Ra as rm. Then we iterate Ra. For each rule ra in Ra, its minimum value of state
c is compared with the maximum value of the same state in rm. If the former
is not larger than the latter, we change rm.c.max to the larger value between
ra.c.max and rm.c.max. If there is no such rule ra, we store rm in a new rule set
Rb, define the current ra as rm, and compare rm with the remaining rules of Ra.
After all rules in Ra have been tested, we store the last rm in Rb to ensure that
no rm is forgotten. Finally, we need to delete duplicate rules from Rb because
the above process is performed for each state in the conditions, therefore it may
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Algorithm 1: Remove Insignificant States (RIS)
Result: final rules

1 D: dataset storing samples with each containing state values and target values
2 Dunseen: unseen dataset with each containing state values and target values
3 R = {r1, · · · , rm}: extracted rules
4 maxAcc: the maximum accuracy
5 stateTypes: the available state types
6 insignificantStates: vector storing insignificant state types
7 Function RIS(D, Dunseen, R):
8 corrState = D.corr().iloc[: −1, −1]; sort corrState in ascending order
9 sort stateTypes with the same order of corrState

10 for stateType in stateTypes do
11 numCorrect = 0
12 for dunseen in Dunseen do
13 create R1 ∈ R without states with types in insignificantStates and

stateType
14 select R2 ∈ R1, whose rules’ states ranges contain those of dunseen

15 create R0 by adding deleted states to R2

16 if size(R2) equals 1 then inference = conclusions of R2

17 else
18 arr=concatenate dunseen.states and R0.states.mean
19 arr, corrState2=remove states with types in

insignificantStates and stateType from arr, corrState
20 inference = Inference(corrState2, arr)
21 end
22 if inference equals dunseen.targets then numCorrect+ = 1
23 end
24 acc = numCorrect/length(Dunseen)
25 if acc ≥ maxAcc then add stateType to insignificantStates;

maxAcc = acc
26 end
27 for stateType in insignificantStates do
28 for dunseen in Dunseen do
29 arr=execute lines 13∼18
30 arr, corrState2=arr, corrState remove states with types in

insignificantStates and add state with type stateType
31 execute lines 20∼24
32 end
33 if acc ≥ maxAcc then remove stateType from insignificantStates;

maxAcc = acc
34 end
35 remove states with types in insignificantStates from R; return R

result in duplicate rules. The final Rb stores rules with the same conclusions but
without states in the conditions whose ranges overlap with those of other rules.

3.4 Refine Rules

In this section, we focus on removing insignificant states in the conditions
using Algorithm 1. First, we use Pearson product-moment correlation coefficients
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Algorithm 2: Infer the unseen sample (Inference)
Result: Inference result

1 corrState: correlation vector between state types and targets
2 arr:matrix concatenating states of the unseen sample and averages of the states

in the conditions of the rules
3 ε: predefined small number
4 Function Inference(corrState, arr):
5 corr = correlation(arr ∗ corrStates)
6 if ∀i, j ∈ corr, (i − j) < ε then select conclusions of the rule which has the

maximum sum of frequencies of occurrence of the conclusions
7 else select conclusions of the rule with the maximum correlation
8 return conclusions

(PPMCC) [2] to calculates the states-targets correlation vector. This vector stores
the correlation between available state types and the targets. Then, we sort this
correlation vector in ascending order to ensure the least correlated state types
come first (lines 8–9). For each stateType in available state types stateTypes,
first, we define a rule set R1 acquired from R by removing states with types in
insignificantStates and stateType. Then, we create a rule set R2 containing rules
from R1, whose states’ range values in the conditions contain the states’ values of
the unseen sample under study dunseen. We also define a rule set R0 equal to R2

with the deleted states added (line 10–15). If the size of R2 is 1, we select the conclu-
sions of this rule as the targets of dunseen (line 16). Otherwise, we remove states
with types in insignificantStates and stateType from the concatenated states
matrix which combines the states of dunseen and the averages of the states in the
conditions of R0. The states with types in insignificantStates and stateType are
also removed from the states-targets correlation vector (lines 17–19). Next, we use
Algorithm 2 to derive the unseen sample dunseen (line 20).

As shown in Algorithm 2, to obtain inference, we first multiply the updated
concatenated matrix about states with the states-targets correlation vector, and
then use PPMCC to calculate the correlation between dunseen and rules in R2

based on this weighted state matrix (line 5). If all rules have close correlations
with dunseen, we choose the conclusions of the rule which has the maximum sum
of frequencies of occurrence (count in Eq. 4) of the conclusions; otherwise, we
select the conclusions of the rule whose states are most strongly correlated with
those of dunseen (lines 6–7).

After all unseen samples are derived, we compute the accuracy of R without
state with types in insignificantStates and stateType (line 24). If the accu-
racy is not less than the maximum accuracy, the state with type stateType is
not important for the rules to correctly make inference. It will be added to the
insignificantStates vector, and the current accuracy will be the maximum accu-
racy (line 25). Next, after having run through all stateTypes and obtained the
final insignificantStates, we decide which stateType in insignificantStates
can be re-added to rules to maintain or improve the accuracy on the unseen
dataset. If such a stateType exist, it will be removed from insignificantStates
vector, and the updated accuracy will be the new maximum accuracy as shown
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in lines 27–33. When the updated final insignificantStates is acquired, we
remove states belonging to types in insignificantStates from R and return the
updated R as the final extracted rules (line 35). An extracted rule after having
been converted to “if-then” rule can be written as:

if state i0 is between s00 and s01 and has average s0m, · · · , then actuator

act0 will have state sact
0

0 with frequency of occurrence countact
0

0 , · · · . (5)

4 Evaluation and Comparison with Existing Work

Before applying PBRE to extract rules from DQNs in a smart home, we compare
and evaluate the performance of PBRE with that of RxNCM on six datasets from
the machine learning repository of the University of California Irvine: the Iris
dataset, the Wisconsin Breast Cancer (WBC) dataset, the Sonar dataset, the
German Credit dataset, the Ionosphere dataset, and the Heart Disease dataset.
Descriptions of the datasets are provided in Table 3 (Appendix 1).

4.1 Comparative Experiment

Metrics. We use the following metrics to evaluate PBRE and compare it with
RxNCM: (1) The number of extracted rules. [7,14] (2) Accuracy describes the
number of samples where the updated controllable environment states conform to
the inhabitant’s habitual behaviors as a percentage of the total samples. [1,22,25]
(3) Similarity, or fidelity [1,22,25], is the number of samples where conclusions
derived from the rules are the same with propositions proposed by the neural net-
works as a percentage of the total samples. (4) Inference is the number of samples
that the extracted rules can derive as a percentage of the total samples. Metrics
(2)–(4) are evaluated for both seen and unseen samples. The procedure for deter-
mining the metrics is shown in Fig. 9 (Appendix 2).

Results. Table 1, Fig. 3 and Fig. 4 show the metric results for PBRE and RxNCM.
From Table 1, we see that the number of rules extracted from each dataset by
PBRE or RxNCM is not large, which ensures that storing the extracted rules does
not require large memory, which is an important metric for a high-dimensional
smart home system. Figure 3 and Fig. 4 show that although RxNCM, like PBRE,
can infer all seen and almost all unseen samples (see “PBRE Infe.” and “RxNCM
Infe.”), the rules extracted with PBRE generally have higher accuracy and sim-
ilarity than those extracted with RxNCM (see “PBRE Acc.”, “RxNCM Acc.”,
“PBRE Sim.” and “RxNCM Sim.”). To illustrate the general performance, we cal-
culate the average ofmetrics (2) to (4) anddenote it as “PBREAve.” and “RxNCM
Ave.”. The results show that PBRE has higher general performance than RxNCM
for both datasets, which is consistent with the observations made above for metrics
(2) to (4). Moreover, including general performance, RxNCM has higher metric
results in the unseen datasets than in the seen datasets, and PBRE does the oppo-
site and has higher metric results than RxNCM in both datasets. This is because
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Table 1. Number of rules extracted with PBRE and RxNCM

Iris WBC Sonar German credit Ionosphere Heart disease

PBRE num. of rules 3 2 2 2 2 5

RxNCM num. of rules 3 2 2 2 2 5

Fig. 3. PBRE and RxNCM experiment results by working on seen datasets

Fig. 4. PBRE and RxNCM experiment results by working on unseen datasets

Fig. 5. A smart home system with one
service in practice

Fig. 6. A smart home system with one ser-
vice in simulation

to refine rules, PBRE not only deletes the states in the conditions but also adds
them back, which ensures the number of states in the conditions and guarantees
that PBRE achieves good performance in the unseen datasets and maintains the
performance in the seen datasets.

5 NRL and Rule Extraction Methods in the Smart Home

5.1 Smart Home System in Practice

Figure 5 shows how the smart home system that uses NRL to implement a service
and integrates rule extractions looks like in practice: When the system starts,
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it reads the values of the sensors associated with the service. Then the service
selects the involved actuators’ states. The actuators update their states to the
selected ones. The executions of the actuators lead to changes in the controllable
environment states, e.g., indoor light intensity. If the inhabitant is satisfied with
the updated controllable states, he takes no action; otherwise, he can change
some or all associated actuators’ states to match his habitual behaviors. Consid-
ering the changes that the inhabitant makes to the actuators’ states, the system
can then obtain the reward calculated by the predefined reward function. It then
trains the NRL using the transitions as input. Each transition contains the envi-
ronment states detected by the sensors, the states of the actuators selected by
the service, the rewards, and the updated environment states. If the NRL is well
trained with high and stable accuracy, the system uses PBRE to extract rules
and stores them in a database; otherwise, it repeats the above process.

5.2 Smart Home System in Simulation

Figure 6 shows how the smart home system looks like in simulation: First, the
time step t is initialized. Next, the environment states, e.g., the inhabitant state,
the indoor and outdoor light intensities at time step t, are generated by the pre-
defined functions. Then, the service simulated by NRL selects the states that the
actuators should take at time step t, and the actuators update their states to
the selected ones. The controllable environment states are subsequently updated
in terms of the actuators’ executions. Depending on the predefined reward func-
tions and simulated inhabitant’s habitual behaviors, a reward is calculated to
indicate whether the inhabitant is satisfied with the updated controllable envi-
ronment states. After that, the system uses certain optimization algorithm to
train the NRL based on the transitions. Once the NRL is well trained with
high and stable accuracy, the rules are extracted using PBRE and stored in a
database. The system then determines whether the current time step is the last
time step. However, if the NRL is not well trained, the system directly checks if
the current time step is the last one. If not, the system proceeds to the next time
step; otherwise, it returns to the first time step and repeats the entire process.

Table 2. Number of rules extracted by PBRE from different DQNs

DQN v1 DQN v2 DQN v3

Num. of rules 4 4 19

Fig. 7. PBRE with the seen datasets Fig. 8. PBRE with the unseen datasets
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6 Experiment in the Smart Home Context

In this section, we run three tests (DQN v1, DQN v2, and DQN v3), each using
a DQN to simulate a smart home light service and evaluating PBRE. To per-
form these tests, we first introduce a simulated environment and then follow the
process in Fig. 6, we use PBRE to extract rules from the light service.

6.1 Simulated Environment

The representations of the involved variables in the simulated smart home are:
(1) sus: state of the inhabitant; (2) sle: outdoor light intensity; (3) slr: indoor
light intensity;(4) slp: state of the lamp; (5) scur: state of the curtain.

Each light service first selects slp and scur as its outputs, and only consid-
ering sus for DQN v1 and also sle for DQN v2 and DQN v3 as the inputs. The
selected slp and scur are used to change slr. A reward r is then calculated by
the predefined reward function with respect to the simulated inhabitant habitual
behaviors and the obtained slr. According to Fig. 6, the system trains the DQN
by using the transition at each time step. Each transition includes the current
environment states sus and sle, the proposed actuators states slp and scur, the
reward r and the new environment states sus and sle whose values have not
been changed as a result of the actuators’ executions. When the DQN is well
trained, rules are extracted from it by using the seen dataset as its input, and
the simulated smart home system starts a new iteration.

In this experiment, sust at time step t is randomly generated by following the
uniform distribution Uint(0, nus) which generates an integer between 0 inclu-
sive and nus exclusive, where nus is the total number of possible states of the
inhabitant. sle within a day is simulated with a Gaussian distribution [11,13]:

slet = N (amplitude = 600,mean = 12, stddev = 3) + 5 · U(0, 1) (6)

where some noise simulated in a uniform distribution U(0, 5) with a maximum
value of 5 is added. slet is generated every 5 min in one day.

The output of the light service is slpt and scurt . slpt can be selected from mul-
tiple levels where level 0 indicates that the lamp is off and other levels represent
that the lamp is on. The light intensity that slpt can provide when it is on is
β ·slpt , where β is the light intensity that one level can provide. scurt ∈ {0, 1/2, 1}
where 0 is closed, 1/2 is half-open, and 1 is fully open. slrt thus is

slrt = β × slpt + slet × scurt . (7)

The inhabitant’s habitual behaviors, which are the ultimate objectives that
DQNs try to achieve, are simulated in “if-then” rules related to sus and slr. For
example: if the inhabitant is absent, then the indoor light intensity is 0 lux. We
do not use specific actuators’ states, which contributes to implementing a smart
home service that can derive the regulation solutions when only the ultimate
objectives of the inhabitant are given. The reward function (see Footnote 1) used
defines rewards as constant numerical values when different habitual behaviors
are satisfied.
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6.2 Experiment Results

The metric results of PBRE in extracting rules from different DQNs for the seen
and unseen datasets are shown in Table 2, Fig. 7 and Fig. 8. We can see that
the number of extracted rules in Table 2 for each simulated service is not large,
which ensures that storing these rules does not require large memory. Moreover,
we can see that the number of rules in DQN v3 has a larger value because the
corresponding habitual behaviors of the inhabitant are more complex, as shown
in Table 4 (Appendix 3). Furthermore, from Fig. 7 and Fig. 8, we see that PBRE
can extract rules from DQNs with satisfactory general performance (see “PBRE
Ave.”), which can be further explained as follows: The extracted rules achieve the
same and sometimes even higher accuracy than the DQNs; they have the same
similarity to the DQNs in the seen datasets and almost the same similarity in the
unseen datasets; moreover, they can infer all seen and almost all unseen samples.
One of the extracted rules after having been deleted averages and frequencies
of occurrence from Eq. 5 in DQN v3 is: if the inhabitant is working, and the
outdoor light intensity is between 0.35 and 243.28, then the lamp is at level 3,
and the curtain is closed. More rules can be found in Table 4 (Appendix 3) where
we approximate the lowest and highest values of each state’s range to integers.

7 Conclusion

NRLs can implement smart home services by interacting with the inhabitant and
adapting to his habitual behaviors. Yet, like other neural networks, NRLs are
black boxes, and the inhabitant cannot know why they suggest certain services.

To address this problem, several contributions are made: (1) We propose
PBRE to extract rules from trained neural networks or NRLs without consid-
ering their structures and input data types. And the comparison results with
RxNCM prove the better performance of PBRE. (2) We show how the smart
home working process, including using an NRL to implement a service and PBRE
to extract rules, works in practice and in simulation. (3) We evaluate the perfor-
mance of PBRE in extracting rules from a smart home light service simulated
by a DQN. The results show that PBRE can satisfactorily extract rules from
these DQNs.

In perspective, it is essential to evaluate the explainability of the extracted
rules with qualitative results obtained through focus groups. Then it is promising
to work on a proposal for a smart home system with multiple services.

Acknowledgements. This work is supported by Seido Laboratory, EDF R&D Saclay,
Télécom Paris, and ANRT (Association Nationale Recherche Technologie) under grant
number CIFRE n◦ 2018/1458.

Appendix 1 Datasets Descriptions

The descriptions of the six datasets are in Table 3.
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Table 3. Datasets used for evaluating the performance of the extracted rules

Dataset Num. of
samples

Num. of
attributes

Attribute characteristics Num. of
class

Iris dataset 150 4 Real 3

Wisconsin breast cancer 569 30 Real 2

Sonar dataset 208 60 Real 2

German credit dataset 1000 9 Categorical, Integer 2

Ionosphere dataset 350 34 Integer, Real 2

Heart disease dataset 303 13 Categorical, Integer, Real 5

Appendix 2 Metric Acquiring Procedure

We follow the process in Fig. 9 to obtain metrics (2)–(4). First, we simulate
input sample 1 and input sample 2 which are the seen and unseen datasets. The
neural network makes predictions and stores them in two databases for the two
samples. Next, input sample 1 is used with the neural network to extract rules
and obtain metric (1). These rules are used to derive the two samples. Finally,
the derived conclusions are compared with the predictions to evaluate metrics
(2)–(4).

Fig. 9. Metrics acquiring procedure

Appendix 3 Extracted Rules for Light Services

Table 4 shows that DQN v1 and DQN v2 have the same extracted rules sug-
gesting always closing the curtain. However, the rules in DQN v3 have a curtain
setting more variable as the energy saving is required in the inhabitant’s habitual
behaviors. Moreover, when expressing the rules, we only keep the states’ ranges
and forget their averages to make it easier to compare with habitual behaviors.
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Table 4. Extracted rules for the light service simulated by different DQNs

DQN Habitual behaviors Extracted rules

v1 (1) If the inhabitant is absent, then the
indoor light intensity is 0 lux; (2) If the
inhabitant is working, then the indoor
light intensity is between 250 lux and
350 lux; (3) If the inhabitant is seeing a
movie, then the indoor light intensity is
between 350 lux and 450 lux; (4) If the
inhabitant is sleeping, then the indoor
light intensity is 0 lux

(1) If the inhabitant is absent, then the
lamp is off, and the curtain is closed;
(2) If the inhabitant is working, then
the lamp is at level 3, and the curtain is
closed; (3) If the inhabitant is seeing a
movie, then the lamp is at level 4, and
the curtain is closed; (4) If the
inhabitant is sleeping, then the lamp is
off, and the curtain is closed

v2 (1) If the inhabitant is absent, then the
indoor light intensity is 0 lux; (2) If the
inhabitant is working, then the indoor
light intensity is between 250 lux and
350 lux; (3) If the inhabitant is seeing a
movie, then the indoor light intensity is
between 350 lux and 450 lux; (4) If the
inhabitant is sleeping, then the indoor
light intensity is 0 lux

(1) If the inhabitant is absent, and the
outdoor light intensity is between 0 and
605 lux, then the lamp is off, and the
curtain is closed; (2) If the inhabitant is
working, and the outdoor light intensity
is between 0 and 605 lux, then the lamp
is at level 3, and the curtain is closed;
(3) If the inhabitant is seeing a movie,
and the outdoor light intensity is
between 0 and 605 lux, then the lamp is
at level 4, and the curtain is closed; (4)
If the inhabitant is sleeping, and the
outdoor light intensity is between 0 and
605 lux, then the lamp is off, and the
curtain is closed

v3 With the preference of decreasing the
electricity consumption: (1) If the
inhabitant is absent, then the indoor
light intensity is 0 lux; (2) If the
inhabitant is working, then the indoor
light intensity is between 250 lux and
350 lux; (3) If the inhabitant is seeing a
movie, then the indoor light intensity is
between 350 lux and 450 lux; (4) If the
inhabitant is sleeping, then the indoor
light intensity is 0 lux

(1) If the inhabitant is absent, and the
outdoor light intensity is between 0 and
605 lux, then the lamp is off, and the
curtain is closed; (2) If the inhabitant is
working, and the outdoor light intensity
is between 246 and 357 lux, then the
lamp is off, and the curtain is fully
open; (3) If the inhabitant is working,
and the outdoor light intensity is
between 512 and 605 lux, then the lamp
is off, and the curtain is half-open; (4) If
the inhabitant is seeing a movie, and
the outdoor light intensity is between
356 and 452 lux, then the lamp off, and
the curtain is fully open; (5) If the
inhabitant is sleeping, and the outdoor
light intensity is between 0 and 605 lux,
then the lamp is off, and the curtain is
closed; · · ·
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