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Abstract. We present several methods for predicting the dynamics of
Hamiltonian systems from discrete observations of their vector field. Each
method is either informed or uninformed of the Hamiltonian property.
We empirically and comparatively evaluate the methods and observe that
information that the system is Hamiltonian can be effectively informed,
and that different methods strike different trade-offs between efficiency
and effectiveness for different dynamical systems.
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1 Introduction

The prediction of the dynamics of systems is a relevant and crucial task to many
applications in domains ranging from the hard to social sciences. The dynamics
of a system is captured by the vector field formed by the time derivatives of the
variables describing the system’s current state. The system evolves along flow
lines in the state space. The flow map is the function that, given an initial state
and a time interval, outputs the state of the system after the time interval.

A Hamiltonian system [10] is a dynamical system governed by Hamilton’s
equations. The Hamiltonian property indicates the conservation of some quan-
tity, typically the energy in mechanical and physical systems.

We design, present, and evaluate physics-informed methods for the prediction
of the dynamics of a system from the observation of its vector field at discrete
locations of the state space. We want to understand and quantify the significance
of informing regression and integration of a vector field with physics information.
In the spirit of an ablation study, we compare variants of the general method
and different devices, a multilayer perceptron and a Gaussian process, with and
without the information that the system is Hamiltonian. In the first stage, this
concerns whether the vector field is under the constraints of Hamilton’s equa-
tions. In the second stage, this concerns whether the vector field is integrated
with a non-symplectic or symplectic integrator. The empirical comparative per-
formance evaluation is conducted with data from several physical systems of
an oscillator, a pendulum, a Henon Heiles system, a Morse potential model
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of a dyatomic molecule, and several abstract systems with logarithmic, inverse
trigonometric, exponential, radical and polynomial Hamiltonian functions.

2 Related Work

We are interested in the problem of learning the vector field and the flow map
from samples of the vector field. There are multiple statistical methods to learn
correlated vector-valued functions [9,14,16]. Learning vector fields using machine
learning has been addressed as multiple output regression by Hastie et al. [8]
while state of the art works use neural networks that model ordinary differential
equations [12] and partial differential equations [13]. Learning vector fields using
kernel methods with regularization was introduced by Micchelli et al. [11]. Sim-
ilarly, Boyle and Frean [4] introduced Gaussian processes to learn vector-valued
functions. Recent works regularize the vector field [1].

Our work is similar to that of Greydanus et al. [6], who showed that a physics-
informed neural network, similar to Bertalan et al.’s [2], can faster learn the
Hamiltonian of mechanical systems and better predict their dynamics from se-
lected samples of their vector fields than a neural network. Additionally, fol-
lowing Chen et al. [5], a symplectic integrator [7,15] can integrate the learned
Hamiltonian vector field to predict a flow line.

3 Methodology

The general method for predicting the dynamics of a system from the observation
of its vector field at discrete locations of its phase space comprises two successive
stages: the learning or regression of the vector field from the samples, and the
integration of the vector field into the flow map image of a state in the phase
space for a prescribed time interval. We consider four variants of the general
methods. They result from the obliviousness or awareness of information that a
system is Hamiltonian during the first and second stages of the general method.

We consider two non-linear regression devices for the learning of a surrogate
of the vector field, a multilayer perceptron neural network and a Gaussian pro-
cess. The two devices are chosen as the main representatives of parametric and
non-parametric non-linear regression statistical machine learning devices. They
can learn a surrogate of the vector field, or learn a surrogate of the Hamiltonian
and compute a surrogate of the vector field with automatic differentiation.

We consider the supervised learning of a surrogate F̂ of the vector field
F with two physics oblivious devices: a multilayer perceptron and a Gaussian
process. They regress the vector-valued function oblivious to physics information.
A training data set Z comprises N samples, dx

dt and dy
dt , of the vector field for N

states z = (x, y) in the phase space of the system studied. When the surrogate is a
multilayer perceptron, the weights minimise the mean squared error between the
approximated vector field and the ground truth vector field. When the surrogate
is a Gaussian process, the conditional expectation of the Gaussian process for
the approximated vector field and the ground truth vector field is maximised.



Predicting Hamiltonian Dynamics in a Vector Field 3

We consider learning a physics-informed surrogate Ĥ of the Hamiltonian H
learned from the same training data set Z under the constraints that the system
is Hamiltonian before deriving the vector field. We adapt the method proposed
by [2]. We use the constraints of Equation 1 to define the loss function of the
device. f0 is is an arbitrary pinning term. f1 and f2 are Hamilton’s equations.

f0 =
(
Ĥ(x0, y0)−H0

)2
f1 =

(
∂Ĥ

∂y
− dx

dt

)2

f2 =

(
∂Ĥ

∂x
+

dy

dt

)2

(1)

When the surrogate for the Hamiltonian is a multilayer perceptron neural
network, the loss function is a linear combination of f0, f1 and f2. When the
surrogate is a Gaussian process, constraining its loss function leads to solving
Equation 2. In both cases, the derivative of the Hamiltonian at any new state of
the phase space can be obtained from the surrogate by automatic differentiation.

∂
∂z1

k(z1, Z)⊤k(Z,Z ′)−1

...
∂

∂z3
k(zN , Z)⊤k(Z,Z ′)−1

k(z0, Z)⊤k(Z,Z ′)−1

 [H(Z)] =

[
g(Z)
H0

]
(2)

The flow map for predicting the dynamics of the system is computed by inte-
grating the surrogate vector fields. Ignoring that the system is Hamiltonian, one
can use the first order explicit Euler integrator [3]. Knowledge of the Hamiltonian
system allows use of the implicit symplectic Euler integrator [7].

4 Performance Evaluation

Two experiments are conducted. In the first, we empirically compare the per-
formance of the two physics-oblivious methods learning the vector field directly
and of their two physics-informed counterparts learning the Hamiltonian. We
use a testing data set of 202n vectors at evenly spaced states in the phase space
for each system. Effectiveness is measured by mean squared error between the
ground truth vectors and approximated vectors, and efficiency by the time taken
for early stopping of the multilayer perceptron, or the time taken to fit a Gaus-
sian process. For the second experiment, we evaluate the prediction of the dy-
namics of each Hamiltonian dynamical system by computing the flow map over
the interpolated vector field. The vector field are learned with physics-informed
methods in the first experiment, and combined with the Euler or symplectic Eu-
ler integrator. We use a testing data set of 52n evenly spaced states in the phase
space for each system. Flow lines are calculated from the differential equations
of the system with a symplectic Euler integrator for 50 time steps, with step size
h = 0.1. The mean squared error between the ground truth flow line and the
predicted flow line for each method, and prediction time is computed.

For both experiments, all multilayer perceptrons and physics-informed mul-
tilayer perceptrons set aside 20% of the training data set for validation based
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early stopping.Other settings follow Bertalan et al. [2]. All surrogates are trained
in Google Colaboratory1. Training data set of size between 64 and 1024 are sam-
pled uniformly at random from the vector fields of the eight example systems,
respectively. The experiments are repeated for 20 unique random seeds, and the
mean values are reported and compared. Results are plotted as Pareto plots.

(a) Simple Oscillator (b) Nonlinear Pendulum (c) Henon Heiles

(d) Morse Potential (e) Logarithmic (f) Inverse Cosine

(g) Exponential (h) Square Root (i) Legend

Fig. 1: Learning the vector field

Figure 1 plots the Pareto plot for the inverse of the vector field approximation
mean squared error (x axis) and the inverse of surrogate training time (y axis) for
the different dynamical system indicated. The colors correspond to the different
training data set of varying sizes. The circle, cross, square and plus symbols rep-
resent the Gaussian process (GP), multilayer perceptron (NN), physics-informed
Gaussian process (PIGP) and physics-informed multilayer perceptrons (PINN)
methods respectively. The most efficient method is the physics-informed Gaus-
sian process, while multilayer perceptron can better extrapolate the vector field.

Figure 2 compares inverse prediction error (x axis) and inverse prediction
time (y axis). The colors correspond to training data set of varying sizes. The
right-pointing triangle, square, down-pointing triangle and empty circle sym-
bols represent the Gaussian process (GPE), physics-informed Gaussian process

1 Find code and results at github.com/zykhoo/predicting_hamiltonian_dynamics.

github.com/zykhoo/predicting_hamiltonian_dynamics
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(a) Simple Oscillator (b) Nonlinear Pendulum (c) Henon Heiles

(d) Morse Potential (e) Logarithmic (f) Inverse Cosine

(g) Exponential (h) Square Root (i) Legend

Fig. 2: Predicting the flow map

(PIGPE), multilayer perceptron (NNE), and physics-informed multilayer per-
ceptron (PINNE), all with the Euler integrator. The left-pointing triangle, cross,
up-pointing triangle and filled circle symbols represent the same surrogates with
symplectic Euler integrator. They learn and integrate the vector field. The most
efficient method for the prediction of the dynamics is the physics-informed mul-
tilayer perceptron with symplectic integrator. This demonstrates the advantage
of informing the methods of the Hamiltonian nature of the dynamical systems

5 Conclusion

We design, present, and evaluate physics-informed methods for the prediction
of the dynamics of a system from the observation of its vector field at discrete
locations of the state space. We show that information that the system is Hamil-
tonian can be effectively informed in both the regression and integration of the
vector field. The methods strike trade-offs between efficiency and effectiveness.
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